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Abstract

Let {V = V × Rl : V ∈ G(n − l, m − l)} be the family of m-dimensional subspaces of
Rn containing {0}×Rl , and let πV : Rn → V be the orthogonal projection onto V. We prove
that the mapping V �→ Dim πV(B) is almost surely constant for any analytic set B ⊂ Rn ,
where Dim denotes either Hausdorff or packing dimension.

1. Introduction

Unlike Hausdorff dimension, packing dimension is not generally preserved by orthogonal
projections. In 1994, M. Järvenpää exhibited in her PhD thesis [4] a compact set K ⊂ Rn

of packing dimension dimP K =: s � m, such that the projections of K onto every m-
dimensional subspace in Rn have packing dimension strictly smaller than s. Three years
later, K. Falconer and J. Howroyd [2] discovered a curious phenomenon: the packing di-
mension of the projections is almost surely constant – only this constant need not be s.

In this paper, we aim for similar results in a context different from Falconer and
Howroyd’s. We consider some (particular) subfamilies of the family of all orthogonal projec-
tions from Rn to m-dimensional subspaces – the simplest case covered being the projections
onto all ‘vertical’ planes in R3. It is obvious that, in general, these subfamilies of projections
preserve neither Hausdorff- nor packing dimension. We address the constancy questions in
Theorems 1·3 and 1·4 by proving that ‘maximal behavior is typical behavior’ for the di-
mension of projections. Such results do not follow from the classical projection theorems of
Marstrand, Kaufman and Mattila, even if one takes into account the refined versions with
exceptional sets, see [8]. We should also mention that our techniques are quite different from
the ones developed in [2].

As far as we know, constancy issues have not been studied previously for ‘small’ families
of projections, that is, families with a parameter set smaller than the whole Grassmannian
G(n, m). However, such families have received some attention quite recently. In [5], con-
cluding the work started in [6], E. Järvenpää, M. Järvenpää and T. Keleti provide a complete
answer to the following question: given a general ‘small’ non-degenerate family of projec-
tions in Rn , how much can the dimension of a set B ⊂ Rn (or a measure) drop under these
projections? We emphasize that our families of projections are nowhere as general as the
ones studied in [5]. The reason is simple: it is not clear to us, what is the greatest generality
in which constancy results – such as the ones below – can be proven. At any rate, they are not

https://doi.org/10.1017/S0305004113000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004113000091


550 KATRIN FÄSSLER AND TUOMAS ORPONEN

true for all families considered in [5]: for instance, it is easy to find one-parameter families
of projections onto planes in R3, for which there is no hope of constancy of any kind.

It is time to introduce the particular families of projections we will be concerned with.
They are projections onto m-planes in Rn , 2 � m < n, parameterized by the Grassmannian
G(n − l, m − l) for some 0 < l < m. Since

dimH G(n − l, m − l) = (m − l)(n − m) < m(n − m) = dimH G(n, m),

such families are ‘small’ in the sense introduced above. Write V = V × Rl for the m-
dimensional subspace of Rn containing {0} × Rl , where V is an element of G(n − l, m − l).
We are interested (only) in the orthogonal projections πV : Rn → V. The simplest case is
obtained with n = 3, m = 2 and l = 1: then the mappings πV are the orthogonal projections
onto the ‘vertical’ planes in R3, that is, the planes containing the z-axis {0} × R.

We write BV = πV(B). We will also make use of the projections onto the (m − l)-
dimensional subspaces V ; we will denote by πV both the orthogonal projection Rn−l → V
and Rn → V × {0}. We write BV = πV (B), and denote by γn,m the natural O(n) invariant
measure on the Grassmanian G(n, m), see [11, 3·9]. Furthermore, G(n, m) will be endowed
with the metric dπ given by

dπ(V, W ) = ‖πV − πW ‖, V, W ∈ G(n, m), (1·1)

where ‖·‖ denotes the operator norm. Below and above, dimH refers to Hausdorff dimension,
whereas dimP refers to packing dimension and dimB denotes the upper box dimension.

Before stating our main results on constancy, let us observe as Proposition 1·2 that for sets
B with small enough dimension, it is possible to give an almost sure formula for dimH BV in
terms of dimH B. Perhaps surprisingly, the proposition is not a corollary of the bounds in [5],
as they are not sharp for our particular families of projections. This only testifies that our pro-
jections have a very special form – and the proof of Proposition 1·2 heavily relies on this fact.
Let us clarify the point with an example: according to the proposition below, the Hausdorff
dimension of every 1-dimensional set is almost surely preserved under the 2-dimensional
family of projections onto 2-dimensional planes in R4 which contain {0} × R. However,
it is not true that the dimension of such sets is preserved under arbitrary non-degenerate
2-dimensional families of projections from R4 to 2-dimensional planes. Consider, for in-
stance, the family of projections associated to 2-planes contained in R3 × {0}. For these
projections, the set B = {0} × R is projected to a point for all considered directions, and so
the dimension can drop from one to zero.

PROPOSITION 1·2. Let B ⊂ Rn be an analytic set with dimH B � m−l. Then dimH BV =
dimH B for γn−l,m−l almost every V ∈ G(n − l, m − l).

For sets B of dimension bigger than m − l, it is no longer possible to give an almost sure
formula for dimH BV in terms of dimH B. Instead, we have the following constancy results.

THEOREM 1·3. Let B ⊂ Rn be an analytic set, and write

mH := sup{dimH BV : V ∈ G(n − l, m − l)}.
Then, dimH BV = mH for γn−l,m−l almost every V ∈ G(n − l, m − l).

THEOREM 1·4. Let B ⊂ Rn be a bounded analytic set. Write

mB := sup{dimB BV : V ∈ G(n − l, m − l)}, mP := sup{dimP BV : V ∈ G(n − l, m − l)}.
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Then, the sets

EB := {V ∈ G(n − l, m − l) : dimB BV �mB},
EP := {V ∈ G(n − l, m − l) : dimP BV �mP}

are meagre and have γn−l,m−l measure zero. The statement concerning packing dimension
holds for unbounded sets as well.

Remark 1·5. A routine argument shows that it is sufficient to prove Theorems 1·3 and 1·4
for bounded sets. Thus, we may and will only consider bounded sets in the sequel.

Throughout the paper we write a � b, if a � Cb for some constant C � 1. Should we
wish to emphasize that C depends on some parameter p, we may write a �p b. The chain
a � b � a is abbreviated to a � b. If d is a metric on a space X , we denote by Bd(x, r)

the closed ball with center x ∈ X and radius r ; the subscript d is dropped, if the metric is
obvious from the context.

2. Proof for the Hausdorff dimension

Proof of Proposition 1·2. Let 0 < s < t < dimH B � m − l. By Frostman’s lemma there
exists a non-trivial finite measure μ with support in B, which satisfies the growth condition
μ(B(x, r)) � r t for x ∈ Rn and r > 0. It follows that the associated s-energy is finite,

Is(μ) :=
∫ ∫

|x − y|−sdμ(x)dμ(y) < ∞.

By the definition of the push-forward measure πV�μ and Fubini’s theorem,∫
G(n−l,m−l)

Is(πV�μ) dγn−l,m−l(V )

=
∫

B

∫
B

∫
G(n−l,m−l)

|πV(x) − πV(y)|−s dγn−l,m−l(V )dμ(x)dμ(y).

Now if (x, y) ∈ B × B, x � y, is such that
n∑

i=n−l+1

(xi − yi)
2 �

n−l∑
i=1

(xi − yi )
2,

we have∫
G(n−l,m−l)

|πV(x − y)|−s dγn−l,m−l(V ) �
∫

G(n−l,m−l)
|πV (π(x) − π(y))|−s dγn−l,m−l(V ),

� |π(x) − π(y)|−s � |x − y|−s

where π : Rn → Rn−l is defined by π(x) = (x1, . . . , xn−l). Here the second inequality
follows from [11, Corollary 3·12].

On the other hand, if (x, y) ∈ B × B is such that
n−l∑
i=1

(xi − yi)
2 <

n∑
i=n−l+1

(xi − yi)
2,

the pointwise estimate

|πV(x) − πV(y)|−s �
(

n∑
i=n−l+1

(xi − yi )
2

)−s/2

� |x − y|−s .
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holds. Together, these observations yield∫
G(n−l,m−l)

Is(πV�μ) dγn−l,m−l(V ) �
∫

B

∫
B
|x − y|−s dμ(x)dμ(y) = Is(μ) < ∞

and thus dimH BV � s for almost every V ∈ G(n − l, m − l). The result follows.

The method of bounding energy integrals used in the proof of Proposition 1·2 cannot be
applied to derive information on the Hausdorff dimension of projections of sets of dimension
s > m − l; the problem is that integrals of the form∫

G(n−l,m−l)
|πV (x) − πV (y)|−s dγn−l,m−l(V )

can be infinite in that case, which means that the average of the energies Is(πV�μ) over
the planes V may easily be infinite as well. This is natural, recalling that the projections
of spt μ can have dimension strictly smaller than spt μ for all planes V. Consequently, we
need to devise a new quantity to replace Is(πV�μ), which (a) is bounded in size so that that
it integrates over the planes V, yet (b) contains all vital information on the dimension of
spt πV�μ. The trick is to discretise μ on a scale δ > 0, thus turning μ into an L2-function μδ.
Then, projecting μδ – instead of μ – onto the planes V results in a family of L2-functions,
denoted by (μδ)V. It turns out that the L2-norms ‖(μδ)V‖2, for various δ > 0, provide a
substitute for Is(πV�μ) satisfying both requirements (a) and (b).

In contrast with many classical proofs related to projection phenomena, the measure μ we
consider is not simply a Frostman measure supported on the set B ⊂ Rn we are projecting.
Rather, μ is an abstract pull-back of a Frostman measure ν supported on one of the projec-
tions of B, namely the one with the (essentially) largest dimension. The key observation in
the proof is that if the norms ‖νδ‖2 satisfy certain growth estimates, then the same estimates
automatically transfer to the norms ‖(μδ)V‖2, for almost all planes V. Having related these
growth estimates to the dimensions of spt(μδ)V, this translates into our claim that almost all
projections of spt μ have dimension at least dim spt ν.

In our first lemma, we make precise the idea of discretising a measure μ on a scale δ > 0,
and relate the growth rate of ‖μδ‖2, as δ ↘ 0, to the dimension of spt μ.

LEMMA 2·1. Let μ be a finite measure on Rm, and let (ψδ j ) j∈N be a collection of smooth
functions of the form

ψδ j (x) = δ−m
j ψ(x/δ j ),

where ψ is a fixed non-negative compactly supported smooth function, not equal to zero,
and δ j = 2− j . Suppose that the growth of the L2-norms of the convolutions μδ j := μ � ψδ j

is bounded as follows:
‖μδ j ‖2

2 � δs−m
j for some 0 < s < m. (2·2)

Then dimH spt μ � s.

Proof. Parseval’s theorem and (2·2) give∫
Rm

|μ̂(x)|2|ψ̂(δ j x)|2 dx =
∫

Rm

|μ̂ � ψδ j (x)|2 dx = ‖μδ j ‖2
2 � δs−m

j .

Next, observe that there exists a constant c > 0 such that |ψ̂(δ j x)|2 � c for |x | � cδ−1
j . Let

https://doi.org/10.1017/S0305004113000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004113000091


Constancy results for special families of projections 553

0 < r < s. The r -energy of μ can be expressed through the Fourier transform μ̂, see for
instance [11, lemma 12·12]. Then,

Ir (μ) �
∫

Rm

|μ̂(x)|2|x |r−m dx � 1 +
∞∑
j=1

2 j (r−m)

∫
B(0,c2 j )

|μ̂(x)|2 dx

� 1 +
∞∑
j=1

2 j (r−s)2 j (s−m)

∫
|μ̂(x)|2|ψ̂(2− j x)|2 dx

� 1 +
∞∑
j=1

2 j (r−s) < ∞,

which means that Ir (μ) < ∞, and so dimH spt μ � r .

LEMMA 2·3. Let Dδ be a partition of Rd into dyadic cubes of side-length δ; thus, D1 :=
{�d

i=1[mi , mi + 1) : mi ∈ Z}, and Dδ := {δQ : Q ∈ D1}. Suppose that ν is a measure on
Rd of the form

ν =
∑

Q∈Dδ

cQLd�Q, cQ � 0,

where Ld�Q denotes the restriction of the Lebesgue measure to Q. Then

Is(ν) � δt−s It(ν)

for all t, s with 0 < t � s < d. The implicit constants depend on d, s and t, but not on
δ > 0 or the particular choice of ν, as long as it is of the form indicated above.

Proof. Define the relation ∼ on Dδ × Dδ by

Q ∼ Q ′ ⇐⇒ Q � Q ′ ��.

If x ∈ Rd , let Qx ∈ Dδ be the unique cube containing x . For x, y ∈ Rn , we write x ∼ y, if
Qx ∼ Qy . Then,

Is(ν) =
∫∫

{(x,y):x∼y}
|x − y|−s dνxdνy +

∫∫
{(x,y):x�y}

|x − y|−s dνxdνy.

For the second term, it suffices to note that x � y implies |x − y| � δ, whence |x − y|−s �
δt−s |x − y|−t . To estimate the first term, write∫∫

{(x,y):x∼y}
|x − y|−s dνxdνy =

∑
Q∼Q′

cQcQ′

∫
Q

∫
Q′

|x − y|−s dxdy

�
∑
Q∼Q′

cQcQ′

∫
Q

∫
B(y,c(d)δ)

|x − y|−s dxdy

� δ2d−s
∑
Q∼Q′

cQcQ′,

where the constant c(d) is chosen large enough so that for Q ′ ∼ Q and y ∈ Q, we have
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Q ′ ⊆ B(y, c(d)δ). Here we have used∫
B(y,c(d)δ)

|x − y|−s dx =
∫

B(0,c(d)δ)

|x |−s dx =
∫ c(d)δ

0

∫
Sd−1

r−sr d−1 dσ d−1dr

= (c(d)δ)d−s

d − s

∫
Sd−1

dσ d−1

and
∫

Q dy = δd .
To bound the sum

∑
Q∼Q′ cQcQ′ , note that if Q ∈ Dδ is fixed, it has only a finite number

N (d) of ‘neighbours’ Q ′ ∈ Dδ. In particular,∑
Q∈Dδ

(
max
Q∼Q′

cQ′

)2

� N (d)
∑

Q∈Dδ

c2
Q

and thus, ∑
Q∼Q′

cQcQ′ =
∑

Q∈Dδ

cQ

∑
Q′∈Dδ :Q′∼Q

cQ′ �
∑

Q∈Dδ

(
cQ · max

Q′∼Q
cQ′

)
�

∑
Q∈Dδ

c2
Q,

which implies that

Is(ν) � δ2d−s
∑

Q∈Dδ

c2
Q + δt−s It(ν). (2·4)

Let us next bound the t-energy It(ν) from below. If Q ∈ Dδ, let Qo be the cube which is con-
centric with Q but has only half the side-length. Then, if x ∈ Qo, we have B(x, δ/c(d)) ⊂ Q
for large enough c(d), not necessarily the same as above, and this shows that

It(ν) �
∑

Q∈Dδ

c2
Q

∫
Qo

∫
B(y,δ/c(d))

|x − y|−t dxdy � δ2d−t
∑

Q∈Dδ

c2
Q,

by a similar integration in spherical coordinates as before. It now follows from (2·4) that

Is(ν) � δt−s

(
δ2d−t

∑
Q∈Dδ

c2
Q

)
+ δt−s It(ν) � δt−s It(ν),

as claimed.

Proof of Theorem 1·3. Let B ⊂ Rn be an analytic set. Recall that

mH = sup{dimH BV ×Rl : V ∈ G(n − l, m − l)} � m,

and we intend to prove that dimH BV = mH almost surely. To this end, we may assume
that mH > 0. Let 0 < σ < mH and find a subspace V0 ∈ G(n − l, m − l) such that
dimH BV0×Rl > σ . We will identify all the subspaces V = V ×Rl with Rm , so that BV ⊂ Rm ,
and the projections πV = πV ×Rl , V ∈ G(n − l, m − l), will all be Rm-valued. Let 
 be a
non-negative radial symmetric smooth function on Rn , satisfying

χB(0,1) � 
 � χB(0,2). (2·5)

Then, for any V ∈ G(n − l, m − l), the projection 
V of 
 to Rm , defined by


V(x) =
∫

π−1
V

{x}

 dHn−m,

is a non-negative compactly supported smooth function on Rm , not identically equal to zero.
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Since 
 is radial symmetric, the projections 
V are independent of V; to emphasise this, we
write ψ := 
V. The plan of the proof is to use Lemma 2·1 as follows. We will find a finite
Borel measure μ supported on the analytic B such that the growth estimate

‖(μV ×Rl )δ j ‖2
2 � δs−m

j , 0 � s < σ, (2·6)

holds for γn−l,m−l almost every V ∈ G(n − l, m − l), where μV ×Rl = μV = πV�μ, and
δ j = 2− j . As in Lemma 2·1, the measure (μV)δ j is defined to be the convolution μV � ψδ j ,
where ψδ j (x) = δ−m

j ψ(x/δ j ). According to Lemma 2·1, establishing (2·6) will complete the
proof of Theorem 1·3.

Before defining the measure μ, let us make one observation to simplify the proof of (2·6).

LEMMA 2·7. Let μ be a finite Borel measure on Rn. Then for all δ > 0 and V = V × Rl ,
V ∈ G(n − l, m − l), we have

(μV)δ = (μδ)V, (2·8)

where μδ := μ � 
δ and (μV)δ = μV � ψδ with ψ = 
V.

Proof. Writing 
δ(x) := δ−n
(x/δ), and denoting the transpose of the projection πV by
πT

V
: Rm → Rn , we have the identity

(̂μV)δ(x) = μ̂V � ψδ(x) = μ̂V(x)ψ̂δ(x)

= μ̂(πT
V
(x))
̂(πT

V
(δx)) = μ̂(πT

V
(x))
̂(δ · πT

V
(x))

= μ̂(πT
V
(x))
̂δ(π

T
V
(x)) = μ̂ � 
δ(π

T
V
(x)) = ̂(μ � 
δ)V(x)

for all x ∈ Rm .

So, the order of discretising and projecting can be interchanged, and, in particular,
‖(μV)δ‖2 = ‖(μδ)V‖2 for all V ∈ G(n − l, m − l) and δ > 0. But, in order to apply
Lemma 2·3, we will need something more. Let Dδ be the collection of dyadic cubes of side-
length δ > 0 in Rn , as defined above for d = n. If μ is any finite Borel measure on Rn ,
set

μδ :=
∑

Q∈Dδ

μ(Q)

δn
χQ .

Eventually, we will control the L2-norms in (2·6) by estimating the L2-norms of the projec-
tions (μδ)V. This is reasonable thanks to the following lemma.

LEMMA 2·9. If μ is any finite Borel measure on Rn, we have

‖(μV)δ‖2 � ‖(μδ)V‖2 � ‖(μV)cδ‖2 (2·10)

for any δ > 0 and V ∈ G(n − l, m − l). The implicit constants in (2·10) only depend
on n and the choice of the function 
, as in (2·5), and the constant c depends only on the
dimension n.

Proof. Fix V ∈ G(n − l, m − l) and δ > 0. Using (2·5), we first make an estimate in Rn:

μδ(x) � δ−n

∫
B(x,2δ)

dμy � δ−n
∑

Q∈Dδ

Q�B(x,2δ)��

μ(Q)

� δ−n

∫
B(x,c(n)δ)

∑
Q∈Dδ

μ(Q)

δn
χQ(y) dy�(μδ)c(n)δ(x),
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where c(n) is large enough so that Q � B(x, 2δ) � � implies Q ⊂ B(x, c(n)δ). Here
(μδ)c(n)δ = μδ � 
c(n)δ , as usual. Applying the previous estimate and (2·8) twice we obtain

(μV)δ = (μδ)V � ((μδ)c(n)δ)V = ((μδ)V)c(n)δ,

where ((μδ)V)c(n)δ = (μδ)V �ψc(n)δ , as before. Now it suffices to note that the convolution of
any function f ∈ L1(Rm) with ψδ is controlled by a constant times the Hardy–Littlewood
maximal function M f , and the constant can be chosen to be independent of f . Indeed,

| f � ψδ(x)| �
∫

Rm

|ψδ(x − y)|| f (y)|dy � 1

δm

∫
B(x,2δ)

| f (y)|dy

� 1

Lm(B(x, 2δ))

∫
B(x,2δ)

| f (y)|dy � M f (x).

Applying this to (μδ)V, it follows that

‖(μV)δ‖2 � ‖((μδ)V)c(n)δ‖2 � ‖M(μδ)V‖2 � ‖(μδ)V‖2,

where the upper bound is simply the boundedness of operator M in L2.
For the converse inequality let us observe that (2·5) guarantees the existence of a constant

c which depends only on the dimension n such that

c−nμδ(x) � (cδ)−nμ(B(x, cδ)) � μcδ(x),

so that ‖(μδ)V‖2 � ‖(μcδ)V‖2 = ‖(μV)cδ‖2 as desired.

Next, we will define the measure μ, for which (2·6) will be verified. At the beginning of
the proof, we found a special subspace V0 ∈ G(n − l, m − l) such that dimH BV0 > σ . Since
BV0 ⊂ Rm is an analytic set, we may use Frostman’s lemma to find a non-trivial finite Borel
measure μV0 , supported on BV0 and satisfying Iσ (μV0) < ∞. We may then ‘pull back’ the
measure μV0 inside the set B using the following result of A. Lubin from 1974.

LEMMA 2·11. ([9, Corollary 6]). Let X, Y be analytic subsets of complete separable met-
ric spaces, and let f : X → Y be a Borel function. Then, if ν is a measure supported on
f (X) ⊂ Y , there exists a Borel measure μ on X such that f�μ = ν.

We apply the lemma with X = B, Y = BV0 and ν = μV0 to obtain a measure μ, supported
on B, and such that

πV0�μ = μV0 .

For V ∈ G(n − l, m − l), we write μV := πV ×Rl�μ; clearly, the two definitions of μV0

coincide. For V = V0, we have the estimate

‖(μδ)V0‖2
2 � ‖(μV0)cδ‖2

2 �
∫

Rm

|μ̂V0(x)|2|ψ̂(cδx)|2 dx

� (cδ)σ−m

∫
Rm

|μ̂V0(x)|2|x |σ−m dx � δσ−m,

using the rapid decay bound |ψ̂(y)| � |y|(σ−m)/2 for y ∈ Rm (note that ψ is a Schwartz
function) and the finiteness of the σ -energy of μV0 .

So, we have (2·6) for V = V0. Using only this information, we intend to prove (2·6) for
γn−l,m−l almost all directions V ∈ G(n − l, m − l).
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Given h ∈ Rl , let μδ
h : Rn−l → [0, ∞) be the function μδ

h(x) = μδ(x, h). Recalling the
definition of μδ, it is clear that the functions – or measures – μδ

h have precisely the form of
the measure ν in Lemma 2·3 for d = n − l. In particular,

Im−l(μ
δ
h) �t,l,m,n δt−(m−l) It(μ

δ
h), 0 < t � m − l. (2·12)

If V ∈ G(n − l, m − l), write (μδ
h)V for the orthogonal projection of μδ

h onto the subspace
V ⊂ Rn−l . Before making the final estimates, we need to record the following upper bound
for the energy in terms of the L2-norm.

LEMMA 2·13. Let ν be a positive finite compactly supported Borel measure on Rm−l ,
which is also an L2-function. Then,

It(ν) �l,m,t ‖ν‖2
2, 0 < t < m − l, (2·14)

Proof. The Fourier transform of the finite positive measure ν is a positive definite func-
tion, so it satisfies the pointwise estimate |ν̂(x)| � ν̂(0) for x ∈ Rm−l , see for instance
[1, p. 198, p. 220]. Using this we obtain

It(ν) �l,m,t

∫
Rm−l

|ν̂(x)|2|x |t−(m−l) dx

� |ν̂(0)|2
∫

B(0,1)

|x |t−(m−l)dx +
∫

Rm−l\B(0,1)

|ν̂(x)|2 dx

�l,m,t ‖ν‖2
1 + ‖ν̂‖2

2 � ‖ν‖2
2,

as claimed.

We will also apply the estimate∫
G(n−l,m−l)

‖νV ‖2
2 dγn−l,m−l(V ) � Im−l(ν), (2·15)

valid for any finite measure ν on Rn−l with Im−l(ν) < ∞. This can be seen for instance from
[10, Theorem 3.1].

Let 0 < t < m − l. Combining (2·15), (2·12) and (2·14) we have∫
G(n−l,m−l)

‖(μV)δ‖2
2 dγn−l,m−l(V ) �

∫
G(n−l,m−l)

∫
Rl

‖(μδ
h)V ‖2

2 dh dγn−l,m−l(V )

=
∫

Rl

∫
G(n−l,m−l)

‖(μδ
h)V ‖2

2 dγn−l,m−l(V ) dh

�
∫

Rl

Im−l(μ
δ
h) dh

�tδ
t−(m−l)

∫
Rl

It(μ
δ
h) dh

� δt−(m−l)

∫
Rl

It((μ
δ
h)V0) dh

�tδ
t−(m−l)

∫
Rl

‖(μδ
h)V0‖2

2 dh

= δt−(m−l)‖(μδ)V0‖2
2 � δt−(m−l)+σ−m .

https://doi.org/10.1017/S0305004113000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004113000091


558 KATRIN FÄSSLER AND TUOMAS ORPONEN

If s < σ , we may choose t < m − l so close to m − l that s < t − (m − l) + σ . By
Chebyshev’s inequality

γn−l,m−l({V ∈ G(n − l, m − l) :‖(μV)δ‖2
2 � δs−m})

� 1

δs−m

∫
G(n−l,m−l)

‖(μV)δ‖2
2 dγn−l,m−l(V )

we obtain

γn−l,m−l({V ∈ G(n − l, m − l) : ‖(μV)δ‖2
2 � δs−m}) � δt−(m−l)+σ−s .

For δ j = 2− j , j ∈ N, combining this estimate with the easier Borel–Cantelli lemma
shows that

γn−l,m−l

⎛⎝ ∞⋂
p=1

⋃
j�p

{V ∈ G(n − l, m − l) : ‖(μV)δ j ‖2
2 � δs−m

j }
⎞⎠ = 0

and thus that the inequality ‖(μV)2− j ‖2
2 � 2 j (m−s) can hold infinitely often only for a set

of V ’s of γn−l,m−l measure zero. For the rest of the subspaces V , we have ‖(μV)2− j ‖2
2 �V

2 j (m−s) for j ∈ N, and, according to Lemma 2·1, this implies dimH BV � s for every such
V ∈ G(n − l, m − l).

3. Proofs for upper box and packing dimensions

A quick word on notation before we begin. If E ⊂ Rn is a bounded set and δ > 0, we
denote by N (E, δ) the least number of (closed) balls of radius δ required to cover E . The
upper and lower box dimensions (Minkowski dimensions) of E are defined by

dimB E := lim inf
δ→0

log N (E, δ)

− log δ
and dimB E := lim sup

δ→0

log N (E, δ)

− log δ
.

Analogous definitions can be made for totally bounded sets in metric spaces, for instance,
we will use the concept of box dimensions on the Grassmanian.

The packing dimension of a set E ⊂ Rn is defined as

dimP E := inf

⎧⎨⎩sup
j

dimB Fj : E ⊂
⋃
j∈N

Fj

⎫⎬⎭ .

Theorem 1·4 contains statements concerning both upper box and packing dimension; ac-
cordingly, our proof divides into two parts. However, it turns out that the assertions for
packing dimension easily reduce to their analogues for upper box dimension (via Lemma
3·12), so all the main ingredients of the proof are contained in the first part.

Let us briefly explain these ingredients in the lowest-dimensional interesting case, namely
when n = 3, m = 2 and l = 1. Thus, we are considering projections in R3 onto the ‘vertical’
2-dimensional subspaces (containing the z-axis). The key observation is, in fact, a result
concerning planar sets and their projections onto one-dimensional subspaces. Fix δ > 0,
and let K ⊂ R2 be a bounded set. Suppose that for some one-dimensional subspace L ⊂ R2

the projection of K onto L contains N ∈ N δ-separated points. Then, the conclusion is
that for ‘almost’ every one-dimensional subspace in R2 the projection of K contains � N
δ-separated points (where the correct interpretation of � slightly differs from our normal
usage).
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How do we use this observation for sets in R3? To begin with, we slice our bounded
set B ⊂ R3 into disjoint horizontal pieces BH of height δ. These pieces are ‘planar
enough’ for the observation above to be applied. Namely, a moment’s thought reveals that,
at scale δ, the projections of the horizontal pieces onto the vertical subspaces V ⊂ R3

resemble projections of certain planar sets onto one-dimensional subspaces. In particular,
if N (πV0(BH ), δ) = N ∈ N for some vertical subspace V0 ⊂ R3, then the inequality
N (πV(BH ), δ) � N holds, in a suitable sense, for ‘almost’ every vertical subspace V ⊂ R3.
Since N (πV(B), δ) is roughly the sum of the numbers N (πV(BH ), δ) over all the horizontal
pieces BH , this property of the sets BH transfers easily to the same property for the entire
set B: if N (πV0(B), δ) = N for some vertical subspace V0 ⊂ R3, then N (πV(B), δ) � N
for ‘almost’ every vertical subspace V ⊂ R3. The assertion of Theorem 1·4 for upper box
dimension follows immediately.

We begin with an estimate for the volumes of balls on the Grassmannian. In all likelihood,
the proposition is well known, but we were unable to find a direct reference. Consequently,
we chose to include a proof in Appendix A.

PROPOSITION 3·1. Let 0 < m < n. Then there exist constants 0 < c < C < ∞ and
δ0 > 0 such that

cδm(n−m) � γn,m(B(V, δ)) � Cδm(n−m)

for all V ∈ G(n, m) and all 0 < δ < δ0. Here the ball B(V, δ) is defined using the projection
distance dπ(V, W ) = ‖πV − πW ‖.

A set E ⊂ G(n, m) is said to be δ-separated if dπ(V, W ) � δ for any distinct elements
V, W ∈ E .

Definition 3·2 ((δ, k)-sets). Let C ⊂ B(0, 1) ⊂ Rn be a finite set. We say that a δ-
separated set C is a (δ, k)-set, if

card[B(x, r) � C] �
(r

δ

)k

for every ball B(x, r) ⊂ Rn with radius r � δ.

The following proposition is a generalization of [12, proposition 4·10] to higher di-
mensions. Essentially, the result is a discrete version of the Marstrand–Kaufman–Mattila
projection theorem.

LEMMA 3·3. Let 0 < δ < 1 and let C ⊂ B(0, 1) ⊂ Rn be a (δ, m)-set with N ∈ N

points. Let τ > 0, and let E ⊂ G(n, m) be a δ-separated collection of subspaces such that

N (CV , δ) � δτ N , for all V ∈ E .

Then card E � δτ−(n−m)m · log(1/δ).

Proof. Let Dδ be a partition of V into m-dimensional dyadic cubes of side-length δ > 0.
For a given subspace V ∈ E we consider the ‘tubes’

TV := {T = π−1
V (Q) : Q ∈ Dδ},

and we define the relation

x ∼V y ⇐⇒ x, y ∈ T ∈ TV .
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We define an energy E by

E :=
∑
V ∈E

card{(x, y) ∈ C × C : x ∼V y}.

Writing

E ′ :=
∑
V ∈E

card{(x, y) ∈ C × C : x ∼V y, x � y},

we find that E = E ′ + N · cardE , and our goal is to show that E � δ−(n−m)m · N · log (1/δ).
Proposition 3·1 implies that cardE � δ−(n−m)m since E is a δ-separated subset of G(n, m).
So, it remains to establish the desired upper bound for E ′.

Let us first observe that, for x � y,

card{V ∈ E : x ∼V y} � δm(1−(n−m))

|x − y|m . (3·4)

Namely, if V is any subspace such that x ∼V y, then

B(V, δ) ⊂ {V : |πV (x − y)| � βδ}

for some constant β depending only on m and n (here we also use the inclusion C ⊂
B(0, 1)). On the other hand, we have the measure bound, see [11, Lemma 3.11],

γn,m({V ∈ G(n, m) : |πV (x − y)| � βδ}) �
(

δ

|x − y|
)m

.

Now (3·4) follows, since the set E is δ-separated and, according to Proposition 3·1, we have
γn,m(B(V, δ)) � δm(n−m).

Using (3·4),

E ′ =
∑
x∈C

∑
j :δ�2 j �1

∑
y∈C

2 j �|x−y|<2 j+1

card{V ∈ E : x ∼V y}

�
∑
x∈C

∑
j :δ�2 j �1

∑
y∈C

2 j �|x−y|<2 j+1

|x − y|−mδm(1−(n−m))

�
∑
x∈C

∑
j :δ�2 j �1

card[C � B(x, 2 j+1)] · 2− jmδm(1−(n−m))

�
∑
x∈C

∑
j :δ�2 j �1

(
2 j+1

δ

)m

2− jmδm(1−(n−m))

=
∑
x∈C

∑
j :δ�2 j �1

δ−(n−m)m � δ−(n−m)m · N · log

(
1

δ

)
.

The asserted bound for cardE follows, once we have found an appropriate lower bound
for E . We may assume that δτ N � 1. The assumption N (CV , δ) � δτ N guarantees that C
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can be covered by K � δτ N tubes T1, . . . , TK ∈ TV , which yields

card{(x, y) ∈ C × C : x ∼V y} =
K∑

j=1

card{(x, y) ∈ C × C : x, y ∈ Tj }

=
K∑

j=1

card[C � Tj ]2

� 1

K

⎛⎝ K∑
j=1

card[C � Tj ]
⎞⎠2

� δ−τ · N−1 · (cardC)2 = δ−τ · N .

Combing the upper and lower bounds for E , we find

δ−τ · N · cardE � E � δ−(n−m)m · N · log

(
1

δ

)
,

which is the desired result.

The following reformulation of the lemma will be used later (applied to the Grassmanian
G(n − l, m − l) instead of G(n, m)).

COROLLARY 3·5. Let C ⊂ B(0, 1) ⊂ Rn be a (δ, m)-set with N ∈ N points. Then, if
E ⊂ G(n, m) is any δ-separated set with card E � δ−β elements, we have

1

card E

∑
V ∈E

N (CV , δ) �τ δ(n−m)m−τ N , τ < β.

Proof. According to Lemma 3·3, the set E contains at most

� δ((n−m)m−τ)−(n−m)m · log(1/δ) = δ−τ · log(1/δ)

subspaces V such that N (CV , δ) � δ(n−m)m−τ N . Since τ < β, the proportion of such sub-
spaces in E is close to zero for small δ, and the claim follows.

3·1. Proof of Theorem 1·4 for upper box dimension

We are now ready to prove Theorem 1·4 for upper box dimension. The assumption on the
analyticity of the set B will only be required later, in the proof for packing dimension. For
the time being, we assume that B ⊂ B(0, 1) ⊂ Rn is an arbitrary set with

mB = sup{dimB BV : V ∈ G(n − l, m − l)} > 0.

We will show for 0 � σ � mB that

dimMB{V ∈ G(n − l, m − l) : dimB BV < σ } � max{0, (n − m)(m − l) + σ − mB}, (3·6)

where dimMB denotes the modified lower box dimension

dimMB E := inf

⎧⎨⎩sup
j

dimB Fj : E ⊂
⋃
j∈N

Fj

⎫⎬⎭ .

Recall that G(n − l, m − l) is endowed with a metric so that dimH G(n − l, m − l) =
(n−m)(m−l) and the (n−m)(m−l)-dimensional Hausdorff measure coincides with γn−l,m−l
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up to a positive and finite multiplicative constant. It is clear that sets E ⊂ G(n − l, m − l)
with

dimMB E < (n − m)(m − l)

are meager, i.e., countable unions of nowhere dense sets, and have γn−l,m−l measure zero, so
(3·6) will imply the upper box dimension part of Theorem 1·4.

As before, let Dδ stand for the collection of dyadic cubes in Rn of side-length δ > 0.
Write

Bδ :=
⋃

{Q ∈ Dδ : B � Q ��}, δ > 0,

It is easy to check that

N ((Bδ)V, δ) � N (BV, δ)

for any V ∈ G(n − l, m − l) and δ > 0. This shows that lim supδ→0 log N (BV, δ)/− log δ =
lim supδ→0 log N ((Bδ)V, δ)/− log δ and thus

{V ∈ G(n − l, m − l) : dimB BV < σ }
⊂

⋃
i∈N

⋂
δ∈(0,1/ i)

{V ∈ G(n − l, m − l) : N ((Bδ)V, δ) � δ−σ }.

Hence, by definition of dimMB, the bound (3·6) would follow from

sup
i

dimB Ei � max{0, (n − m)(m − l) + σ − mB}, 0 � σ � mB, (3·7)

where Ei = ⋂
δ∈(0,1/ i){V ∈ G(n − l, m − l) : N ((Bδ)V, δ) � δ−σ }. We will now prove

(3·7). Fix i ∈ N and write E := Ei . Given σ < σ ′ < mB, we may find a direction V0 ∈
G(n − l, m − l) and a sequence (δ j ) j∈N such that δ j ↘ 0, and N ((Bδ j )V0, δ j ) � δ−σ ′

j .

3·1·1. Decomposition into sets essentially in Rn−l

Let

Hδ := {H = Rn−l × �l
i=1[kiδ, (ki + 1)δ) : (k1, . . . , kl) ∈ Zl}

and set Bδ,H := Bδ � H . Thus

Bδ =
⋃

H∈Hδ

Bδ,H .

In particular,

N ((Bδ)V, δ) �
∑

H∈Hδ

N ((Bδ,H )V, δ) (3·8)

for V ∈ G(n − l, m − l) and δ > 0. For our purposes, the sets Bδ,H are essentially sets
in Rn−l in the following sense: for each H ∈ Hδ, there exists a set Pδ,H ⊂ Rn−l and an
l-tuple (k1, . . . , kl) ∈ Zl such that Bδ,H = Pδ,H × �l

i=1[kiδ, (ki + 1)δ). Moreover, the pro-
jection properties of the sets Bδ,H and Pδ,H are equivalent in the sense that N ((Pδ,H )V , δ) �
N ((Bδ,H )V, δ) for V ∈ G(n−l, m−l) and δ > 0, where (Pδ,H )V is the orthogonal projection
of Pδ,H onto the (m − l)-dimensional subspace V ⊂ Rn−l .

3·1·2. Finding (δ, m − l)-sets

In order to apply Corollary 3·5 to G(n − l, m − l), we need to extract some (δ, m − l)-sets.
Recall the special direction V0 ∈ G(n−l, m−l) with the property that N ((Bδ)V0, δ j ) � δ−σ ′

j
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for every j ∈ N. Fix j ∈ N and write δ := δ j . For H ∈ Hδ, we set

MH := N ((Bδ,H )V0, δ) � N ((Pδ,H )V0, δ).

Then
∑

H∈Hδ MH � δ−σ ′
according to (3·8). As before, let TV0 be a partition of Rn−l into

tubes perpendicular to V0. To be precise, let Dδ be a partition of V0 into dyadic cubes and
then consider

TV0 := {T = π−1
V0

(Q) : Q ∈ Dδ}.
Since N ((Pδ,H )V0, δ) � MH , we may find K � MH tubes T1, . . . , TK ∈ TV0 such

that each tube Tk , k = 1, . . . , K , contains a point xk ∈ Pδ,H and such that the set
C δ,H := {x1, . . . , xK } is δ-separated. Moreover, since any ball B(x, r) ⊂ Rn−l of radius
r � δ intersects no more than � (r/δ)m−l tubes in TV0 , we may infer that the set C δ,H is a
(δ, m − l)-set containing card C δ,H � MH elements.

3·1·3. Concluding the proof for upper box dimension

Write δ = δ j , where δ j is as before. We apply Corollary 3·5 to the sets C δ,H , for every
H ∈ Hδ. Let E ⊂ G(n − l, m − l) be any δ-separated set of cardinality card E � δ−β , for
some β > 0. Then,

1

card E

∑
V ∈E

N ((Bδ)V, δ) �
∑

H∈Hδ

(
1

card E

∑
V ∈E

N ((C δ,H )V , δ)

)
� δ(n−m)(m−l)−τ ·

∑
H∈Hδ

MH � δ(n−m)(m−l)−τ−σ ′
, τ < β.

What does this mean? Recall that σ < σ ′ < mB. If

β > max{0, (n − m)(m − l) + σ − σ ′},
we may apply the previous estimate with some

τ > max{0, (n − m)(m − l) + σ − σ ′}
to obtain the inequality

1

card E

∑
V ∈E

N ((Bδ)V, δ) > δ−σ ,

at least for δ = δ j small enough.
This implies that

E � {V : N ((Bδ)V, δ) � δ−σ }.
Thus, for small enough δ = δ j , the maximum cardinality of a δ-separated subset of {V :
N ((Bδ)V, δ) � δ−σ } is less than δ−β , for any

β > max{0, (n − m)(m − l) + σ − σ ′}.
Since σ ′ < mB was arbitrary, this yields (3·7) and completes the proof of Theorem 1·4 for
upper box dimension.

3·2. Proof of Theorem 1·4 for packing dimension

Let B ⊂ Rn be a bounded analytic set, and assume that

mP := sup{dimP BV : V ∈ G(n − l, m − l)} > 0.
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As in the case of upper box dimension, it suffices to prove for 0 � σ � mP that

dimMB{V ∈ G(n − l, m − l) : dimP BV < σ } � max{0, (n − m)(m − l) + σ − mP}. (3·9)

Suppose that (3·9) fails. Then, we may find numbers 0 < σ < σ ′ < mP such that

dimMB{V ∈ G(n − l, m − l) : dimP BV < σ } > max{0, (n − m)(m − l) + σ − σ ′}. (3·10)

Choose V0 ∈ G(n − l, m − l) such that dimP BV0 > σ ′. Since BV0 ⊂ Rm is analytic, a
result of Joyce and Preiss [7] permits us to find a compact set KV0 ⊂ BV0 with positive and
finite σ ′-dimensional packing measure; 0 < Pσ ′

(KV0) < ∞. Next, we apply the ‘pull-back
lemma’ by Lubin to find a Borel measure μ supported on B, with the property that

πV0�μ = Pσ ′�KV0 . (3·11)

Now B0 := spt μ ⊂ B is a μ-measurable set with μ(B0) > 0, and (3·10) holds, by mono-
tonicity, with B replaced by B0. We quote a lemma from [12].

LEMMA 3·12. (Adapted from [12, Lemma 4·5]). Let μ be a Borel regular measure on Rn,
and let β, σ > 0. Assume that B0 ⊂ Rn is μ-measurable with 0 < μ(B0) < ∞, and

dimMB{V ∈ G(n − l, m − l) : dimP B0
V

< σ } > β.

Then, there exists a μ-measurable set B ′ ⊂ B0 with μ(B ′) > 0 such that

dimMB{V ∈ G(n − l, m − l) : dimB B ′
V

< σ } > β.

The corresponding lemma in [12] only concerns projections of planar sets, but the proof
works verbatim in the situation above. We intend to apply the lemma to the measure μ

constructed above and the set B0 = spt μ. Strictly speaking, the abstract ‘pull-back lemma’
from [9] does not tell us that the measure μ is Borel regular. However, inspecting the proof
of [12, Lemma 4·5], the regularity of the measure is only used to guarantee the existence of
compact sets K ⊂ B0 � spt μ with positive μ-measure. Fortunately, the existence of such
sets is clear in our situation, since here B0 = spt μ is closed to begin with.

Applying Lemma 3·12 to the measure μ constructed above, we find a set B ′ in B0 such
that μ(B ′) > 0, and

dimMB{V ∈ G(n − l, m − l) : dimB B ′
V

< σ } > max{0, (n − m)(m − l) + σ − σ ′}. (3·13)

However, we may infer from (3·11) that

Pσ ′
(B ′

V0
) = μ(π−1

V0
(B ′

V0
)) � μ(B ′) > 0,

and, in particular,

m′
B := sup{dimB B ′

V
: V ∈ G(n − l, m − l)} � dimB B ′

V0
� σ ′.

Now it follows from the upper box dimension part of the proof, namely the estimate (3·6),
that

dimMB{V ∈ G(n − l, m − l) : dimB B ′
V

< σ } � max{0, (n − m)(m − l) + σ − m′
B}

� max{0, (n − m)(m − l) + σ − σ ′}.
This contradicts (3·13) and concludes the proof of Theorem 1·4 for bounded sets, and, ac-
cording to Remark 1·5, for all sets.
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Appendix A. Volumes of balls on the Grassmannian

In this final section, we prove Proposition 3·1. We start with a geometric lemma.

LEMMA A 1. Let V, W ∈ G(n, m). Then there exist orthonormal bases {v1, . . . , vm} ⊂
V and {w1, . . . , wm} ⊂ W such that

|vi − wi | � ‖πV − πW ‖, 1 � i � m.

Proof. Write ε := ‖πV − πW ‖. Choose some orthonormal bases for V and W , and form
the (n × m)-matrices QV and QW with the basis vectors as columns. Then QT

V = πV , and
QV maps Rm isometrically onto V , as follows from

|x | = | Id x | = |QT
V QV x | � |QV x | � |x |, x ∈ Rm .

Similar statements hold for QW . Consider the (m × m)-matrix M := QT
V QW . If ε < 1, as

we may assume, M is nonsingular; otherwise one finds a unit vector x ∈ ker M , and then
|πV (QW )x − πW (QW )x | = 1 > ε. We perform the singular value decomposition (SVD)
for M :

M = O1�OT
2 .

Here O1, O2 ∈ O(m), since det M � 0, and � is a diagonal (m × m)-matrix with non-
negative entries, namely the singular values of M . We first aim to bound the singular values
from below. Let x ∈ Rm be an arbitrary unit vector. Since ‖πV − πW ‖ = ε, we have

|Mx | = |πV (QW x)| � |πW (QW x)| − |πV (QW x) − πW (QW x)| � 1 − ε,

using the fact that QW x is a unit vector on W . Now, fix 1 � j � m and choose the unit
vector x ∈ Rm so that OT

2 x equals the j th standard basis vector e j . Then

1 − ε � |Mx | = |O1�OT
2 x | = |σ j O1e j | = σ j ,

where σ j is the j th diagonal element in � – the j th singular value. In conclusion, all the
singular values σ j satisfy σ j � 1 − ε. Now we are prepared to construct the bases. The SVD
implies that

[QV O1]T[QW O2] = �.

We simply observe that the columns of the (n × m)-matrices QV O1 and QW O2 form or-
thonormal bases {v1, . . . , vm} and {w1, . . . , wm} for the subspaces V and W , respectively.
Moreover, the inner product of any pair (vi , w j ) satisfies

vi · w j = σ jδi j � (1 − ε)δi j .

This means that the angles between the vectors vi and wi , 1 � i � m, are � ε, and the rest
follows by simple trigonometry.

The measure γn,m is O(n)-invariant, as follows immediately from the construction, see
[11, section 3·9]. By O(n)-invariance, we of course mean that

γn,m(B(V, δ)) = γn,m(B(OV, δ))

for any m-plane V ∈ G(n, m), any transformation O ∈ O(n), and any δ > 0. Since for any
pair of m-planes V, W ∈ G(n, m) we may find O ∈ O(n) with OV = W , this allows us
to make the following reduction: in order to prove Proposition 3·1, it suffices to find an
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m-plane V ∈ G(n, m) with

0 < lim inf
δ→0

γn,m(B(V, δ))

δm(n−m)
� lim sup

δ→0

γn,m(B(V, δ))

δm(n−m)
< ∞. (A 2)

Proof of (A 2) Unfortunately, we are not able to prove (A 2) for the measure γn,m directly.
Instead, the strategy will be roughly to (i) interpret the Grassmannian G(n, m) as an m(n −
m)-dimensional smooth submanifold of some Euclidean space, (ii) conclude that the natural
Hausdorff measure on the submanifold satisfies a condition analogous to (A 2), and finally
(iii) show that the measure γn,m is equivalent to the said Hausdorff measure.

Step (i) involves the space
∧

m Rn of all m-vectors over Rn . For an introduction to the
space

∧
m Rn , see [13, part I, chapter I]. We will mainly need to know that

∧
m Rn is an

(n
m

)
-

dimensional vector space and can be endowed with a natural inner product, see [13, section
1·1·12]; we denote by ‖ · ‖m the norm induced by this inner product. The vectors in

∧
m Rn

can be expressed as linear combinations of simple m-vectors of the form v1 ∧· · ·∧vm where
v1, . . . , vm ∈ Rm and ∧ is the wedge product. The subset

G := {w : w is a simple m-vector, and ‖w‖m = 1}
is a compact smooth m(n − m)-dimensional submanifold of

∧
m Rn , as shown in [3, section

3·2·28]. In particular, if we consider the m(n − m)-dimensional Hausdorff measure Hm(n−m)

living on G ⊂ ∧
m Rn – defined using the norm ‖ · ‖m – we may conclude that there exists a

simple m-vector w0 ∈ G such that

lim
δ→0

Hm(n−m)(B(w0, δ))

δm(n−m)
= κ > 0. (A 3)

Steps (i) and (ii) are now behind us; it only remains to relate G to G(n, m). Consider a
pair of vectors {−v, v} ⊂ G. Since v is simple and v � 0, we know that v = v1 ∧ · · · ∧ vm

for some linearly independent vectors v1, . . . , vm ∈ Rn . Hence, the set {v1, . . . , vm} spans
a subspace V ∈ G(n, m). We now consider the mapping T : G → G(n, m), defined by
T ({−v, v}) = V . Our first claims are that T is 2-to-1 and surjective. Let V ∈ G(n, m),
and consider the subspace LV of

∧
m Rn spanned by the simple m-vectors v1 ∧ · · ·∧ vm with

v j ∈ V for 1 � j � m. Since LV � ∧mRm , we infer that dimH LV = (m
m

) = 1. So, LV is a
one-dimensional subspace of

∧
m Rn , and, in particular, G � LV = {−v, v} for some vector

v ∈ G. In other words,

T −1(V ) = {−v, v},
just as we wanted. This observation allows us to push forward the metric from G to G(n, m)

by setting

d(V, W ) := dist(T −1(V ), T −1(W )) = min{‖v − w‖m, ‖v + w‖m}, (A 4)

provided that T v = V and T w = W . Of course, dist refers to the distance with respect to
‖ · ‖m . Verifying the triangle inequality for d is an easy case chase using the right hand side
of (A 4). The upshot is that we may now use d to define an m(n −m)-dimensional Hausdorff
measure Hm(n−m)

d on G(n, m). We now relate Hm(n−m)-densities on G to Hm(n−m)

d -densities
on G(n, m). In fact, we have

lim sup
δ→0

Hm(n−m)(B(v, δ))

δm(n−m)
= lim sup

δ→0

Hm(n−m)

d (Bd(T v, δ))

δm(n−m)
,
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and the same equation holds with lim sup replaced by lim inf. The proof is simple: given
v0 ∈ G, we can find a ‖ · ‖m-neighbourhood U of v0 in G so small that

dist({−v, v}, {−w, w}) = ‖v − w‖m

for all vectors v, w ∈ U . Then, the restriction T |U : U → (T (U ), d) is an isometry, and

Hm(n−m)(B(v0, δ)) = Hm(n−m)

d (T [B(v0, δ)]) = Hm(n−m)

d (Bd(T v0, δ))

for small enough δ > 0. Recalling (A 3), we have now proven that

lim
δ→0

Hm(n−m)

d (Bd(W0, δ))

δm(n−m)
= κ > 0 (A 5)

with W0 = T w0.
We next need to relate Hm(n−m)

d to γn,m . We first consider another Hausdorff measure on
G(n, m), namely Hm(n−m)

π . The letter π refers to the projection metric dπ(V, W ) = ‖πV −
πW ‖ on G(n, m). Our aim is to prove that the measures Hm(n−m)

d and Hm(n−m)
π are equivalent.

To this end, it suffices to demonstrate the bilipschitz-equivalence of the metrics d and dπ :

cd(V, W ) � dπ(V, W ) � Cd(V, W ), V, W ∈ G(n, m), (A 6)

for some positive and finite constants c and C . To prove the rightmost inequality, we use the
second estimate in [13, section 1·1·15(7)], namely that if V, W ∈ G(n, m), and v, w ∈ G
are m-vectors with T v = V and T w = W , then

|v − πW v| � ‖v − w‖m

for all unit vectors v ∈ V . Since also T (−w) = W , it follows that

dπ(V, W ) � sup
|v|=1

|v − πW v| � min{‖v − w‖m, ‖v + w‖m} = d(V, W ).

To prove the leftmost inequality in (A 6), we fix V, W ∈ G(n, m) and use Lemma A 1
to find such orthonormal bases {v1, . . . , vm} and {w1, . . . , wm} for V and W such that
|vi − wi | � dπ(V, W ) for 1 � i � m. Then, we use inequality [13, section 1·12·17] to
conclude that

d(V, W ) � ‖v1 ∧ · · · ∧ vm − w1 ∧ · · · ∧ wm‖m � mdπ(V, W ).

This completes the proof of (A 6), and shows that Hm(n−m)

d (B) � Hm(n−m)
π (B) for any ball

B ⊂ G(n, m) (in either metric). From (A 5), we may now infer that

0 < lim inf
δ→0

Hm(n−m)
π (Bπ(W0, δ))

δm(n−m)
� lim sup

δ→0

Hm(n−m)
π (Bπ(W0, δ))

δm(n−m)
< ∞. (A 7)

Finally, we observe that Hm(n−m)
π is a finite O(n)-invariant measure on G(n, m). The fi-

niteness part follows from the equivalence of Hm(n−m)
π with Hm(n−m)

d , combined with the
finiteness of the Hm(n−m)-measure of the manifold G; in fact, the exact Hm(n−m)-measure of
G is computed at the end of [3, 3·2·28]. The O(n)-invariance was precisely the reason why
we introduced the measure Hm(n−m)

π : the metric dπ is O(n)-invariant, so all the correspond-
ing Hausdorff measures are automatically O(n)-invariant. Now Hm(n−m)

π and γn,m are both
O(n)-invariant – hence uniformly distributed – measures on G(n, m), and it follows from
[11, theorem 3·4] that γn,m = βHm(n−m)

π for some finite constant β > 0. We infer that (A 7)
gives (A 2).
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