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Abstract

Let L = K1 � K2 be a 2-component link in the 3-sphere such that K1 is a trivial knot.
In this paper, we introduce a new bridge index, denoted by bK1=1([L]), for L . Roughly
speaking, bK1=1([L]) is the minimum of the bridge numbers of the links ambient isotopic to
L under the constraint that all of the bridge numbers of the components corresponding to
K1 are 1. We provide a lower bound estimate of bK1=1([L]) in the case when L is a non-split
satellite link. By using this result, we show that for each integer n(� 2), there exists a link
Ln = K1n � K2n with K1n a trivial knot such that bK1n=1([Ln]) − b([Ln]) = n − 1, where
b([Ln]) is the bridge index of Ln .

1. Introduction

The bridge index b([L]) of a link L is a fundamental invariant in knot and link theory. Let
K be a satellite knot with a companion L0 and the pattern (̂V , K 0) with the index k (for the
definitions of these terms, see Section 2). In [2], H.Schubert proved the following:

b([K ]) � k · b([L0]).
In this paper, let L = K1 � K2 be a non-split 2-component link such that K1 is a trivial

knot. In Section 3, we introduce a new bridge index of L , denoted by bK1=1([L]). Roughly
speaking, this is the minimum of the bridge numbers of the links ambient isotopic to L under
the constraint that all of the bridge numbers of the components corresponding to K1 are 1.
Then in Theorem 1·1, we show that an inequality which is similar to that of Schubert’s holds
for the new bridge index. In fact, we have the following.

Suppose the above link L = K1�K2 is a satellite link with a companion L0 = L0
1�L0

2 and
a pattern (̂Vi , K 0

i ) (i = 1, 2) (for the definitions of satellite links, companion and pattern, see
Section 3). Note that we can define the index of the pattern (̂Vi , K 0

i ) as in the case of knots.
Then in Section 3, we define the dual index of L0

1. With these terms, we have the following
theorem:

THEOREM 1·1. Let L = K1 � K2 be a non-split satellite link with a companion L0 =
L0

1 � L0
2 and a pattern (̂Vi , K 0

i ) (i = 1, 2) such that K1 is a trivial knot. Let k ′
1 be the dual
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index of L0
1, and ki be the index of (̂Vi , K 0

i ). Suppose that K 0
1 is not ambient isotopic in ̂V1

to the core of ̂V1. Then the following inequality holds.

bK1=1([L]) � 1 + k ′
1 · k2 .

The proof of Theorem 1·1 is carried out by using the arguments of J.Schultens’ paper [3],
where a modern proof of the Schubert’s theorem is given.

In general, the inequality bK1=1([L]) � b([L]) holds, and it is natural to ask whether there
exist examples which make the inequalities strict. Then in Section 5, by using Theorem 1·1,
we show that for each n(� 2) there exists a link Ln = K1n � K2n satisfying bK1=1([Ln]) −
b([Ln]) = n − 1.

2. Preliminaries

Throughout this paper, we work in the smooth category. An n-component link is the union
of n mutually disjoint 1-spheres in the 3-sphere S3. In particular, we call a 1-component link
a knot. A link L is called a split link if there exists a 2-sphere S2 in S3 such that S2 � L = �,
and that S2 separates components of L . Otherwise, L is a non-split link. We take a height
function h : S3 → [0, 1], that is, h is a Morse function whose critical point set consists of
two points, a maximum p1 of height 1 and a minimum p0 of height 0.

Let L be a link. Then [L] denotes the ambient isotopy class of L . Suppose that h|L :
L → [0, 1] is a Morse function. Then the bridge number of L , denoted by b(L), is the
number of maxima (= the number of minima) for h|L . The bridge index of L , denoted by
b([L]), is defined as follows;

b([L]) = min {b(L ′) | L ′ ∈ [L], h|L ′ is a Morse function}.
We say that a knot K is trivial if b([K ]) = 1. We say that L is in a minimal bridge position
if L satisfies b(L) = b([L]).

Let L0 be a non-trivial knot, ˜V be a small regular neighbourhood of L0. Let ̂V be an
unknotted solid torus embedded in S3, and K 0 be a knot in ̂V , which is not ambient isotopic
in ̂V to the core of ̂V , and is not contained in a 3-ball in ̂V . We fix a homeomorphism
� : ̂V → ˜V . Then �(K 0), which is denoted by K , is a knot in S3. We say that K is a
satellite knot. The image �(̂V ) is denoted by V . Now, we call L0 a companion of K , V a
companion torus of K with respect to L0, and the pair (̂V , K 0) the pattern of K with respect
to L0. Then, min {�(D � K 0) | D : a meridian disk of ̂V } is called the index of the pattern.

Schubert [2] proved the following:

THEOREM 2·1 (Schubert). Let K be a satellite knot with L0 and (̂V , K 0) as above. Let
k be the index of (̂V , K 0). Suppose L0 is a non-trivial knot. Then the following inequality
holds;

b([K ]) � k · b([L0]).

In [3], Schultens gave a modern proof of this theorem. We will use some ideas from [3].
Particularly Lemma 2·2 below is essential. For the statement of the lemma, we introduce
some terms. Let K , V be as above. Then T denotes ∂V . We suppose that h|T : T → [0, 1]
is a Morse function. Then FT denotes the singular foliation on T induced by the levels of
h|T . Let σ be a singular leaf corresponding to a saddle singularity in FT . We call σ a saddle
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Fig. 1. Nested saddle and non-nested saddle.

of FT . We note that σ has a representative as a wedge product σ = s1 ∨ s2, where s1 and s2

are circles in T . If either s1 or s2 is inessential in T , we call σ an inessential saddle, and we
call σ an essential saddle if it is not an inessential saddle. Let Sσ be the level sphere which
contains σ . Then we can choose circles c1, c2 in T , which are parallel to s1, s2 respectively,
in a certain level sphere S which is either slightly higher or slightly lower to Sσ . Now, c1 �c2

bounds an annulus on the level sphere S. Then σ is called a nested saddle if a small regular
neighborhood of c1 � c2 in the annulus is contained in V (for example, it is as the left one
in Figure 1). Otherwise, σ is a non-nested saddle (for example, it is as the right one in
Figure 1 ). We say that V is taut with respect to b([K ]) if the number of critical points of
h|T is minimal in the isotopy class of T under the constraint that the knot which is ambient
isotopic to K is in a minimal bridge position. Now, the following holds ([3, remark 2]).

LEMMA 2·2. Let K , V , T be as above. If V is taut with respect to b([K ]), then each
saddle in FT is essential and non-nested.

3. A new bridge index

In this section, we extend the definition of satellite knots to links. Let L0 = L0
1 � · · · � L0

n

(n � 1) be an n-component link in S3, ˜Vi (i = 1, . . . , n) be a small regular neighbourhood
of L0

i , and ̂Vi be an unknotted solid torus embedded in S3. Let K 0
i (⊂ ̂Vi ) be a knot which

is not contained in a 3-ball in ̂Vi , where K 0
j is not ambient isotopic in ̂Vj to the core of

̂Vj for some j ∈ {1, . . . , n}. We fix a homeomorphism �i : ̂Vi → ˜Vi for each i . Then
Vi denotes the image of ̂Vi . Then Ti denotes ∂Vi , and we put V = V1 � · · · � Vn and
T = T1 � · · · � Tn . Furthermore, Ki denotes the image of K 0

i . Thus each Ki is a knot in
S3, and then L denotes the link K1 � · · · � Kn in S3. We call L a satellite link, and L0 a
companion of L . Moreover, we call the pair (̂Vi , K 0

i ) the pattern of Ki with respect to L0
i .

Then we call min {�(Di � K 0
i ) | Di : a meridian disk of ̂Vi } the index of the pattern. We

suppose that h|T : T → [0, 1] is a Morse function. Then FT denotes the singular foliation
on T induced by the levels of h|T , and we define a saddle σ as in Section 2. Furthermore,
we define the terms taut with respect to b([L]), nested saddles, etc. as in Section 2.

Let L = K1 � K2 be a non-split 2-component link such that K1 is a trivial knot. We define
a new bridge index for L , denoted by bK1=1([L]), as follows.

bK1=1([L]) = min {b(L ′) | L ′ = K ′
1 � K ′

2 ∈ [L], where h|L ′ : L ′ → [0, 1] is a Morse

function with b(K ′
1) = 1, where K ′

1 is the component corresponding to K1}.
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In other words, it is the bridge index under the constraint b(K1) = 1. We say that L
is in a minimal bridge position with respect to trivial K1 if L satisfies b(K1) = 1 and
b(L) = bK1=1([L]).

Let L = K1 � K2 be a satellite link with a companion L0 = L0
1 � L0

2. Suppose that K1

is a trivial knot. By Theorem 2·1, we immediately see that L0
1 is a trivial knot. Let N (L0

1)

be a small regular neighbourhood of L0
1. Then E(L0

1) denotes the closure of the exterior of
N (L0

1). Since L0
1 is a trivial knot, E(L0

1) is homeomorphic to a solid torus. We may regard
L0

2 as a knot in E(L0
1), hence the pair (E(L0

1), L0
2) is a pattern. We denote the index of the

pattern (E(L0
1), L0

2) by k ′
1, and call it the dual index of L0

1.

4. Proof of Theorem 1·1
In this section, we introduce some lemmas and prove Theorem 1·1.

Let L = K1 � · · · � Kn (n � 1) be a satellite link with a companion L0 = L0
1 � · · · � L0

n .
Let Vi , V , Ti , T and FT be as in Section 3. Let σ be a saddle of FT . Recall from Section
2 that σ is a wedge product of two circles s1, s2 in T . Then as in Section 2, Sσ denotes the
level sphere containing σ .

LEMMA 4·1. If FT contains an inessential saddle, then there exists an ambient isotopy
φt (0 � t � 1) in S3 that satisfies the following conditions:

(i) The height function h|φ1(L) is a Morse function on φ1(L), thus b(φ1(L)) is defined,
and h|φ1(T ) is a Morse function on φ1(T ), thus Fφ1(T ) is defined;

(ii) We have b(φ1(Ki )) = b(Ki ) (i = 1, . . . , n), and the number of critical points of
h|φ1(Ti ) equals that of h|Ti ; and

(iii) There exists an inessential saddle σ = s1 ∨ s2 of Fφ1(T ), where s1 bounds a disk D1

in φ1(T ) satisfying the following conditions:
(a) The restriction of Fφ1(T ) to D1 consists of exactly one central singular point and

concentric circles; and
(b) There exists a disk component ˜D1 in Sσ \ s1 such that we can take a 3-ball B in

S3 bounded by ˜D1 � D1 such that B does not contain p0 or p1, where p0 (p1

resp.) is the minimum (maximum resp.) of h.

The proof of the above lemma is carried out by applying the arguments in the proof of
[3, lemma 1], where knots are treated. It is easy to see that the arguments work for links to
give the conclusions in Lemma 4·1, and we omit the description here.

In the remainder of this section, we restrict our attention to non-split 2-component satellite
links such that one component of each link is a trivial knot. Let L = K1 � K2 be such a link
with K1 a trivial knot, L0 = L0

1 � L0
2 a companion of L , and (̂Vi , K 0

i ) (i = 1, 2) a pattern of
Ki with respect to L0

i . We use notations V , T , FT , k1, k ′
1, k2 etc. in Section 3. We suppose

that L is in a minimal bridge position with respect to trivial K1. We say that V is taut with
respect to trivial K1 if the number of critical points of h|T is minimal in the isotopy class
under the constraint that the link which is ambient isotopic to L is in a minimal bridge
position with respect to trivial K1. It is easy to prove the next lemma by using the arguments
in the proof of [3, lemma 2] together with Lemma 4·1, and we omit giving the proof here.

LEMMA 4·2. If V is taut with respect to trivial K1, then there are no inessential saddles
in FT .
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Fig. 2. Pushing down inessential disks.

Let σ1, σ2 be saddles of FT . We say that the pair σ1, σ2 is adjacent if there exists a
component of T \ (σ1 � σ2), which is denoted by C , such that C does not include a critical
point of h|T . This term will be used in the proof of Lemma 4·3. Recall from Section 3, that Ti

(i = 1, 2) is the component of T corresponding to the boundary of the regular neighborhood
Vi of L0

i .

LEMMA 4·3. Suppose V is taut with respect to trivial K1. If K 0
1 is not a core of ̂V1,

then each saddle of FT contained in T1 is nested, and each saddle of FT contained in T2 is
non-nested.

Proof. We first note that index k1 is greater than 1, since K1 is a trivial knot, and K 0
1 is not

a core of ̂V1. By Lemma 4.2, each saddle in FT is essential. Let σ = s1 ∨ s2 be the highest
saddle in FT . Then for σ , the next claim holds:

CLAIM 1. The saddle σ is non-nested.

Proof of Claim 1. The following arguments are essentially the same as the proof of the
Claim in the proof of [3, lemma 3]. Let c1, c2 be circles in a level surface S which is slightly
lower than Sσ as in Section 2, and let ̂D1, ̂D2 be mutually disjoint disks bounded by c1, c2

respectively in S. Let c be a component of T � int (̂Di) (i = 1 or 2). Then since σ is the
highest saddle, we see that c bounds a disk Dc in T such that:

(i) Dc is included in the region above S; and
(ii) The restriction of FT to Dc consists of exactly one central singular point and con-

centric circles.
We push down the disk Dc slightly below S by an ambient isotopy as in Figure 2. We note
that this isotopy can be performed so as not to change b(Ki ) (i = 1, 2), and the number of
critical points in FT . By repeating such isotopies, we may suppose that int (̂Di) is disjoint
from T , i.e. ̂Di is contained in V or cl(S3 \ V ). Then since si is essential in T , we see that
ci is essential in T by the definition of ci . We note that since L is a non-split link, L0 is a
non-split link. This implies that T is incompressible in cl(S3 \ V ). Hence the disk ̂Di must
be a meridian disk in V . This shows that σ is non-nested.

Then, let σ ′ = s ′
1∨s ′

2 be the saddle which is the highest one in the saddles of FT contained
in T1. Then we have:

CLAIM 2. The saddle σ ′ is nested, in particular the saddle σ in Claim 1 is contained in
T2.

Proof of Claim 2. We take a level sphere S′, circles c′
1, c′

2 (⊂ S′), and disks ̂D′
1, ̂D′

2 ana-
logous to S, c1, c2, ̂D1, ̂D2 for σ in the proof of Claim 1. Assume that σ ′ is non-nested.
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Fig. 3. Removing a nested saddle.

Then, the neighbourhood of ∂ ̂D′
i in ̂D′

i (i = 1, 2) is contained in V1. Hence any component
of int (̂D′

i) � T which is outermost in int (̂D′
i) is contained in T1. Then the arguments in the

proof of Claim 1 apply and we may suppose that each ̂D′
i , is contained in V1. Since k1 > 1,

we see that K1 intersects ̂D′
i (i = 1, 2) in at least 2 points. This shows that b(K1) > 1, a

contradiction. Hence σ ′ is nested. This together with Claim 1 shows that σ is contained in
T2.

Then we have:

CLAIM 3. Each saddle in T2 is non-nested.

Proof of Claim 3. If there exists a nested saddle in T2, then by Claims 1, and 2, we see
that there is a pair of a nested saddle and a non-nested saddle in T2. In this situation, there
exists an adjecent pair of saddles σ1, σ2, in FT contained in T2 such that σ1 is nested and σ2

is non-nested. Then by the same argument as in the proof of [3, lemma 3], we can derive a
contradiction to the assumption that V is taut with respect to trivial K1 (see Figure 3). Thus
we have that each saddle in T2 is non-nested.

Finally, we show:

CLAIM 4. Each saddle in T1 is nested.

Proof of Claim 4. If there exists a non-nested saddle in T1, then by Claim 2, we see that
there is a pair of a nested saddle and a non-nested saddle in T1. By the arguments in the
proof of Claim 3, we can derive a contradiction. Thus we see that any saddle in T1 is a
nested saddle.

Claims 3 and 4 complete the proof of Lemma 4·3.

By using the above arguments, now we prove Theorem 1·1.

Proof of Theorem 1·1. Recall that L0
1 is a trivial knot, hence the extorior of V1, say V c

1 ,
is an unknotted solid torus. By Lemma 4·3, each saddle of T1 (= ∂V1 = ∂V c

1 ) is essential
and nested. Then let σ ′ = s ′

1 ∨ s ′
2 be the saddle which is the highest one in the saddles of T1

and ̂D′
i (i = 1, 2) be the disk bounded by c′

i in S′ as in the proof of Claim 2 in the proof of
Lemma 4·3. We consider about ̂D′

i � T2. If there exists a component, say c, of ̂D′
i � T2 such

that c is inessential in T2, then by Lemma 4·2, there exists a disk Dc in T2 such that ∂ Dc = c
and the restriction of FT to Dc consists of one central singularity and concentric circles. We
note that Dc might be under S′ (as in Figure 4). By using Dc, we can apply an isotopy as
in the proof of Claim 1 in the proof of Lemma 4·3 to remove c from ̂D′

i � T2. Hence, we
may suppose that any component of ̂D′

i � T2 is essential in T2. Thus by the definition of the
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V1
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Fig. 4. Removing inessential intersections.

K2nK1n

n

Fig. 5. The link Ln .

Fig. 6. A minimal bridge position with
respect to trivial K1n .

dual index k ′
1 of L0

1, ̂D′
i � V2 consists of at least k ′

1 meridian disks of V2. Furthermore by the
definition of k2, K2 intersects each meridian disk of V2 at least k2 times. This shows that K2

intersects ̂D′
i at least k ′

1 · k2 times, and this implies that K2 has at least k ′
1 · k2 maxima. This

together with the fact b(K1) = 1 gives the conclusion of Theorem 1·1.

5. Examples

Let L = K1 � K2 be a non-split 2-component link such that K1 is a trivial knot. In
general, b([L]) � bK1=1([L]) holds. Thus we would like to ask whether there exists L such
that b([L]) < bK1=1([L]) holds. In this section, we show that for each n (� 2), there exists
a link Ln = K1n � K2n such that bK1n=1([Ln]) − b([Ln]) = n − 1. In fact, we prove the
following.

PROPOSITION 5·1. For each n (� 2), let Ln = K1n � K2n be the 2-component link such
that K1n is a trivial knot as in Figure 5, where K2n is an (n, n +1)-torus knot. Then we have:

(i) bK1n=1([Ln]) = 1 + 2n; and
(ii) b([Ln]) = 2 + n.

Proof. Note that Ln = K1n �K2n is a satellite link with the companion L0 = L0
1 �L0

2 as in
Figure 7(a) and the pattern (̂Vi , K 0

i ) (i = 1, 2) as in Figure 7(c). Then let V = V1 � V2, T =
T1 �T2 be as in Section 3 (Figure 7(b)). Firstly, we note that the dual index of L0

1 is 2, and the
index of the pattern (̂V2, K 0

2 ) is n. Hence by Theorem 1·1, we have bK1n=1([Ln]) � 1 + 2n.
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L 0
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V ,K2 2                
0

n

(a) (b) (c)

Fig. 7. The construction of Ln .

Note that Ln can be isotoped into a position as in Figure 6, then we see that bK1n=1([Ln]) �
1 + 2n. Thus we obtain bK1n=1([Ln]) = 1 + 2n.

Next, by the facts b([K1n]) = 1 and b([K2n]) = n ([1], Theorem 7.5.3), we have
b([Ln]) � 1 + n. Assume that b([Ln]) = 1 + n. Let L ′

n = K ′
1n � K ′

2n (∈ [Ln]) be a position
such that b(L ′

n) = 1 + n. This together with the facts, b([K ′
1n]) = 1, and b([K ′

2n]) = n
shows that b(K ′

1n) = 1 (, and b(K ′
2n) = n). This shows that bK1n=1([Ln]) � 1 + n, but this

contradicts the above. Therefore we have b([Ln]) � 2 + n. On the other hand, by Figure 5,
we see b([Ln]) � 2 + n. Thus we obtain b([Ln]) = 2 + n.
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