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Abstract

We formulate and prove a large sieve inequality for quadratic characters over a number
field. To do this, we introduce the notion of an n-th order Hecke family. We develop the
basic theory of these Hecke families, including versions of the Poisson summation formula.

1. Introduction

In [HB], Heath–Brown proved a large sieve inequality for quadratic characters:

∑�

M<a�2M

∣∣∣∣∣∣
∑�

N<b�2N

λb

(a

b

)∣∣∣∣∣∣
2

� (M N )ε(M + N )
∑�

N<b�2N

|λb|2. (1·1)

Here (λb) is any sequence of complex numbers, ε > 0, M, N � 1, (·/·) is the Jacobi
symbol, and the sums are restricted to odd squarefree integers. This bound has proved to be
extremely useful in applications, and one might wish to generalize it. Heath–Brown [HB2]
has proved an analogue of (1·1) for cubic characters, and in joint work with Blomer [BGL],
the authors have proved an analogue for characters of arbitrary order.

Our goal in this paper is to generalize (1·1) in a different direction, by extending it to
number fields. The only such generalization we are aware of is a recent result of Onodera
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194 LEO GOLDMAKHER AND BENOÎT LOUVEL

[On], who proves a quadratic large sieve for Q(i). The apparent neglect of this natural
problem can be largely attributed to the difficulty of formulating the proper number field
generalization. More precisely, it is not clear what an appropriate analogue of the Jacobi
symbol is over a number field. The most obvious candidate, the power residue symbol, is
not suitable: any analogue of (1·1) requires a symbol admitting integral ideal inputs, while
the power residue symbol (a/b) is defined for number field elements a and ideals b and it is
not obvious how to extend the top entry to ideals. (We give a brief description of the power
residue symbol in Section 2.) To get around this, we introduce the notion of an n-th order
Hecke family. For a number field k with ring of integers O, let I (a) denote the set of integral
ideals coprime to a given integral ideal a, and let N (a) be the absolute norm of a. Given a
Hecke character χ modulo f, the infinite type of χ is defined to be the unique character χ∞
on k ⊗Q R satisfying χ

(
(x)
) = χ∞(x) for every x ∈ O with x ≡ 1 (mod f).

Definition 1. Given n � 2, let k be a number field containing the group μn of n-th roots
of unity. An n-th order Hecke family (with respect to a fixed ideal c) is a collection

F = Fc = {χa : a ∈ I (c), a squarefree}
of primitive Hecke characters of trivial infinite type, satisfying the following three proper-
ties:

(1) the order of χa divides n for every character χa ∈ F ;
(2) F satisfies a reciprocity law of the form: there exists a finite group G, a homomorph-

ism [·] from I (c) to G, and a map C : G × G → μn such that

χa(b) = χb(a) C([a], [b]) (1·2)

for all coprime ideals a, b ∈ I (c); and
(3) for all coprime ideals a, b ∈ I (c) satisfying [a] = [b], χaχb is a primitive Hecke

character modulo ab.

Remark 1. Property (3) generalizes the following property of the Jacobi symbol: if a
and b are positive odd coprime integers, then (ab/·) is a Dirichlet character modulo ab if
a ≡ b (mod 4). This property will play an essential role in our argument; see (5·2) and
Section 6·3.

Remark 2. The ideal c in an n-th order Hecke family plays the same role as the modulus
4 in quadratic reciprocity.

Remark 3. Note that if {χa : a ∈ I (c)} is an n-th order Hecke family, then the set {χn/d
a :

a ∈ I (c)} is a d-th order Hecke family for any non-trivial divisor d of n.

It is not clear a priori that any such family exists. An example of a quadratic Hecke
family (indeed, the motivating example) was constructed by Fisher and Friedberg in [FF] –
see Section 2 for a brief description of their work. Their construction is quite natural, and can
be readily extended to produce Hecke families of any order; Remark 3 then indicates how
to modify their construction to produce other Hecke families. It is an interesting question to
determine whether all Hecke families are thus induced from the Fisher–Friedberg family.

With this notation in hand, we can now state our main result:

THEOREM 1·1. Let c be an integral ideal of a number field k, and let {χa} be a quadratic
Hecke family with respect to c. Given any ε > 0, M, N � 1, and a sequence (λb) of complex
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numbers parametrized by integral ideals of k, we have

∑∗

Na�M

∣∣∣∣∣∣
∑∗

Nb�N

λbχb(a)

∣∣∣∣∣∣
2

� k,c,ε(M N )ε(M + N )
∑∗

Nb�N

|λb|2.

Here and henceforth
∑∗

indicates that the sum is restricted to squarefree ideals of I (c).

This generalizes Heath–Brown’s result [HB] (k = Q) and Onodera’s result [On] (k = Q(i)).
We record the following consequence, which plays an important role in [BGL]:

COROLLARY 1·2. Given n � 3 even, let k be a number field containing the group μn of
n-th roots of unity. If {χa : a ∈ I (c)} is an n-th order Hecke family and (λb) is a sequence
of complex numbers parametrized by integral ideals of k, we have

∑∗

Na�M

∣∣∣∣∣∣
∑∗

Nb�N

λbχ
n/2
b (a)

∣∣∣∣∣∣
2

� k,c,ε(M N )ε(M + N )
∑∗

Nb�N

|λb|2

for all ε > 0 and all M, N � 1.

We end this introduction by giving a short overview of the organization of the paper. In
Section 2 we describe an example of an n-th order Hecke family. In Section 3, we develop
some necessary summation formulas over number fields. Section 4 is devoted to reducing
Theorem 1·1 to a recursive estimate, Theorem 4·3. This theorem is then reduced further in
Section 5 to an upper bound, stated in Proposition 5·2. This proposition is proved in the final
two sections of the paper.

2. The Fisher–Friedberg Hecke family

As discussed in the introduction, an example of a quadratic Hecke family was first given
by a construction of Fisher and Friedberg [FF]. This was later extended to Hecke families
of all orders by Friedberg, Hoffstein, and Lieman in [FHL]. In this section, we give a brief
description of their work.

Let n � 2 be a fixed integer and let k be a number field containing the group μn of n-th
roots of unity. Let O be the ring of integers of k. For each place v of k, let kv denote the
completion of k at v. For v nonarchimedean, let pv denote the corresponding ideal of O. For
an integral ideal c of k, we denote by I (c) the set of integral ideals of k coprime to c and by
I ∗(c) the group of fractional ideals of k coprime to c; for a set S of places of k, we define
I (S) and I ∗(S) analogously.

We first recall the definition of the n-th power residue symbol (see [SD, chapter 19] or
[CF, exercises p. 348]). For a ∈ k, let Sa be the set of places of k which either divide n
or ramify in k(a1/n)/k. For p ∈ I ∗(Sa), let Fa(p) be the Frobenius automorphism corres-
ponding to p. Extending this multiplicatively to all fractional ideals yields the Artin map
Fa : I ∗(Sa) → Gal(k(a1/n)/k). For any prime ideal p of I ∗(Sa), one has

Fa(p)(a1/n) = (a/p)a1/n,

for some n-th root of unity (a/p) which is independent of the choice of a1/n . The symbol
(a/p) is called an n-th power residue symbol because (a/p) = 1 is equivalent to a being an
n-th power in kv (where v denotes the place corresponding to p). One can then extend this
multiplicatively to a symbol χa(b) = (a/b) for any b ∈ I ∗(Sa). One of the properties of the
power residue symbol is that (a/b) = 1 if a ≡ 1 (mod b). We refer to [CF, p. 348–350] for
a more complete description of the power residue symbol.
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196 LEO GOLDMAKHER AND BENOÎT LOUVEL

Having described the n-th power residue symbol χa for a field element a, our next task is
to extend this to a character χa with a an ideal. This construction proceeds in several steps.
After constructing an appropriate ideal c (see Remark 2 in the introduction), we generate
a set E of integral ideals, which parametrizes the fractional ideals coprime to c up to n-th
power factors. One can then define a new symbol χa in terms of the parameter ideal in E
corresponding to a. Finally, we show that the set of all such χa forms an n-th order Hecke
family. We now carry out this construction in more detail.

Let S be a finite set of places of k, containing all the archimedean places and the places
dividing n, and large enough so that the ring OS of S-integers has class number one. We
construct an integral ideal c of k by setting c = ∏

pnv

v , where nv is chosen to be 0 if v � S
or if v | ∞, 1 if v � n, and large enough that every x ∈ kv with v(x) � nv is an n-th power
in kv if v | n. Note that for v | n, the integers nv have been determined explicitly by Hasse
[Ha, property X, p. 46]. If n = 2 and k has some real embedding, we write, for x ∈ k×, that
x > 0 if all real embeddings of x in R are positive.

Let Hc be the ray class group (narrow ray class group if n = 2) modulo c, and let Rc =
Hc ⊗ Z/nZ. Write the finite group Rc as a product of cyclic groups, choose a generator
for each, and let E0 be a set of ideals of O coprime to c which represent these generators.
For each E0 ∈ E0, choose m E0 ∈ k× such that E0OS = m E0OS; up to multiplication by a
unit of k, we may and do assume that m E0 > 0 (only relevant for n = 2 and k having real
embedding). Let E be a full set of representatives for Rc of the form

∏
E

nE0
0 , nE0 � 0. If

E = ∏
E

nE0
0 is such a representative, set m E = ∏

m
nE0
E0

(we have m E > 0 for all E ∈ E).
Without loss of generality, we suppose O ∈ E and mO = 1.

Let a, b ∈ I ∗(c) be coprime. Write a = (x)Egn with x ≡ 1 (mod c), x > 0, E ∈ E
and (g, b) = (1). Let ma = xm E ; then, the n-th order residue symbol (ma/b) is well
defined ([FF, lemma 1·1]). Accordingly, we define (a/b) = (ma/b) and the character χa

by χa(b) = (a/b). Note that this construction of the characters χa is non-canonical, since it
depends on all the choices made above.

These characters generalize the power residue symbol, in the sense that for a ≡ 1 (mod c)
and a > 0, one has χ(a) = χa . The most important property of the characters χa is that they
satisfy the reciprocity law (1·2) (see [FF, lemma 3·2]) with G = Rc and [·] the projection
from I ∗(c) to Rc. We now show that for all a ∈ I ∗(c), χa is a Hecke character of order n
modulo ca. (Although surely well-known to the experts, this does not seem to be mentioned
anywhere in the literature.) Consider first the case where k is imaginary. Note that χa(O) =
χO(a) = 1 by definition. Let x ∈ k, x ≡ 1 (mod ca). The class of (x) in Rc is trivial, thus
by definition we have χ(x) = χx . From the reciprocity law (1·2), we obtain

χa

(
(x)
) = χ(x)(a)C([a], [(x)])

= χx(a)C([a], [O])
= χx(a)χa(O)χO(a)

=
( x

a

)
= 1.

If k has real embeddings, i.e. if n = 2, the above proof does not work, since x ≡ 1 (mod c)
does not imply that the class of (x) is trivial in Rc (we do not know whether x > 0). In this
case, by definition of χa we have χa = χma

, where ma ∈ k is defined by ma = xm E and
a = (x)Egn with x ≡ 1 (mod c) and x > 0. Since m E > 0 and x > 0, we have ma > 0
for all a ∈ I ∗(c). From the law of quadratic reciprocity, one shows that the infinite type of
χma

is
∏

(·, ma)v, the product being taken over the real infinite places of k. Therefore, the
character χa is a Hecke character of trivial infinite type. Moreover, it is easily seen that for
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all a, b ∈ I (c),

χaχb = χab,

where both sides are viewed as Hecke characters modulo cab.
We remark that for any prime ideal p ∈ I (c), the character χp (mod cp) is not induced by

a character modulo c. Thus χp is a Hecke character modulo cp of conductor cpp, for some
ideal cp dividing c. From this and multiplicativity, we deduce that if fa denotes the conductor
of χa, then fa = caa0 for some ideal ca dividing c. Here a0 is defined as the product of the
prime ideals dividing the n-th power-free part of a.

Let us abuse notation and denote by χa the primitive character inducing χa. Adopting
the same convention for χψ (i.e. letting this represent the primitive character inducing the
product of the two Hecke characters χ and ψ), one easily sees that the primitive Hecke
character χa inherits the above properties. Moreover, given squarefree, coprime ideals a, b ∈
I (c) which are in the same class in Rc, one can write a = (xa)Eag

n
a and b = (xb)Ebg

n
b. Then,

for any x ≡ 1 (mod ab), we have

χaχb((x)) =
(

xa/xb

x

)(
m Ea

/m Eb

x

)
=
(

xa/xb

x

)
,

since Ea = Eb. Moreover, since xa, xb ≡ 1 (mod c), we have(
xa/xb

x

)
=
(

x

xa/xb

)
=
( x

a

) ( x

b

)
= 1.

This shows that the characters χa described explicitly above are an example of an n-th order
Hecke family.

3. A Poisson summation formula over number fields

The aim of this section is to develop a number field version of the Poisson summation
formula.

Associated to the number field k we have the following parameters: d = [k : Q] is the
degree of the extension; r1 is the number of real places and r2 the number of complex ones
(so that d = r1 + 2r2); Ak = (2r1 |dk |(2π)−d)1/2, where dk is the discriminant; and αk is the
residue at s = 1 of the completed L-function 	(s) = As

k
(s/2)r1
(s)r2ζk(s).
Any primitive ray class character χ (mod f) over k (i.e. a Hecke character of trivial infinite

type) satisfies the functional equation

	(χ, s) = ε(χ)(N f)1/2−s	(1 − s, χ), (3·1)

where

	(χ, s) =
(

2r1 |dk |
(2π)d

)s/2



( s

2

)r1


(s)r2 L(χ, s). (3·2)

Moreover, if the character χ is quadratic, we know that ε(χ) = 1.
Given h : R → R a smooth function with compact support, denote by ĥ the Mellin

transform of h. We define the transform ḣ : R → R by

ḣ(x) =
∫ ∞

0
h(t)K(t x) dt, (3·3)

where K : R�0 → C is the function given by

K(t) = A−1
k

2π i

∫
(σ )

(

(s/2)


((1 − s)/2)

)r1
(


(s)


(1 − s)

)r2
(

t

A2
k

)−s

ds.
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198 LEO GOLDMAKHER AND BENOÎT LOUVEL

Note that the function K(t) depends only on the field k. We also define the transform

ḧ(x) =
∫ ∞

0
h(t2)K(t x) dt. (3·4)

The function ḣ satisfies the property

ḣ(x) � |x |−A, for all x � 0, for all A > 0,

as well as ∫
R

h(x2) dx =
∫

R

ḣ(x2) dx . (3·5)

We have the following results:

LEMMA 3·1. Let X > 0 be given. Then

∑
b�0

h

(Nb

X

)
= αk

Ak
Xĥ(1) − δd=2h(0)αk Ak + X

∑
b�0

ḣ (XN (b)) ,

where d is the degree of k/Q and δd=2 is 1 if d = 2 and 0 otherwise.

LEMMA 3·2. Let X > 0 be given. For a non-trivial primitive ray class character
χ (mod f), one has∑

b∈I (f)

χ(b)h

(Nb

X

)
= ε(χ)X√

N (f)

∑
b∈I (f)

χ(b)ḣ

(
XN (b)

N (f)

)
,

where ε(χ) comes from the functional equation (3·1).

LEMMA 3·3. Let X > 0 be given. Let Y � X � Z and let L � (Z/X)2. Then, for any
A,∑
(b,m)=1

h

(N (b)

X

)
= ϕ(m)

Nm
αk A−1 Xĥ(1) −

∑
d|m

N (d)>Z

μ(d)αk A−1 X

N (d)
ĥ(1)

−δd=2h(0)αk A
∑
d|m

N (d)�Z

μ(d) +
∑
d|m

Y<N (d)�Z

μ(d)
X

N (d)

∑
a�0

N (a)�L

ḣ

(
XN (a)

N (d)

)

+O
(
Z(Z/X)−A

)+ O
(
X (X/Y )−A

)
,

where δ is defined as in Lemma 3·1 and d is the degree of k/Q.

Proof of Lemma 3·1. Define

	(s) =
(

2r1 |dk |
(2π)d

)s/2


(s/2)r1
(s)r2ζk(s). (3·6)

Then 	(s) can be analytically continued to a meromorphic function on the whole s-plane,
and satisfies the functional equation

	(s) = 	(1 − s). (3·7)

Moreover, the poles of 	(s) are simple and located at s = 0 and s = 1. Recall that αk =
Ress=1	(s) and that Ak = (|dk |(2π)−d)1/2. By the inverse Mellin transform, for any σ > 1
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we have ∑
b

h(Nb) = 1

2π i

∫
(σ )

ĥ(s)ζk(s) ds

= 1

2π i

∫
(σ )

ĥ(s)
(s/2)−r1
(s)−r2 A−s
k 	(s) ds.

Let −1 < σ ′ � 0. The only possible poles of the integrand are located at s = 1 and
at s = 0. At s = 1, a simple pole occurs with residue β = αk ĥ(1)/Ak . We know that
	(s)
(s)−d/2 A−s

k = ζ(s) is entire at s = 0; actually it has a zero of order r2 − 1. Moreover,
ĥ(s) may have a simple pole at s = 0, of residue h(0). Thus the integrand has no pole at
s = 0 if d > 2 and a simple pole of residue h(0)ζk(0) = −h(0)αk Ak if d = 2. Moving the
line of integration to R(s) = σ ′ and applying the functional equation, we obtain∑

b�0

h(Nb) = β − δd=2h(0)αk Ak + 1

2π i

∫
(σ ′)

ĥ(s)

( s

2

)−r1


(s)−r2 A−s
k 	(s) ds

= β − δd=2h(0)αk Ak

+ 1

2π i

∫
(1−σ ′)

ĥ(1 − s)

(

(s/2)



(
(1 − s)/2

)
)r1 (


(s)


(1 − s)

)r2

A2s−1
k ζk(s) ds.

Expanding the L-function, exchanging the sums and integrals, and applying an inverse Mel-
lin transform, we find∑

b�0

h(Nb) = β − δd=2h(0)αk Ak +
∑
b�0

ḣ (Nb) .

We deduce that∑
b�0

h

(Nb

X

)
= αk

Ak
Xĥ(1) − δd=2h(0)αk Ak + X

∑
b

ḣ (XN (b)) .

Lemma 3·2 is proved analogously to Lemma 3·1, and Lemma 3·3 can be deduced from
Lemma 3·1 as in [HB, lemma 13].

4. Overview of the proof of Theorem 1·1
We are now ready to proceed to the first reduction in the proof of Theorem 1·1. As usual

with large sieves, we first renormalize the sum under consideration. Given {χa} a quadratic
Hecke family and M, N � 1, set

B1(M, N ) = sup
‖λ‖=1

∑∗

a∼M

∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

, (4·1)

where a ∼ M means M < Na � 2M , the supremum is taken over all sequences λ = (λb)

of support N (i.e. λb = 0 whenever b� N or b is not squarefree), and ‖λ‖ is defined by

‖λ‖2 =
∑∗

b

|λb|2.

Theorem 1·1 is equivalent to

B1(M, N ) � (M N )ε(M + N ) (4·2)

(here and throughout, the implicit constant is allowed to depend on k, c, ε, and nothing else).
Rather than proving (4·2) directly, we derive it from a sequence of weaker estimates of the
form

B1(M, N ) � (M N )ε(M + N α), for all M, N � 1 and ε > 0. (Eα)
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We will show that, for α � 1, the bound (Eα) is self-improving:

THEOREM 4·1. For every α � 1, the upper bound (Eα) implies the upper bound
(E2−1/α).

Thus, to prove Theorem 1·1 it suffices to prove that (Eα) holds for some α > 1; iterating
Theorem 4·1 yields the bound (E1), which is equivalent to Theorem 1·1. Directly following
the proof of Lemma 4·5 below, we will show

LEMMA 4·2. The bound (E2) holds.

The proof of Theorem 4·1 is quite involved, and we approach it in several steps. First, we
reduce it to the following estimate.

THEOREM 4·3. Let M, N � 1, ε > 0 and suppose (Eα) holds. Then

B1(M, N ) � (M N )ε(M + N + N 2α−1 M1−α).

Next, in Section 5, we reduce Theorem 4·3 to a bound on a related quantity B3 (see Propos-
ition 5·2). In Section 6 we apply a Poisson summation formula to B3 to obtain an explicit
formula (6·4). Finally, in Section 7 we estimate each term of the explicit formula individu-
ally and conclude the proof of Proposition 5·2. At the heart of our proof is a cancellation
between the two main terms of this explicit formula. It is in the analysis of this explicit
formula that our argument diverges most radically from that of [BGL].

The rest of this section is devoted to proving Lemma 4·2 and deducing Theorem 4·1 from
Theorem 4·3. We begin with two standard and useful lemmas. First, we observe that B1 is
roughly an increasing function. The proof is substantially similar to that in [HB, Lemma 9],
to which we refer the reader for details.

LEMMA 4·4. There exists a positive constant C such that if M2 � C M1 log(2M1 N ) with
M1, M2, N � 1, then

B1(M1, N ) � B1(M2, N ).

Next, we show that B1 is roughly symmetric in its arguments.

LEMMA 4·5. For all M, N � 1, we have B1(M, N ) � B1(N , M).

Proof. Given a Hecke family χa(b) and a sequence λ = (λa) parametrized by integral
ideals, let G denote the finite group with respect to which the reciprocity law (1·2) holds.
For each g ∈ G, we create a twisted sequence λg = (λ

g
a) defined by

λg
a = C(g, [a])λa.

The reciprocity law implies

∑∗

b

∣∣∣∣∣
∑∗

a∼M

λaχb(a)

∣∣∣∣∣
2

=
∑
g∈G

∑∗

[b]=g

∣∣∣∣∣
∑∗

a∼M

λg
aχa(b)

∣∣∣∣∣
2

�
∑
g∈G

∑∗

b

∣∣∣∣∣
∑∗

a∼M

λg
aχa(b)

∣∣∣∣∣
2

�
∑
g∈G

B1(N , M)
∑∗

a∼M

|λg
a|2
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=
∑
g∈G

B1(N , M)
∑∗

a∼M

|λa|2

= |G|B1(N , M)
∑∗

a∼M

|λa|2.

On the other hand, by the duality principle ([Mo, section 4]), B1(M, N ) is the minimal
positive number satisfying

∑∗

b

∣∣∣∣∣
∑∗

a∼M

λaχb(a)

∣∣∣∣∣
2

� B1(M, N )
∑∗

a∼M

|λa|2 (4·3)

for every sequence λa. It follows that B1(M, N ) � |G|B1(N , M).

We can now prove Lemma 4·2 as promised.

Proof of Lemma 4·2. Our first goal is to remove the ∗-restriction on the a sum in
B1(M, N ). We accomplish this by introducing weights of the form

ρa,b(t) :=
∫

(σ )



( s

2

)a

(s)bt−s ds, σ > 0.

Observe that these weights are positive: Parseval’s formula for the Mellin transform gives

ρa,b(t) = 2b

∞∫
· · ·
∫

xi ,y j =0
x1···xa y1···yb=1

e
−
(

t2

y2
1
+ 1

y2
2
+···+ 1

y2
b
+ 1

x1
+···+ 1

xa

)
y1 dx1 · · · dxady1 · · · dyb > 0.

Moreover, ρa,b(t) attains a (positive) minimum on the compact set [1, 2], whence

ρa,b

(Na

M

)
� a,b1 for a ∼ M.

It follows that

∑∗

a∼M

∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

�
∑∗

a∼M

ρr1,r2

(
Na

M

) ∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

�
∑
a�0

∫
(σ )



( s

2

)r1


(s)r2

(Na

M

)−s

ds

∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

.

(Note that the implicit constant depends on the field k, but nothing else.) Expanding the last
expression, we are left with sums of the shape

θ(χ, M) =
∑
a�0

χ(a)

∫
(σ )



( s

2

)r1


(s)r2

(Na

M

)−s

ds,

where χ = χb1χb2
with b1 and b2 squarefree.

For a non-principal Hecke character χ (mod m), one has θ(χ, M) � (Nm)(1+ε)/2; this
can be seen by expressing θ(χ, M) as the inverse Mellin transform of the completed L-
function 	(χ, s) (see [HBP, lemma 2] for the case of cubic characters). Note that χb1χb2

is principal only for b1 = b2, in which case θ(χ, M) is estimated trivially by M . Thus, one
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obtains the upper bound

∑∗

a∼M

∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

� M
∑

b

|λb|2 + N 1+ε

∣∣∣∣∣
∑∗

b1,b2

λb1λb2

∣∣∣∣∣ .
An application of the Cauchy–Schwarz inequality concludes the proof.

We conclude this section by deducing Theorem 4·1 from Theorem 4·3.

Proof of Theorem 4·1. Suppose (Eα) holds, and let C be the absolute constant ap-
pearing in Lemma 4·4. We consider two cases. If N 2−1/α < C M log(2M N ), then
N 2α−1 M1−α � M1+ε, and Theorem 4·3 implies that B1(M, N ) � (M N )ε(M + N ). If
N 2−1/α � C M log(2M N ), then Lemma 4·4 implies B1(M, N ) � B1(N 2−1/α, N ), which
by Theorem 4·3 is bounded by (M N )ε(N 2−1/α). In either case, we conclude B1(M, N ) �
(M N )ε(M + N 2−1/α).

Remark 4. A formal application of the Poisson summation formula (ignoring restrictions
to squarefree entries, etc.) gives

B1(M, N ) �
M

N
B1

(
N 2

M
, N

)
(4·4)

independently of χa being a quadratic character. Applying first Lemma 4·5 and then (Eα)

to the right-hand side of (4·4) yields B1(M, N ) � M + N 2α−1 M1−α. This is precisely the
bound given in Theorem 4·3. The reason our argument is significantly more complicated
is the presence of the squarefree restriction on the sums, which prevents us from directly
applying Poisson summation. In the following section, we introduce the machinery we use
to get around this obstruction. Note that if the squarefree condition was removed in the
definition (4·1) of B1, then the main theorem, i.e., the bound B1(M, N ) � (M N )ε(M + N ),
would not hold any longer; indeed, as it has already been noticed in [HB, p. 236], considering
the sequence (λb) defined by λb = 1 if b is a square ideal and λb = 0 otherwise, one sees
that the quantity

∑
a∼M

∣∣∣∣∣
∑

b

λbχb(a)

∣∣∣∣∣
2

is of order M N .

Remark 5. Lemmas 4·2, 4·4 and 4·5 do not depend on the Hecke family being quadratic,
and hold therefore for any n-th order Hecke family.

5. Two related sums and a reduction of Theorem 4·3
To prove Theorem 4·3, we follow Heath–Brown and consider two companion sums to

B1(M, N ). Given a fixed ideal c and a sequence λ of support N , define

�2(M, N , K , λ) =
∑
a∼M
a∈I (c)
s(a)>K

∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

, (5·1)

where s(a) denotes the norm of the squarefree part of a coprime to c. (In other words, if
a = a1a2a

2
3 with a1, a2 squarefree, a1 divides c and (a2, c) = (1), then s(a) = Na2.) Let
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B2(M, N , K ) be the supremum taken over all sequences of support N with ‖λ‖ = 1. Note
that B1(M, N ) = B2(M, N , M) � B2(M, N , K ), for any 0 < K � M . Next, for an ideal
g ∈ I (c) and a class g ∈ G, let

�3(M, N , K , g, g, λ) =
∑∗

(b1,b2)=g
[b1]=[b2]=g

λb1λb2

∑
a∈I (c)
s(a)>K

W

(N (a)

M

)
χb1(a)χb2

(a), (5·2)

where W : R�0 → R�0 is a smooth weight function with support [1/2, 5/2]. Set
B3(M, N , K , g) to be the supremum of �3 taken over classes g and over all sequences
of support N with ‖λ‖ = 1.

The raison d’être of B3 is that we can apply Poisson summation to it, which we cannot
do directly to B1. It is clear that B1, B2, and B3 are closely related quantities, and we will
show how to pass back and forth between them. We start by giving a relation between B2

and B3:

LEMMA 5·1. Let ε > 0. Let M, N � 1. Then for any K � M/2 and any integral ideal
g0 with 1 � Ng0 � N, there exists 1 � N1 � NN (g0)

−1 such that

B2(M, N , K ) � N ε B2(M, N1, K ) +
∑

Ng�Ng0

B3(M, N , K , g).

Proof. Let λ be a sequence of support N . By inserting positive weights W (Na/M) and
using the Cauchy–Schwarz inequality, we have

�2(M, N , K , λ) �
∑

a∈I (c)
s(a)>K

W

(Na

M

) ∣∣∣∣∣
∑∗

b

λbχb(a)

∣∣∣∣∣
2

� max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∣∣∣∣∣∣
∑∗

[b]=g

λbχb(a)

∣∣∣∣∣∣
2

.

By opening the square and sorting the terms according to their greatest common divisor, we
obtain

�2(M, N , K , λ) �
∑

g

max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∑∗

(b1,b2)=g
[b1]=[b2]=g

λb1λb2χb1χb2
(a)

�
∑

Ng�Ng0

B3(M, N , K , g)‖λ‖

+
∑

Ng>Ng0

max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∑∗

(b1,b2)=g
[b1]=[b2]=g

λb1λb2χb1χb2
(a).
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Using the Möbius function to detect coprimality, we see that for each ideal g,∣∣∣∣∣∣∣∣
max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∑∗

(b1,b2)=g
[b1]=[b2]=g

λb1λb2χb1χb2
(a)

∣∣∣∣∣∣∣∣
�
∑

d

max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∣∣∣∣∣∣∣∣
∑∗

b1,b2≡0 (mod d)
[b1]=[b2]=g[g−1]

λgb1λgb2χb1χb2
(a)

∣∣∣∣∣∣∣∣
.

Consider λ
(g,g)

b , defined to be λgb if [b] = g[g−1] and 0 otherwise; this is a sequence of
support N/Ng. The preceding display is then equal to

∑
d

max
g∈G

∑
a∈I (c)
s(a)>K

W

(Na

M

) ∣∣∣∣∣∣
∑∗

b≡0 (mod d)

λ
(g,g)

b χb(a)

∣∣∣∣∣∣
2

� B2

(
M,

N

Ng
, K

)∑
d

max
g∈G

∑∗

b≡0 (mod d)
[gb]=g

|λgb|2

� B2

(
M,

N

Ng
, K

)
max
g∈G

∑∗

[b]=g

|λb|2τ(b)2,

where τ is the divisor function. The conclusion easily follows.

The principal difficulty is to relate B3 to B1. To do this, we will prove (in the following
two sections) the following. Recall the bound

B1(M, N ) � (M N )ε(M + N α), for all M, N � 1 and ε > 0. (Eα)

PROPOSITION 5·2. Assume (Eα). Let M, N � 1 and ε > 0. Then

B3(M, N , K , g) �N (g)4(M N )ε

(
M + N + √

M K α−1/2 +
√

M

K
N

)

whenever N 2 M−1(M N )ε � K � M(M N )−ε.

We conclude this section by showing that the proposition implies Theorem 4·3.

Proof of Theorem 4·3. Let M , N � 1 and ε be fixed. Assume first that N (M N )ε � M
and define K = N 2 M−1(M N )ε. Let r � ε−1 be an integer and define g = N 1/r . Lemma 5·1
and Proposition 5·2 allow us to define a sequence Ni as follows: N0 = N , Ni+1 � Ni g−1

and

B2(M, Ni , K ) � (M N )ε
(
B2(M, Ni+1, K ) + g5(M + Ni + N 2α−1

i M1−α)
)
. (5·3)

After iterating, we obtain

B2(M, N , K ) � (M N )iε

⎛
⎝B2(M, Ni , K ) +

i−1∑
j=0

g5(M + N j + N 2α−1
j M1−α)

⎞
⎠

� (M N )iε
(
B2(M, Ni , K ) + ig5(M + N + N 2α−1 M1−α)

)
. (5·4)
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Note that Nr � 1 � g, thus (5·4) with i = r combined with the estimate B2(M, N , K ) �
M N gives

B2(M, N , K ) � r(M N )rεg5(M + N + N 2α−1 M1−α).

The remainder of the paper is devoted to the proof of Proposition 5·2: in Section 6 we
determine an explicit formula for B3, and in Section 7 we study this formula term by term
to deduce Proposition 5·2.

6. An explicit formula for the norm B3

The aim of this section is to prove formula (6·4), by applying Poisson summation formula.
In doing so, the fact that we work with quadratic characters turns out to be crucial. We shall
make frequent use of certain transforms ĥ, ḣ and ḧ, all described in Section 3.

We define the following quantity:

�4(m, ?K ; h, X, χ) =
∑

a∈I (m)
s(a)?K

h

(N (a)

X

)
χ(a), (6·1)

where χ is a Hecke character, m is an ideal, h is any function, and ? stands in for � or >.
Lemma 3·2 immediately gives:

COROLLARY 6·1. For any primitive quadratic character χ (mod f),

�4

(
(1), � 1; h, X, χ

) = X√
N f

�4

(
(1), � 1; ḣ,

N f

X
, χ

)
.

6·1. Decomposition of B3

Let λ be a sequence of support N , and suppose g ∈ I (c) and g ∈ G. Recall the definitions
(5·2) and (6·1), and let s be the radical of c (i.e. the product of all prime ideals dividing c).
We have

�3(M, N , K , g, g, λ) =
∑∗

(b1,b2)=g
[b1]=[b2]=g

λb1λb2

∑
a∈I (s)
s(a)>K

W

(N (a)

M

)
χb1(a)χb2(a)

=
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

�4

(
sg, > K ; W, M, χb1χb2

)

=
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

�4

(
sg, � 1; W, M, χb1χb2

)

−
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

�4

(
sg, � K ; W, M, χb1χb2

)
.

Note that by Definition 1(3), since [b1] = [b2] we know that the character χb1χb2 is prim-
itive modulo b1b2. Once we remove the coprimality condition (using the Möbius func-
tion), we are in a position to apply the Poisson summation formula (Corollary 6·1) to
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�4(sg, � 1, W, M, χb1,b2). We therefore have

�4(sg, � 1, W, M, χb1χb2) =
∑
e|sg

μ(e)

N e
χb1χb2(e)

M√
Nb1b2

�4

×
(

(1), � 1; Ẇ ,
N (eb1b2)

M
, χb1χb2

)
,

whence

�3(M, N , K , g, g, λ)

=
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

∑
e|sg

μ(e)

N e
χb1χb2(e)

M√
Nb1b2

�4

(
(1), � 1; Ẇ ,

N (eb1b2)

M
, χb1χb2

)

−
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

�4(sg, � K ; W, M, χb1χb2).

Using Ẇ (x) � |x |−A for |x | > 1, one shows that

�3(M, N , K , g, g, λ) =
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

∑
e|sg

μ(e)

N e
χb1χb2(e)

M√
Nb1b2

×�4

(
(1), � K ; Ẇ ,

N (eb1b2)

M
, χb1χb2

)
−

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

�4(sg, � K ; W, M, χb1χb2) + Oε (‖λ‖) .

(6·2)

Formula (6·2) is an inexplicit version of Proposition 5·2. We now turn to the quantity
�4(m, � K ; h, X, χ), keeping in mind our choice of parameters⎧⎨

⎩m = (1), h = Ẇ , X = N (eb1b2)

M
, χ = χb1χb2 (1)

m = sg, h = W, X = M, χ = χb1χb2 . (2)

6·2. An explicit formula for �4

Let χ be a quadratic primitive Hecke character of conductor f. Let m be an integral ideal
of K . Let h be a smooth function with compact support and write f (x) := h(x2). Then

�4(m, � K ; h, X, χ) =
∑

(a,m)=(1)
s(a)�K

h

(Na

X

)
χ(a)

=
∑

a sq-free
(a,m)=(1)

s(a)�K

χ(a)
∑

(b,m)=(1)
(b,f)=(1)

h

( Nb2

X/Na

)

=
∑

a sq-free
(a,m)=(1)

s(a)�K

χ(a)
∑

(b,mf)=(1)

f

( Nb√
X/Na

)
.
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In order to apply Lemma 3·3, we make a dyadic partition for the a-sum into intervals
(B, 2B], with B � K . Then, for any B � K , YB �

√
X/2B, Z B �

√
X/B and

L B � 2Z 2
B B/X , we have (recall the notations defined in Section 3)

�4(m, � K ; h, X, χ) =
∑
B�K

{
αk

Ak

ϕ(mf)

N (mf)

√
X

∑
a sq-free

(a,m)=(1)
s(a)∼B

χ(a)√
Na

∫
R

h(t2) dt

− αk

Ak

√
X

∑
a sq-free

(a,m)=(1)
s(a)∼B

χ(a)√
Na

∑
d|mf

Nd>Z B

μ(d)

Nd

∫
R

h(t2) dt

−δd=2h(0)αk Ak

∑
a sq-free

(a,m)=(1)
s(a)∼B

χ(a)
∑
d|mf

Nd�Z B

μ(d)

+ √
X

∑
a sq-free

(a,m)=(1)
s(a)∼B

χ(a)√
Na

∑
d|mf

YB<Nd�Z B

μ(d)

Nd

∑
b�0

Nb�L B

ḧ

(
Nb

√
X

Nd
√
Na

)

+O

⎛
⎝√ X

B

( √
X√

BYB

)−A
⎞
⎠+ O

⎛
⎝√ X

B

(√
B Z B√

X

)−A
⎞
⎠},

(6·3)
for any A > 0, where δ is Kronecker’s delta and d = [k : Q].
6·3. An explicit formula for �3

We now obtain an explicit formula for �3(M, N , K , g, g, λ), by plugging (6·3) into (6·2).
Recall that the conductor of χb1χb2 is precisely b1b2 in this case. According to the cases (1)

and (2) described above, our choices for YB , Z B and L B are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y (1)

B,e = N
√
N e

Ng
√

2B M
(M N )−ε1, Z (1)

B,e = N
√
N e

Ng
√

B M
(M N )ε1, L (1) = 2(M N )ε1 (1)

Y (2)

B =
√

M√
2B

(M N )−ε1, Z (2)

B =
√

M√
B

(M N )ε1, L (2) = 2(M N )ε1 (2)

for some ε1 > 0 which can be conveniently chosen. We thus obtain (recall that W (0) = 0)

�3(M, N , K , g, g, λ) =
∑
B�K

{T (B, g, g, λ) − T ′(B, g, g, λ) − E1(B, g, g, λ)

− E2(B, g, g, λ) + E3(B, g, g, λ) + E4(B, g, g, λ)

− E5(B, g, g, λ)}, (6·4)

where the terms in (6·4), all depending on M and N , are given by

T (B, g, g, λ) = αk

Ak

∑
e|sg

μ(e)√
N e

∑
a sq-free
s(a)∼B

√
M

Na

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

ϕ(b1b2)

Nb1b2
χb1χb2(ae)

×
∫

R

Ẇ (x2) dx,
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T ′(B, g, g, λ) = αk

Ak

∑∗

(a,g)=(1)
a∼B

√
M

Na

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

ϕ(sgb1b2)

N sgb1b2
χb1χb2(a)

∫
R

W (x2) dx,

E1(B, g, g, λ) = αk

Ak

∑
e|sg

μ(e)√
N e

∑
a sq-free
s(a)∼B

√
M

Na

∑
Nd>Z (1)

B,e

μ(d)

Nd

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
b1b2≡0 (mod d)

λgb1
λgb2

χb1χb2(ae)

×
∫

R

Ẇ (x2) dx,

E2(B, g, g, λ) = δd=2αk Ak Ẇ (0)M
∑
e|sg

μ(e)

N e

∑
a sq-free
s(a)∼B

∑
Nd�Z (1)

B,e

μ(d)

×
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
b1b2≡0 (mod d)

λgb1
λgb2√

Nb1b2

χb1χb2(ae),

E3(B, g, g, λ) =
∑
e|sg

μ(e)√
N e

∑
a sq-free
s(a)∼B

√
M

Na

∑
Y (1)

B,e<Nd�Z (1)
B,e

μ(d)

Nd

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
b1b2≡0 (mod d)

λgb1
λgb2

χb1χb2(ae)

×
∑
b�0

Nb�L(1)

¨̇W
(Nb

√
N eb1b2

Nd
√

MNa

)
,

E4(B, g, g, λ) = αk

Ak

∑∗

(a,g)=(1)
a∼B

√
M

Na

∑
Nd>Z (2)

B

μ(d)

Nd

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
sgb1b2≡0 (mod d)

λgb1
λgb2

χb1χb2(a)

∫
R

W (x2) dx

and

E5(B, g, g, λ) =
∑∗

(a,g)=(1)
a∼B

√
M

Na

∑
Y (2)

B <Nd�Z (2)
B

μ(d)

Nd

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
sgb1b2≡0 (mod d)

λgb1
λgb2

χb1χb2(a)

×
∑
b�0

Nb�L(2)

Ẅ

(
Nb

√
M

Nd
√
Na

)
.

7. Proof of Proposition 5·2
In this section, we study in detail the terms appearing in (6·4); this is achieved in Lemma

7·2 and Lemma 7·3. The proof of Proposition 5·2 will then easily follow.

7·1. The error terms

The following useful result is adapted from [HB, lemma 10].
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LEMMA 7·1. Let M, N , D > 0. Let λ and λ′ be two sequences of support N . Let

S =
∑
d∼D

∑∗

a∼M

∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)
b1b2≡0 (mod d)

λb1λ
′
b2

χb1χb2(a)

∣∣∣∣∣∣∣∣
.

Then there exist D1 and D2 satisfying

1

log(2M N )
� Di � D and

D

log2(2M N )
� D1 D2 �

D

log2(2M N )
,

such that

S2 � (M N )ε D1 D2 B1

(
M,

N

D1

)
B1

(
M,

N

D2

)
‖λ‖‖λ′‖,

for any ε > 0.

LEMMA 7·2. Let B � K . Let ε > 0.

(i) There exist D1, D2 � (M N )−ε satisfying D1 D2 � N/Ng
√

B M such that

E1(B, g, g, λ) � k,c,W (B NNg)ε

√
M

B D1 D2
B1

(
B,

N

D1Ng

)1/2

B1

(
B,

N

D2Ng

)1/2

‖λ‖2.

(ii) There exist D1, D2 � (M N )−ε satisfying D1 D2 � (M N )ε N/
√

M B such that

E2(B, g, g, λ)

E3(B, g, g, λ)

}
� k,c,W (B NNg)ε M

N

√
D1 D2 B1

(
B,

N

D1Ng

)1/2

B1

(
B,

N

D2Ng

)1/2

‖λ‖2.

(iii) There exist D1, D2 � (M N )−ε satisfying D1 D2 �
√

M/B such that

E4(B, g, g, λ)

E5(B, g, g, λ)

}
� k,c,W (B NNg)ε

√
M

B D1 D2
B1

(
B,

N

D1Ng

)1/2

B1

(
B,

N

D2Ng

)1/2

‖λ‖2.

Proof. Since we proceed in the same way for each error term, we only give the details for
E2(B, g, g, λ) and E4(B, g, g, λ). Let us start with E2(B, g, g, λ). Up to a constant depend-
ing on k and W , we have

E2 � M
∑

a sq-free
s(a)∼B

∑
e|sg

∑
Nd�Z (1)

B,e

∣∣∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
b1b2≡0 (mod d)

λgb1
λgb2√

Nb1b2

χb1χb2(ae)

∣∣∣∣∣∣∣∣∣∣
Decompose a = a1a2 with a1 | s and a2 coprime to s. The number of such a1 depends only
on c. The number of terms in the e-sum is O(N sg)ε. Define a new sequence λ(g,g,e,a1) of
support N/Ng by

λ
(g,g,e,a1)

b
=
{

λgb(Nb)−1/2χb(ea1) if [b] = g[g−1],
0 otherwise.
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We make a dyadic partition of the d-sum into intervals d ∼ D, with D � Z (1)

B,e. Then, for
some e and some a1,

E2 � k,c,W (Ng)ε M
∑

D�Z (1)
B,e

∑∗

a∼B

∑
d∼D

∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)
b1b2≡0 (mod d)

λ
(g,g,e,a1)

b1
λ

(g,g,e,a1)

b2
χb1χb2(a)

∣∣∣∣∣∣∣∣
.

The number of possible D’s is O(log N ). Thus, for some D, Lemma 7·1 implies the exist-
ence of D1 and D2 such that

1

log(B N/Ng)
� Di � N 2 and

D

log(B N/Ng)
� D1 D2 �

D

log(B N/Ng)

and

E2 � (NNg)ε M
√

D1 D2 B1

(
B,

N

D1Ng

)1/2

B1

(
B,

N

D2Ng

)1/2

‖λ(g,g,e,a1)‖2.

We conclude by observing that ‖λ(g,g,e,a1)‖ � ‖λ‖Ng/N . Let us now consider
E4(B, g, g, λ). Up to a constant depending on k, c, and W , we have

E4 �

√
M

B

∑∗

(a,g)=(1)
a∼B

∑
Nd>Z (2)

B

1

Nd

∣∣∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
sgb1b2≡0 (mod d)

λgb1
λgb2

χb1χb2(a)

∣∣∣∣∣∣∣∣∣∣

�
√

M

B

∑∗

a∼B

∑
d1|sg

∑
Nd2>Z (2)

B /Nsg

1

Nd1d2

∣∣∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]
b1b2≡0 (mod d2)

λgb1
λgb2

χb1χb2(a)

∣∣∣∣∣∣∣∣∣∣
.

The sum over d1 is O(logNg). We partition the d2-sum into dyadic intervals, with d2 ∼ D
for all D (powers of 2) lying in the interval Z (2)

B /N sg < D � N 2. We define a new sequence
of support N/Ng

λ
(g,g)

b =
{

λgb if [b] = g[g−1]
0 otherwise.

Note that there are at most O(log N ) possible D’s. Thus, we have, for some D, that

E4 � (NNg)ε

√
M

B

1

D

∑∗

a∼B

∑
Nd∼D

∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)
b1b2≡0 (mod d2)

λ
(g,g)

b1
λ

(g,g)

b2
χb1χb2(a)

∣∣∣∣∣∣∣∣
.

We conclude by using Lemma 7·1 and the fact that ‖λ(g,g)‖ � ‖λ‖.

7·2. The main contribution

First of all, note that if we deal with the terms T (B, g, λ) and T ′(B, g, λ) separately, the
technique used previously for the error term does not allow us to conclude, since we would
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obtain for each of the quantities T (B, g, g, λ) and T ′(B, g, g, λ) the upper bound

max
B�K

√
M

B
B1(B, N ).

If g = (1), one has equality between the two main terms, as shall be seen below.

LEMMA 7·3. Let M, N, K , g and g be as above. Assume that Ng � N and K � M.
Then, for any ε > 0,

∑
B�K

T (B, g, g, λ)−T ′(B, g, g, λ) � k,c,W (M N )ε

√
M

K
B1(K (Ng)2(M N )ε, N (M N )ε)‖λ‖2.

Proof. Recall that since λ is supported by squarefree ideals, one has (g, b1b2) = (1) in
the definition of T and T ′. By definition of s(a) (given directly below (5·1)), T (B, g, g, λ)

can be written as

αk

Ak

∑∗

Na∼B

√
M

Na

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

ϕ(b1b2)

Nb1b2
χb1χb2(a)�5(χb1χb2, s, g)

∫ ∞

0
Ẇ (x2) dx,

where, for a primitive Hecke character χ (mod f) and two ideals a and b, we set

�5(χ, a, b) =
∑
d|a

∑
e|ab

μ(e)√
N (de)

χ(de).

One easily checks that for a squarefree, one has

�5(χ, a, (1)) = ϕ(a0)

Na0
, (7·1)

where a = a0af, with (a0, f) = (1) and af | f. With these notations, it follows that, if
(a, b) = (1),

�5(χ, a, b) = ϕ(a0)

Na0

∑
e|b

μ(e)√
N (e)

χ(e).

In particular, we obtain

�5(χb1χb2, s, g) = ϕ(s)

N s

∑
e|g

μ(e)√
N (e)

χb1χb2(e). (7·2)

From (7·2) and (3·5), it now follows that
∑

B�K T (B, g, λ) − T ′(B, g, λ) is given by

αk

Ak

√
M

∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

ϕ(sb1b2)

N sb1b2

∫ ∞

0
W (x2) dx

×

⎧⎪⎪⎨
⎪⎪⎩
∑∗

Na�K

χb1,b2(a)√
Na

∑
e|g

μ(e)√
N (e)

χb1,b2(e) −
∑∗

Na�K
(a,g)=(1)

χb1,b2(a)√
Na

ϕ(g)

Ng

⎫⎪⎪⎬
⎪⎪⎭ .
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Using (7·1), we can write the expression in the brackets as∑
b∈I (s)

Nb�KNg

χb1,b2(b)√
Nb

∑
b=hde

h sq.-free
(h,g)=(1)

d,e|g
N (hd)�K

μ(e) −
∑

b∈I (s)

Nb�KN (g)2

χb1,b2(b)√
Nb

∑
b=hde

h sq.-free
(h,g)=(1)

d,e|g
N (h)�K

μ(e).

One sees that the contribution coming from each ideal b with Nb � K is clearly 0; this
shows, as an aside, that the whole bracket is zero if Ng = 1. One also sees that a non-trivial
contribution of b to one of the two inner sums occurs only for b of the form b = ad2, with
a squarefree and d | g, and that in this case, the contribution is bounded using the divisor
function by τ(b). Therefore,∑
B�K

T (B, g, g, λ) − T ′(B, g, g, λ)

� k,c,W (KNg)ε

√
M

K

∑∗

d|g

∑∗

KN (g)−2�Na�KN (g)2

∣∣∣∣∣∣∣∣
∑∗

(b1,b2)=(1)

[b1]=[b2]=g[g−1]

λgb1
λgb2

ϕ(b1b2)

Nb1b2
χb1χb2(ad2)

∣∣∣∣∣∣∣∣
,

for any ε > 0. The conclusion follows by making a dyadic partition of the a-sum, applying
Lemma 7·1 and using Lemma 4·4.

Combining (6·4), Lemma 7·2 and Lemma 7·3, we deduce Proposition 5·2.
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