Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T23:01:49.247Z Has data issue: false hasContentIssue false

A new bridge index for links with trivial knot components

Published online by Cambridge University Press:  01 October 2012

YORIKO KODANI*
Affiliation:
Department of Mathematics, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan. e-mail: jay_kodani@cc.nara-wu.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L = K1K2 be a 2-component link in the 3-sphere such that K1 is a trivial knot. In this paper, we introduce a new bridge index, denoted by bK1 = 1([L]), for L. Roughly speaking, bK1 = 1([L]) is the minimum of the bridge numbers of the links ambient isotopic to L under the constraint that all of the bridge numbers of the components corresponding to K1 are 1. We provide a lower bound estimate of bK1 = 1([L]) in the case when L is a non-split satellite link. By using this result, we show that for each integer n(≥ 2), there exists a link Ln = K1nK2n with K1n a trivial knot such that bK1n = 1([Ln])−b([Ln]) = n−1, where b([Ln]) is the bridge index of Ln.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

References

REFERENCES

[1]Murasugi, K.Knot Theory and its Applications. (Birkhaeuser, Boston 1996) 183.Google Scholar
[2]Schubert, H.Über eine numerische Knoteninvariante. Math. Z. 61 (1954), 245288.CrossRefGoogle Scholar
[3]Schultens, J.Additivity of bridge numbers of knots. Math. Proc. Camb. Phi. Soc. 135 (2003), 539544.CrossRefGoogle Scholar