Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-07T03:53:20.025Z Has data issue: false hasContentIssue false

Constancy results for special families of projections

Published online by Cambridge University Press:  07 February 2013

KATRIN FÄSSLER
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, P.O.B. 68, 00014University of Helsinki, Finland e-mail: katrin.fassler@helsinki.fi, tuomas.orponen@helsinki.fi
TUOMAS ORPONEN
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, P.O.B. 68, 00014University of Helsinki, Finland e-mail: katrin.fassler@helsinki.fi, tuomas.orponen@helsinki.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let { = V × ℝl : VG(n−l,m−l)} be the family of m-dimensional subspaces of ℝn containing {0} × ℝl, and let : ℝn be the orthogonal projection onto . We prove that the mapping V ↦ Dim (B) is almost surely constant for any analytic set B ⊂ ℝn, where Dim denotes either Hausdorff or packing dimension.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013

References

REFERENCES

[1]Bogachev, V. I.Measure Theory (Springer, 2006).Google Scholar
[2]Falconer, K. J. and Howroyd, J.Packing dimensions of projections and dimension profiles. Math. Proc. Camb. Phil. Soc. 121, Issue 2 (1997), pp. 269286.CrossRefGoogle Scholar
[3]Federer, H.Geometric Measure Theory (Springer, 1969).Google Scholar
[4]Järvenpää, M.On the upper Minkowski dimension, the packing dimension, and orthogonal projections. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 99 (1994).Google Scholar
[5]Järvenpää, E., Järvenpää, M., and Keleti, T. Hausdorff dimension and non-degenerate families of projections. arXiv: 1203.5296v1.Google Scholar
[6]Järvenpää, E., Järvenpää, M., Ledrappier, F. and Leikas, M.One-dimensional families of projections. Nonlinearity 21 (2008), pp. 453463.CrossRefGoogle Scholar
[7]Joyce, H. and Preiss, D.On the existence of subsets of finite positive packing measure. Mathematika 42 (1995), pp. 1524.CrossRefGoogle Scholar
[8]Kaufman, R.On Hausdorff dimension of projections. Mathematika 15 (1968), pp. 153155.CrossRefGoogle Scholar
[9]Lubin, A.Extensions of measures and the von Neumann selection theorem. Proc. Amer. Math. Soc. 43 (1) (1974), pp. 118122.CrossRefGoogle Scholar
[10]Mattila, P.Orthogonal projections, Riesz capacities, and Minkowski content. Indiana Univ. Math. J. 39, Issue 1 (1990), pp. 185198.CrossRefGoogle Scholar
[11]Mattila, P.Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, 1995).CrossRefGoogle Scholar
[12]Orponen, T. On the packing dimension and category of exceptional sets of orthogonal projections. arXiv:1204.2121.Google Scholar
[13]Whitney, H.Geometric Integration Theory (Princeton University Press, 1957).CrossRefGoogle Scholar