Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T15:29:09.996Z Has data issue: false hasContentIssue false

NONLINEAR DYNAMICS AND CHAOS PART II: ERGODIC APPROACH

Published online by Cambridge University Press:  01 March 1999

Alfredo Medio
Affiliation:
University “Ca' Foscari” of Venice
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This is the second part of a two-part survey of the modern theory of nonlinear dynamical systems. We focus on the study of statistical properties of orbits generated by maps, a field of research known as ergodic theory. After introducing some basic concepts of measure theory, we discuss the notions of invariant and ergodic measures and provide examples of economic applications. The question of attractiveness and observability, already considered in Part I, is revisited and the concept of natural, or physical, measure is explained. This theoretical apparatus then is applied to the question of predictability of dynamical systems, and the notion of metric entropy is discussed. Finally, we consider the class of Bernoulli dynamical systems and discuss the possibility of distinguishing orbits of deterministic chaotic systems and realizations of stochastic processes.

Type
MD Survey
Copyright
© 1999 Cambridge University Press