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MD SURVEY

NONLINEAR DYNAMICS AND
CHAOS PART II: ERGODIC
APPROACH

ALFREDO MEDIO
University “Ca’ Foscari” of Venice

This is the second part of a two-part survey of the modern theory of nonlinear dynamical
systems. We focus on the study of statistical properties of orbits generated by maps, a field
of research known as ergodic theory. After introducing some basic concepts of measure
theory, we discuss the notions of invariant and ergodic measures and provide examples of
economic applications. The question of attractiveness and observability, already
considered in Part I, is revisited and the concept of natural, or physical, measure is
explained. This theoretical apparatus then is applied to the question of predictability of
dynamical systems, and the notion of metric entropy is discussed. Finally, we consider the
class of Bernoulli dynamical systems and discuss the possibility of distinguishing orbits of
deterministic chaotic systems and realizations of stochastic processes.
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1. INTRODUCTION

In Part I of this survey, we discussed dynamical systems from a geometric or topo-
logical point of view. The geometric approach is intuitively appealing and lends
itself to suggestive graphical representations. Therefore, it has been tremendously
successful in the study of low-dimensional systems: continuous-time systems with
one or two variables; discrete-time systems with one or perhaps two variables.
For higher-dimensional systems, however, the approach has encountered rather
formidable obstacles, and rigorous results and classifications are few. Thus, it is
sometimes convenient to change perspective and adopt a different approach, based
on the concept of measure and aimed at the investigation of the statistical proper-
ties of orbits. This requires the use and understanding of some basic notions and
results to which we devote Part II. We see that the ergodic theory of dynamical
systems often parallels its geometric counterpart and many concepts discussed in
Part I (e.g., invariant, indecomposable, attracting sets; attractors; Lyapunov char-
acteristic exponents) are reconsidered in a different light, greatly enhancing our
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understanding of them. We see that the ergodic approach is most powerful and
effective for dealing with basic issues, such as chaotic behavior and predictability,
and for investigating the relationship between deterministic and stochastic systems.

2. SOME ELEMENTARY MEASURE THEORY

After these preliminary considerations, we now need to define a certain number of
concepts and methods that we use in the remainder of this paper. Ergodic theory
discusses dynamical systems in terms of two fundamental mathematical objects:
a measure space(X,F, µ) and ameasure-preservingmapT : X → X (or, for
short,X←↩). In this context,T is often called “transformation.”

X is some arbitrary set;F is a collection of subsets ofX, which is closed under
the operations of complementation, countable union, and intersection; it is called
aσ -algebra. IfX is a metric space, i.e., a space, endowed with a distance function
such asRn, the most natural choice forF is the so-calledBorel σ -algebra, B.
By definition, this is the smallestσ -algebra containing open subsets ofX, where
“smallest” means that any otherσ -algebra that contains open subsets ofX also
contains any set contained inB. In what follows, unless stated otherwise, it is
always assumed thatF =B. The quantityµ is a measure. In general, a measure
µ : F → R+ is a set function, i.e., a function that assigns nonnegative values to
sets. The integral notation

µ(A) =
∫

A
dµ(x) A ∈ B(X)

is often used.
We are interested here in finite measures (i.e., 0≤ µ <∞). In this case, we can

always normalizeµ so thatµ(X)= 1 and we then callµ a probability measure. The
smallest closed subset ofX that isµ-measurable and has aµ-null complement
is called thesupportof µ. Whenµ is absolutely continuous(a property that is
discussed later), the concept of probability measure may be related to that of
probability densityby the following equation:

µ(A) =
∫

A
ρ(x) dx, (1)

whereρ : X→ R+ is the probability density function, defined on the entire state
space. Notice thatµ is a function of a set, whereasρ is a function of the coordinates
of the points belonging to the set.

A transformationT is said to bemeasurableif [ A ∈ F ] ⇒ [T−1A = {x : T x ∈
A} ∈ F ]. T is said to be measure-preserving with respect toµ or, equivalently,µ
is said to beT-invariant wheneverµ(T−1(A))=µ(A) for all setsA ∈ F .1 Thus,
T-invariant measures are compatible withT in the sense that sets of a certain size
(in terms of the selected measure) are mapped byT into sets of the same size.

In the applications with which we are concerned,X denotes the state space and
usually we haveX ⊂ Rn; the setsA ∈ F denote configurations of the state space
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of special interest, such as fixed or periodic points, limit cycles, strange attractors,
or subsets of them; the transformationT is the law governing the time evolution
of the system. We often refer to the quadruplet (X,F, µ, T), or even to the triplets
(X,F, µ) or (X,F, T) as “dynamical systems.”

Our discussion is concentrated on the study of invariant measures for reasons
that can be explained as follows. Because we want to study the statistical, or
probabilistic, properties of the orbits of dynamical systems, we need to calculate
averages over time. As a matter of fact, certain basic quantities such as Lyapunov
characteristic exponents (which, as we saw earlier, measure the rate of divergence
of nearby orbits) or metric entropy (which, as we see later, measures the rate
of information generated by observations of a system) can be looked at as time
averages. For this purpose, it is necessary that orbits{x, T x, T2x, . . .} generated
by a transformationT possess statistical regularity and certain time limits exist.

More specifically, we often wish to give a meaningful answer to the following
question: How often does an orbit originating from a given point of the state space
visit a given region of it?

Formally, the problem can be represented thusly: LetT be a transformation of
the spaceX preservingµ, and letA be an element ofF . Then we define

Vn(x) ≡ #{i : 0≤ i < n, Ti x ∈ A}, (2)

vn(x) ≡ 1

n
Vn(x), x ∈ X. (3)

Therefore,Vn(x) denotes the number of visits of a setA aftern interations ofT
andvn(x) denotes theaveragenumber of visits. Now, letn become indefinitely
large. We would like to know whether the limit

v̂(x) ≡ lim
n→∞ vn(x) (4)

exists. This can be established by means of a basic result in ergodic theory, known as
Birkhoff–Khinchin (B–K) ergodic theorem. In its generality, the ergodic theorem
states that, ifT : X ←↩ preserves a probability measureµ and f is any function
integrable onX, then the limit

lim
n→∞

1

n

n−1∑
i=0

f (Ti x) = f̂ (x) (5)

exists forµ-almost2 every pointx ∈ X and thatf̂ (x) is T-invariant, i.e.,f̂ (T x)=
f̂ (x).

The reader can verify easily that, if we choosef =χA, whereχA denotes the
so-called characteristic function, or indicator, ofA, i.e.,

χA(x) =
{

1, if x ∈ A

0, if x 6∈ A
,
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then(1/n)
∑n−1

i=0 f (Ti x)= vn(x) and therefore the B–K theorem guarantees the
existence of limit (4).

2.1. Invariant, Ergodic Measures

In general, however, the limit (5) in the ergodic theorem depends onx, which
means that the time averages in question may be different for orbits originating
from different initial states. This happens, for example, when the spaceX is de-
composable under the action ofT and there exist two subspacesX1 andX2, both
invariant with respect toT , i.e., whenT maps points ofX1 only to X1 and points
of X2 only to X2.

The dynamic decomposability of the system—a geometric or topological fact—
is reflected in the existence of aT-invariant measureµ that is decomposable in
the sense that it can be represented as a weighted average of invariant measures
µ1 andµ2; i.e., we haveµ=αµ1 + (1− α)µ2, whereα ∈ (0, 1) andµ1 andµ2

may or may not in their turn be decomposable.
In general, we are not interested in the properties of a single orbit starting

from an arbitrary initial point, but in the overall properties of ensembles of orbits
originating from all possible initial conditions in a certain given region of the
space. Thus, it would be desirable that the average calculated along a particular
“history” of the system should be equal to the averages evaluated over all possible
histories. There exists a fundamental class of invariant measures that satisfy the
requirement of indecomposability in this sense and are calledergodic measures.3

Several equivalent characterizations of ergodicity exist, of which we select two.

DEFINITION 1. Given a dynamical system(X,F, µ, T), the T -invariant mea-
sureµ is called ergodic if

(i) whenever T−1(A)= A for some A∈ F , then eitherµ(A)= 1 or µ(A)= 0 or,
equivalently,

(ii ) the limiting functionf̂ defined in the Birkhoff–Khinchin ergodic theorem is a constant,

and we have

lim
n→∞

1

n

n−1∑
i=0

f (Ti x) =
∫

X

f (x) dµ(x) (6)

for µ-almost every x.4

Definition 1(ii) sometimes is described summarily by saying that “time average
equals space average.” Again usingf =χA, whereA is a measurable subset of
X, the ergodicity ofµ implies that the average number of visits to a regionA of
an orbit originating from almost every point is equal to the size that the ergodic
measure assigns to that region. In formal terms, we have

lim
n→∞

1

n

n−1∑
i=0

χA(Ti x) =
∫

X
χA(x) dµ(x) =

∫
A

dµ(x) = µ(A) (7)

for µ-almost everyx ∈ X.
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Before proceeding further in our analysis, we first need to define two special
and extremely useful types of measure.

DEFINITION 2. Let us fix a point x∈ X. We call theDirac measure(centered
on x) the probability measureµ that assigns value1 to all of the subsets A of X that
contain x, and value0 to those subsets that do not contain it. Formally, we have

µ(A) =
{

1 if x ∈ A

0 if x 6∈ A
.

The Dirac measure is also called the Dirac delta and usually is denoted byδx.

DEFINITION 3. The k-dimensionalLebesgue measureis the measure that as-
signs to each k-dimensional open box inRk its volume.5

The Lebesgue measure, which we henceforth denote bym, corresponds to the in-
tuitive notion of length (for a one-dimensional set) and volume (fork-dimensional
ones). It also provides an intuitive and physically relevant notion of probability.

We now provide some examples that will give the rather abstract questions
discussed so far a more intuitive flavor and also will establish a bridge between
the geometric and the ergodic approaches to dynamical systems.

Example 1

Consider a dynamical system inRn, characterized by a unique, fixed pointx0. In
this case, the Dirac measureδx0 is invariant and ergodic.

Now, consider the case illustrated in Figure 1 and showing the phase space of the
system of ODE’s(ẋ= x− x3; ẏ=−x). In this case, the measureµ=αδx1 + (1−
α)δx2, whereα ∈ [0, 1], x1=−1, andx2= 1, is invariant. However, as the reader
can establish easily,µ is not ergodic. It can be decomposed into the two measures
δx1 and δx2, which are also invariant. Accordingly, the time averages of orbits
starting in the basin of attraction ofx1 are different from those of orbits originating
in the basin of attraction ofx2. The system is clearly decomposable from both a
geometric and an ergodic point of view.

Example 2

Consider a discrete-time dynamical system characterized by a periodic orbit of
periodk, {x, T x, . . . , Tkx = x}. In this case, the measure that assigns the value
1/k to each point of the orbit is invariant and ergodic.

Example 3

Consider a continuous-time dynamical system characterized by a limit cycle
0={φt (x) : 0 < t ≤ τ }, whereφt is the flow map associated with the solu-
tion of the system,τ is the period of the cycle, andx is any point on0. In this
case, the following measure is invariant and ergodic:

µ = 1

τ

∫ τ

0
δφt x dt.
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FIGURE 1. A decomposable invariant set.

This means that the probability is spread over the cycle0, which is the support
of µ, according to the time parameter.

Example 4

Consider the mapTC : S1→ S1, whereS1 denotes the unit circle andTC(z)= cz,
c= ei α2π ,α ∈ [0, 1). A point onS1 is identified by the angle formed by the abscissa
and the line joining the point with the origin. The mapTC rotates points on the
circle by an angleα2π . It easy to see thatTC preserves the so-called “circular
Lebesgue measure” (or “Lebesgue measure on the circle”) defined by

m̂= m ◦ θ−1,

where, as usual,m is the Lebesgue measure andθ : [0, 1) → S1 is defined by
θ(x)= ei 2πx. In words: When we apply the circular Lebesgue measure to a subset
of the circle, first we map it to a corresponding subinterval of [0, 1) and then we
assign to that subinterval a value equal to its length.6 If α is irrational, the measure
m̂ on the unit circle is ergodic.

When dynamical systems are chaotic, invariant measures seldom can be defined
in a precise manner. This difficulty parallels that of precisely locating chaotic
invariant sets. We discuss here a well-known case in which the formula for the
density of the invariant ergodic measure can be written exactly, i.e., the logistic map
TL : [0, 1]←↩, TL(x)= r x(1− x) with r = 4, which we have already discussed at
length in Part I. For this purpose, we proceed in steps:

• Step 1. We can verify that the mapTL is related to the (symmetrical) “tent”
map

T3 : [0, 1]→ [0, 1],

T3(y) =
{

2y for 0≤ y ≤ 1/2

2− 2y for 1/2 < y ≤ 1
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by the relation
TL ◦ θ = θ ◦ T3,

whereθ denotes the homeomorphism

θ : [0, 1]←↩, x = θ(y) = sin2

(
π

2
y

)
.

Thus, the two maps are topologically equivalent.

• Step 2. Considering that the counterimage of each subintervalI of [0, 1]
underT3 consists of two subintervals whose lengths are half the length of
I , one can promptly conclude that the tent mapT3 preserves the Lebesgue
measurem. Therefore,TL must preserve a measureρ such that∫

[0,1]
dy=

∫
θ([0,1])

ρ(dx) =
∫

[0,1]
|θ ′(y)|ρ(dx). (8)

Hence, by the definition ofθ(y) [whenceθ ′(y) = π sin( π
2 y) cos( π

2 y)] and
recalling that cos2(·) = [1− sin2(·)], we obtain

ρ(dx) = dy

|θ ′(y)| =
dy

|π sin(πy/2) cos(πy/2)| =
dx

π
√

x(1− x)
· (9)

We make use of this result later when we discuss the notion of isomorphism.

3. LYAPUNOV CHARACTERISTIC EXPONENTS REVISITED

We can use the ideas discussed earlier to reformulate the definition of Lyapunov
characteristic exponents (LCE’s) and reconsider the question of the dependence
of LCE’s on initial conditions.

In the simpler one-dimensional case, consider a transformationT : X ←↩ with
X an interval ofR, and aT-invariant probability measureµ.

From our discussion of ergodicity, we know that, ifµ is ergodic, forµ-almost all
x the time average of an integrable functionf , i.e., f̄ = limn→∞ 1

n

∑n−1
i=0 f (Ti x)

is equal to the expected value off, f̂ = ∫
X f (x) dµ(x). If we now choose

f (x)= ln|T ′(x)|, the LCE of a mapT can be written as

λ = lim
n→∞

1

n

n−1∑
i=0

ln|T ′(Ti (x))| =
∫

X
ln|T ′(x)| dµ(x), (10)

which is independent of the initial condition. In this simple case, the interpretation
of (10) is clear. The quantity ln|T ′(x)|—the ln of the absolute value of the slope
of the curve generated by the mapT in the (xx+1, xn) plane—measures the (ex-
ponential) rate at which small discrepancies between trajectories (or small errors)
are amplified by the action of the map. In general, that slope varies withx and its
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different values are weighted byµ. Values of the slope obtaining over sets ofx
whoseµ-measure is zero do not affect the final results.

All of this can be illustrated easily by two simple examples.

Example 5

The asymmetric tent map
T3̂ : [0, 1]→ [0, 1]

T3̂(x) =
{

x/a for 0≤ x ≤ a

(1− x)/(1− a) for a < x ≤ 1
. (11)

It is easily seen that (11) preserves the length of subintervals of [0,1] and therefore
it preserves the Lebesgue measure. In this case we havedµ(x)= dx. Hence

λ =
∫ 1

0
ln|T ′

3̂
(x)| dx =

∫ a

0
ln

(
1

a

)
dx+

∫ 1

a
ln

(
1

1− a

)
dx

= aln

(
1

a

)
+ (1− a) ln

(
1

1− a

)
. (12)

Clearly, fora= 1/2, we are in the case of the symmetric tent map andλ= ln 2.

Example 6

The logistic mapTL(x) = 4x(1− x). Recalling the result (9), we have for almost
all pointsx,

λ =
∫

[0,1]
ln |T ′L(x)| dx

π [(x(1− x)]1/2
=
∫

[0,1]

ln|4− 8x|
π [x(1− x)]1/2

dx = ln 2. (13)

(However, notice that, if we choose the special initial pointx= 0, we haveλ(0) =
limn→∞ 1

n

∑n−1
i=0 ln|T ′L(xi )| = ln|T ′L(0)| = ln 4).

In the generaln-dimensional case, the ergodic theorem cannot be applied as
simply and directly as in the one-dimensional case. Broadly speaking, the root of
the difficulty is the fact that, whenT is multidimensional, the quantitiesDT(x)

(where D is the partial derivative operator) are not scalars but noncommuting
matrices and, consequently,

ln

∥∥∥∥ n−1∏
i=0

DT(xi )

∥∥∥∥ 6= n−1∑
i=0

ln‖DT(xi )‖.

However, the celebrated multiplicative ergodic theorem, first proved by Oseledec,7

provides an extension of the ergodic theorem to products of matrices. Let us define
the LCEs as

λ(x, w) = lim
n→∞

1

n
ln‖DTn(x)w‖, (14)
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wherew is a vector in the tangent space atx. [Notice the slight, inessential differ-
ence from the definition (17) of Part I of this survey.]

The Oseledec theorem proves that the limit (14) exists forµ-almost allx, where,
as usual,µ indicates aT-invariant probability measure. Ifw is chosen at random,
the limit (14) will be equal to thelargestLCE. Asw 6= 0 changes in the tangent
space,λ(x, w) will take s ≤ n different values. The theorem also proves that, ifµ

is ergodic, theλ’s areµ-almost everywhere constant (i.e., they do not depend on
the initial conditionsx).

4. NATURAL, ABSOLUTELY CONTINUOUS, SRB MEASURES

To establish that an invariant measure is ergodic may not be enough, however, to
make it interesting. In our discussion of dynamical systems from a geometric point
of view, we first considered the properties of invariance and indecomposability of
a set under the action of a map (or a flow). We also tried to establish the conditions
under which an invariant set is, in an appropriate sense, observable. In so doing,
however, we encountered some conceptual difficulties. In particular, we remarked
that attractors, i.e., sets toward which orbits converge, are not necessarily attract-
ing (asymptotically stable) sets. We now reconsider the question of observability
afresh.

Consider again the system described by Figure 1. The stable fixed pointsx1 and
x2 are observable: If we pick the initial conditions at random and we plot the orbit
of the system on a computer screen, we have a nonnegligible chance of seeing
either of them on the screen. On the contrary, the unstable fixed pointx0 = 0 is
not observable unless we start from points on they axis—which is an unlikely
event—and there are no errors or disturbances. In this case, although all three
measuresδx1, δx2, δx0 are invariant and ergodic, only the first two are physically
relevant.

The basic reason is that the set defined by “µ-almost initial conditions” in (7)
may be too small vis-`a-vis the state space and therefore negligible in a physical
sense. To avoid this situation, we would like to find a measure that is determined
by the time averages (7) for randomly chosen initial conditionsx0. A natural
way of making the concept of “randomly chosen” more precise is to require that
x0 ∈ B , whereB is a set of Lebesgue measuresm(B) > 0. Measures satisfying
this requirement are essentially unique and sometimes are callednatural invariant
measuresand the corresponding density is callednatural invariant density; the
phrasephysical measurealso is used.

Whereas the properties characterizing a natural measure are verified easily in the
simpler cases for which the dynamics are not too complicated, in the general case
including complex or chaotic systems the determination of the natural invariant
measure is a hard and not entirely solved problem. Notice this fact, however:
An invariant ergodic measureµ that is absolutely continuous with respect to the
Lebesgue measure will automatically satisfy the requirement for a natural measure.
To see this, let us consider the following definition.
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DEFINITION 4. Given a measurable space(X,F) and two probability mea-
suresµ1 andµ2,we say thatµ1 isabsolutely continuouswith respect toµ2 (denoted
sometimes asµ1¿ µ2) if, for any set B∈ F, [µ2(B)= 0]⇒ [µ1(B)= 0].

Absolute continuity with respect to the Lebesgue measurem (often simply called
“absolute continuity”) of a measureµ excludes therefore the possibility that sets
that are negligible with respect to the Lebesgue measure (and thus negligible in a
physical sense) are assigned a positive value byµ because, from Definition 4, it
follows that ifµ¿ m, then [µ(B) > 0]⇒ [m(B) > 0].

Unfortunately, dissipative systems, which form a class of systems often studied
in the applications that interest us here, cannot have invariant absolutely continuous
measures. By definition, such systems contract volumes of initial conditions, and
thus their attractors must have a (k-dimensional) Lebesgue measure equal to zero.

Although no general existence theorems for natural invariant measures exist,
it seems that in most cases the experimental, or computer-generated, trajectories
of systems automatically produce well-defined time averages. Operationally, an
invariant physical measure should describe the distribution in space of points
generated by the time evolution of the system. Formally, such measure can be
defined as the time average of Dirac deltas centered at the points visited by the
system, as follows:

µ = lim
n→∞

1

n

n−1∑
i=0

δTi x (15)

(discrete time), whereT is the map governing the motion of the system, or

µ = lim
τ→∞

1

τ

∫ τ

0
δϕt x dt (16)

(continuous time), whereϕt denotes the relevant flow map.
Because experimental, or computer-generated, dynamics of systems often seem

to provide a natural selection among the many (even uncountably many) invariant
measures, the question arises whether it is possible to define rigorously a class
of invariant measures (and thereby a class of dynamical systems) possessing the
desired properties of physical measures. An answer to this question is provided
by the so-called Sinai–Ruelle–Bowen (SRB) measures, broadly defined as mea-
sures that are absolutely continuousalong the unstable directions.8 For systems
possessing an SRB measureρ, there exists a subsetSof the state space of positive
Lebesgue measure such that, for all orbits originating inS, the SRB measure is
given by the time averages (15) or (16).

Although dissipative systems cannot have absolutely continuous invariant mea-
sures, they can have SRB measures. These are smooth (have densities) in the
stretching directions, but are rough (have no densities) in the contracting direc-
tions.

Another way of providing a selection of the natural measure is based on the obser-
vation that, owing to the presence of noise—determined by physical disturbances

https://doi.org/10.1017/S1365100599010044 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100599010044


94 ALFREDO MEDIO

or by computer roundoff errors—the time evolution of a system can be looked
at as a stochastic process. Under commonly verified assumptions, the latter has a
unique stationary measureρε, which is a function of the level of noiseε. If this
measure tends to a definite limit as the level of noise tends to zero, this limit—
sometimes called aKolmogorov measure—can be taken as a description of the
natural measure. For some, but not all, systems the Kolmogorov and the SRB
measures actually coincide.

5. ATTRACTORS AS INVARIANT MEASURES

The ideas and results discussed in the preceding sections suggest a characterization
of attractors that integrates their geometric and ergodic features. The definition be-
low follows Milnor’s (1985, p. 179) and Palis and Takens’ (1993, p. 138) discussion
on the subject and somewhat modifies that provided in Part I of this survey.

DEFINITION 5. Suppose a dynamical system is described by a transformation
T : X ←↩. We say that a compact set A⊂ X is anattractorif (i ) the basin of
attraction B(A)—i.e., the set of points x∈ X that are asymptotic to some point
y ∈ A in the sense that the distance d(Tnx, Tny)→ 0, as n→∞—has positive
Lebesgue measure; and (i i ) T is transitive on A.(Transitivity of T on A means
that T has an orbit that is dense in A and therefore the dynamics on the attractor
are indecomposable.)

Suppose now that there exists an ergodic SRB measureρ preserved byT with
support on the attractorA. This is known to be the case for certain classes of dy-
namical systems with ahyperbolic structure. Roughly speaking, this requires that
the evolution of the system can be decomposed neatly into expanding and con-
tracting directions. In this case, for initial conditionsx ∈ B(A) and all integrable
functions f , we have

lim
n→∞

1

n

n−1∑
i=0

f (Ti x) =
∫

f dρ. (17)

Thus, we have a nice correspondence between the geometric and the ergodic
properties of attractors, represented respectively by the setA and the measureρ
with support inA. Although the system’s attractor may have Lebesgue measure
zero and therefore, strictly speaking, may not be observable, we can study its
statistical properties by looking at the time evolution of an observable ensemble
of orbits originating in a basin of attraction of a nonnegligeable size (positive
Lebesgue measure). These orbits behave in a statistically regular manner and this
regularity is governed by the invariant measureρ. Some authors [cf. MacKay
(1992, p. 5)] would take the ergodic approach one step further and suggest the
following definition:
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DEFINITION 6. An attractor is an invariant, ergodic measureρ such that the
set of generic points x—i.e., the points for which(17)holds—has positive Lebesgue
measure.

6. PREDICTABILITY, ENTROPY

The rather formidable apparatus described above will allow us to discuss the ques-
tion of predictability of chaotic systems in a rigorous manner. In so doing, how-
ever, we first must remove a possible source of confusion. The ergodic approach
analyzes dynamical systems by means of probabilistic methods. One might im-
mediately point out that the outcome of deterministic dynamical systems, such as
those represented by differential or difference equations and discussed in Part I,
are not random events but, under usually assumed conditions, they are uniquely
determined by initial values. Consequently, one might conclude that measure and
probability theories are not the appropriate tools of analysis. Prima facie, this seems
to be a convincing argument. If we know the equations of motion of a deterministic
systemand we can monitor its state with infinite precision, then there is nothing
left to discuss: The future of the system can be forecast exactly.

Infinite precision of observation is a purely mathematical expression, however,
and it has no physical counterpart. When dynamical systems theory is applied to
real problems, a distinction therefore must be made betweenstatesof a system,
i.e., points in a state space, andobservable states, i.e., subsets (or cells) of the
state space, whose (nonzero) size reflects our limited power of observation. For
example, we cannot verify by observation the statement that the length of an object
is π cm (a number with an infinitely long string of decimals, thus containing an
infinite amount of information). Under normal circumstances, however, we can
easily verify the statement that the length of the object is, for example, between
3 and 4 cm. Alternatively, we can think of the situation occurring when we plot
the orbits of a system on the screen of our computer: What we see are not actual
points but pixels of small but nonzero size; the greater the resolution of the graphics
environment, the smaller are the pixels.

On the other hand, in real systems, perfect foresight only makes sense when
it is interpreted as an asymptotic state of affairs that is approached as observers
(e.g., economic agents) accumulate information and learn about the position of
the system. Much of what follows concerns the conditions under which prediction
is possible, given precise knowledge of the equations of the system (i.e., given a
deterministic system), but an imprecise, albeit arbitrarily accurate, observation of
its state.

As becomes apparent in the discussion that follows, the distinction between
state and observable state is unimportant for systems whose orbit structure is
simple (e.g., systems characterized by a stable fixed point or a stable limit cycle).
That is, for these systems, the assumption of infinite precision of observation is
a convenient simplification and all of the interesting results of the investigation
still hold qualitatively if that unrealistic assumption is removed. The distinction,
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however, is essential for complex, or chaotic, systems. Indeed, one might even
say that many of the characterizing features of chaotic dynamics—above all, their
lack of predictability—can be understood only by taking into account the basic
physical fact that observation can be made arbitrarily, but not infinitely, precise.
Finally, we see that the study of the dynamics of observable states provides the
essential link between deterministic and stochastic systems.

To be more precise, we formalize the notion of partition. Afinite partition
P of X is a collection{P1, . . . , PN} of disjoint sets whose union is equal to
X. A partition also can be viewed as a function—if you wish, an “observation
function”—P : X → {P1, . . . , PN} such that, for each point of the state space
x ∈ X,P(x) is the element of the partition, the cell, or atom, ofX, in which
x is contained. Consider now the action of a transformationT of X. The com-
pound functionT−1 ◦P gives us the preimage underT of each point contained in
the cellP(x) and, in so doing, defines another partition ofX.9 Next, consider the
operationP1

∨
P2: It consists of all possible intersections of the elements of the

partitionsP1 andP2 and is called a “join.” Then, the joinT−1 ◦ P∨P forms a
partition of the spaceX × X ≡ X2 of all sequencesof two states inX occupied
by the system under the action ofT . Once again, the partition can be viewed as
a function that assigns to each point inX2, i.e., to each two-state sequence, a
corresponding sequence of two cellsPi , Pj (i, j = 1, . . . , N). As we repeat the
backward iteration ofT and the join operationn times, we obtain the partition

n−1∨
i=0

T−i (P) ≡ P
∨

T−1(P)
∨
· · ·
∨

T−n+1(P), (18)

which is a function that, for each sequence ofn states of the system, assigns a
corresponding sequence ofn cells. In what follows, we study the probabilistic
properties of dynamics of systems observed in a partitioned state space.

Each observation can be looked at as an experiment whose outcome is uncertain.
The uncertainty of the experiment or, equivalently, the amount of information
contained in one observation, can be measured by means of a well-defined quantity
calledentropy. Broadly speaking, if we consider a random variableξ taking a finite
numberN of values with probabilityp1, . . . , pN , we define the entropy ofξ by
the quantity10

H(ξ) = −
N∑

i=1

pi ln(pi ), (19)

where we take the convention that 0 ln 0= 0. Notice thatH is maximum(ln N)

when pi = 1/N for all i , and minimum (zero) when one of thep’s is equal to 1,
the others being 0. Thus, if we consider a game of dice, the maximum entropy
of a throw (the maximum uncertainty about its outcome) obtains when each of
the six facets of a die has the same probability(1/6) of turning up. An unfair
player can reduce the uncertainty (to himself) of the outcome by “loading” the
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dice and thereby increasing the probability of one or more of the six faces (and,
correspondingly, decreasing the probability of the others).

When dealing with the predictability of a dynamical system, we are not interested
in the entropy of a partition of the state space (the information contained in a single
experiment) but with the entropy of the system (the rate at which replications of
the experiments, i.e., repeated, finite-precision observations of the system as it
evolves in time, produce information), when the number of observations becomes
very large.

To make this idea more precise, let us consider again a dynamical system
(X, T, µ), where the state space is restricted to the support of the ergodic,T-
invariant measureµ, and a finite,µ-measurable partition ofX,P = (P1, . . . , PN).
As we discussed earlier, becauseµ is ergodic,µ(Pi ) measures the probability of
finding the system in the cellPi . Thus, the entropy ofP will be equal to

H(P) = −
N∑

i=1

µ(Pi ) ln µ(Pi ) (20)

and the entropy of the super partition
∨n−1

i=0 T−i (P), namely,

H

(
n−1∨
i=0

T−iP
)

, (21)

can be calculated analogously, summing over all of the cells of
∨n−1

i=0 T−iP. If
we now divideH(

∨n−1
i=0 T−iP) by the number of observationsn, we obtain the

averageamount of information contained in—the average amount of uncertainty
about—the super experiment consisting of the repeated observation of the system
along a typical orbit. If we increase the number of observations indefinitely, we
obtain11

h(µ,P) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP
)

, (22)

which is the entropy of the system with respect to the partitionP.
The RHS of equation (22) is (the limit of) a fraction: The numerator is the

entropy of a partition obtained by iteratingT and the denominator is the num-
ber of iterations. Loosely speaking, if when the number of iterations increases,
H(
∨n−1

i=0 T−iP) remains bounded, limit (22) will be zero; if it grows linearly with
n, the limit will be a finite, positive value; if it grows more than linearly, the limit
will be infinite. To interpret this result, consider that each cell of the partition∨n−1

i=0 T−iP corresponds to a sequence of lengthn of cells ofP, i.e., to an orbit of
lengthn of the system, observed withP precision. The quantityH(

∨n−1
i=0 T−iP)

will increase or not withn according to whether, increasing the number of obser-
vations, the number of possible sequences also increases. From this point of view,
it is easy to understand why simple systems, e.g., those characterized by attractors
that are fixed points or periodic orbits, have zero entropy. Transients apart, for
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those systems the possible sequences of states are limited and their number does
not increase with the number of observations. Complex systems are precisely those
for which the number of possible sequences of states grows with the number of
observations, in such a way that limit (22) tends to a positive value. For finite-
dimensional, deterministic systems characterized by bounded attractors, entropy
is bounded above by the sum of the positive Lyapunov exponents and is therefore
finite.

The entropy of a system with respect to a given partition can be given an alter-
native, very illuminating formulation by making use of the auxiliary concept of
conditional entropyof A givenB, defined by

H(A |B) = −
∑
A,B

µ(A∩ B) lnµ(A | B), (23)

whereA, B denote elements of the partitionsA andB, respectively. If we think of
a partition as an experiment whose outcome is uncertain, then conditional entropy
can be viewed as the amount of uncertainty of the experimentAwhen the outcome
of the experimentB is known.

It can be shown that [cf. Billingsley (1965, pp. 79–82)]

lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP
)
= lim

n→∞ H

(
P|

n∨
i=1

T−iP
)

. (24)

Equation (24) provides another useful interpretation ofh(µ,P)): It is the amount
of uncertainty of—the amount of information contained in—an observation of
the system in the partitioned state space, conditional upon the (finite-precision)
knowledge of its states over the infinitely remote past. Therefore, zero entropy
means that knowledge of the past removes all uncertainty about the future; i.e.,
the system is entirely predictable. On the contrary, positive entropy means that, no
matter how long we observe the evolution of the system, additional observations
still have a positive information content; i.e., the system is not entirely predictable.

So far, we have been talking about entropy relative to a specific partition. The
entropy of a system then is defined to be

h(µ) = sup
P

h(µ,P), (25)

where the supremum is taken over all finite partitions.12

The quantityh(µ) also is known as Kolmogorov–Sinai (K–S), or metric entropy.
Unless we indicate differently, by entropy we mean K–S entropy.

Remark 1. In the mathematical literature, as well as in economic applications,
one can find a related concept, known astopological entropy. Consider a transfor-
mationT of the state spaceM onto itself, together with a partitionP of M . Let
N(P) be the number of elements ofP. The topological entropy ofP is defined as

HTOP(P) = ln N(P). (26)
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Then, the topological entropy ofT with respect toP is

hTOP(T,P) = lim
n→∞

1

n
HTOP

(
n−1∨
i=0

T−iP
)

. (27)

Finally, the topological entropy ofT is defined as

hTOP(T) = supP hTOP(T,P). (28)

Comparing (20–25) and (26–28), the reader will notice that, in the computation
of HTOP(P) and consequently ofhTOP(T), we have not taken into account the
probability measure of the elements of the relevant partition. IfM is compact,
there is a simple relation between topological and metric entropies, namely:

hTOP(T) = sup
M

h(µ),

whereM is the set of the ergodic measures invariant with respect toT . A positive
topological entropy indicates the presence of an invariant ergodic measure and a
corresponding invariant set over which the dynamics are chaotic (unpredictable).
However, whenhTOP(T) > 0 but the metric entropy with respect to the natural
measure is zero, chaos may take place over a region of the state space that is too
small to be observed. This phenomenon is nicknamed thin chaos.

Actual computation of the metric entropyh(µ) directly from its definition looks
a rather desperate project. Fortunately, a result due to Kolmogorov and Sinai guar-
antees that, under conditions often verified in specific problems, the entropy of
a systemh(µ) can be obtained from the computation of its entropy relative to a
given partition,h(µ,P). Formally, we have the following13

THEOREM 1 (Kolmogorov–Sinai).Let (X,F, µ) be a measure space, T a
transformation preservingµ, andP a partition of (X,F, µ) with finite entropy.
If
∨∞

i=0 T−1P = F mod0, then h(µ,P) = h(µ).

In this case,P is called agenerating partitionor a generator. Intuitively, a
partitionP is a generator if, given a tranformationT acting on a state spaceX, to
each pointx ∈ X there corresponds a unique infinite sequence of cells ofP, and
vice versa. In what follows, we repeatedly apply this powerful result.

A simple example will help to clarify these rather difficult ideas. Consider
the already-mentioned symmetrical tent mapT3 on the interval [0, 1] and the
partition consisting of the two subintervals located, respectively, to the left and
to the right of the 1/2 point (remember that measure zero sets “do not count”).
Thus, we have a partitionP ={P1, P2} of [0, 1], whereP1={0 < x < 1/2}
and P2={1/2 < x < 1}. Then the atoms ofT−1P1 are the two subintervals
{0 < x < 1/4}and{3/4 < x < 1}and the atoms ofT−1P2 are the two subintervals
{1/4 < x < 1/2} and{1/2 < x < 3/4}. Hence, taking all possible intersections
of subintervals, the join{T−1P

∨
P} consists of the four subintervals{0 < x <

1/4}, {1/4 < x < 1/2}, {1/2 < x < 3/4}, {3/4 < x < 1}. Repeating the same
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operation, at the(n−1)th step the join{∨n−1
i=0 T−iP} is formed by 2n subintervals

of equal length 2−n, defined by{x : ( j − 1)/2n < x < j/2n}, 1 ≤ j ≤ 2n.
Moreover, it is easy to see that, for the tent map, if we use the Borelσ -algebra,
the selected partition is a generator. Hence, we can apply the Kolmogorov–Sinai
theorem and have

h(µ) = h(µ,P).

Finally, taking into account the fact that the tent map preserves the Lebesgue
measurem, we conclude that the K–S entropy of the map is equal to

h(m) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP
)
= lim

n→∞
1

n
[−2n(2−n ln(2−n))] = ln 2.

Before concluding this section, we would like to recall that entropy is closely
linked with another type of statistical invariants, the LCE’s, which, roughly speak-
ing, measure the rates of divergence of nearby orbits, or if you prefer, the sensitivity
to initial conditions. It can be shown that, in general, we have the following in-
equality:

h(µ) ≤
∑

i :λi >0

λi , (29)

whereλ denotes an LCE. For systems characterized by an SRB measure, strict
equality holds.14 As we have seen before, the equality indeed holds for the tent
map.

The close relation between entropy and LCE is not surprising. We have already
observed that entropy crucially depends on the rate at which the number of new
possible sequences of coarsed-grained states of the system grows as the number
of observations increases. But this rate is strictly related to the rate of divergence
of nearby orbits, or, if you prefer, to the rate of amplification of errors, which, in
turn, is measured by the LCE’s. Thus, the presence of one positive LCE on the
attractor signals positive entropy and unpredictability of the system.

7. ISOMORPHISM

In the discussion of dynamical systems from a geometric point of view, we have
encountered the notion of topological equivalence. Analogously, there exists a
fundamental type of equivalence relation between measure-preserving transfor-
mations, calledisomorphism, which plays a very important role in ergodic theory
and which we shall use in the sequel.

DEFINITION 7. Let T andT̂ be two transformations acting, respectively, on
the state spaces X and̂X and preserving, respectively, the measuresµ andµ̂. We
say that T andT̂ are isomorphicif an invertible mapθ : X → X̂ exists such that
(excluding perhaps certain sets of measure zero):

(i) The following diagram commutes
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X −→

−→

−→→

X

−→

X̂ T̂

θ

T

X̂

θ

i.e., we haveT̂ ◦ θ = θ ◦ T .
(ii ) The mapθ preserves the probability structure; i.e., if I and Î are, respectively,

measurable subsets of X andX̂, thenµ(I )= µ̂(θ(I )) andµ̂( Î ) = µ(θ−1( Î )).
Maps having the properties(i ) and(i i ) are calledisomorphisms.

Certain properties such as ergodicity and entropy are invariant under isomor-
phism. Consequently, isomorphic transformations have the same entropy. The
reverse is true only for a certain class of transformations called Bernoulli of which
more later.

8. APERIODIC AND CHAOTIC DYNAMICS IN ECONOMIC MODELS

As we mentioned before, it can be ascertained easily that “simple” systems, e.g.,
systems whose attractors are fixed points or periodic orbits, all have zero entropy
and their dynamics therefore can be predicted. We then apply the ideas discussed
in the preceding sections to complex systems, i.e., systems whose attractors are
aperiodic. These systems have one feature in common with stochastic processes:
Their asymptotic behavior can be discussed by considering densities of states,
rather than orbits. However, we shall see that complex systems in this sense are not
necessarily chaotic in the sense relevant to our economic discussion; i.e., they are
not necessarily unpredictable. To do so, we distinguish between two fundamental
classes of behavior: quasiperiodic (aperiodic but not chaotic) and chaotic.

8.1. Quasiperiodic Dynamics

Aperiodic nonchaotic (quasiperiodic) behavior arises in a number of models in
economics, of which we mention here three main classes, all of them formulated
in a discrete-time setting. First, we have the models describing optimal growth.15

The second class comprises models of overlapping generations with production.16

Finally, we have models of Keynesian (or perhaps Hicksian) derivation, describing
the dynamics of a macroeconomic system characterized by nonlinear multiplier–
accelerator mechanisms.17

In the works mentioned above, it has been shown that, under certain not un-
reasonable conditions on the parameters, these models can undergo aNeimark
bifurcation. The latter describes a situation in which a stable equilibrium loses its
stability when, because of the change of a controlling parameter, the modulus of
a pair of complex conjugate eigenvalues of the Jacobiam matrix at equilibrium
crosses the unit circle. If we except certain special resonance cases, a Neimark
bifurcation generates an invariant circle the dynamics on which can be periodic or
quasiperiodic according to whether a certain quantity called “rotation number” is
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rational or irrational. In the quasiperiodic (as well as in the periodic) case, entropy
is zero and the dynamics are predictable.

To discuss these statements in a more precise manner, let us now state the basic
result for the present question, which is sometimes referred to as the (discrete-
time) Hopf bifurcation theorem, but was in fact first stated by Neimark (1959)
(whence the more accurate name of Neimark bifurcation) and subsequently rigor-
ously proved by Sacker (1964). The following discussion is based on Iooss (1979).

THEOREM 2 (Neimark, Sacker).Let Tµ : R2 → R2 be a map of class
Ck, k ≥ 5, depending on a parameterµ so that x ∈ R2= 0 is a fixed point
of Tµ and let the following conditions be satisfied:

(i) For µ near zero, the Jacobian matrix DxTµ has two nonreal, conjugated eigenvalues
λ(µ) andλ̂(µ), with |λ(0)| =1;

(ii ) d|λ(0)|
dµ
6= 0;

(iii ) λi 6= 1 for i = 1, 2, 3, and4.

Then, after a trivial change of theµ coordinate and a smooth, µ-dependent
coordinate change ofR,

(i) we can write the following approximation of the map Tµ in polar coordinates:

rn+1 = (1+ µ)rn − α(µ)r 3
n

φn+1 = φn + β(µ)+ γ (µ)r 2
n

}
+ higher-order terms, (30)

whereα, β, γ, are smooth functions ofµ.
(ii ) Moreover, for α > 0 (respectively, for α < 0) and in a sufficiently small right(left)

neighborhood ofµ= 0, there exists an invariant attractive (repelling) circle0µ for
the map Tµ, bifurcating from the fixed point0.

Assuming now thatα > 0 and the invariant circle is (locally) attractive, the
behavior ofTµ restricted to the set0 can be approximated arbitrarily well by
iterations of a homeomorphism of the circlefµ : S1→ S1. The dynamics of the
latter crucially depend on an invariant offµ called rotation number, defined as
(the indexµ is omitted henceforth)

ρ( f ) = lim
n→∞

f̂ n(x)− x

n
,

where the mapf̂ is the so-calledlift of f ; i.e., a map f̂ : R → R such that,
putting P : R→ S1, P(x) = ei 2πx, we haveP ◦ f̂ = f ◦ P. The lift f is unique
up to the addition of an integer. The limitρ( f ) exists and is independent ofx and
the choice off̂ .

There are two basic possibilities:
(1) The limitρ( f )= p/q, p andq being two integers; i.e.,ρ is rational. In this case, the

map f has periodic orbits of periodq.
(2) The limit ρ( f ) is irrational, which is the case that interests us here. In this case, a

known result18 states that iff ∈ C2, then it is topologically conjugate (and therefore
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it is dynamically equivalent) to a fixed rotation of the circle; that is, there exists a
homeomorphismθ : S1→ S1 such thatθ ◦ f = Tρ ◦ θ , where

Tρ(s) = s+ ρ, mod 2π (31)

andρ is the rotation number. The mapTρ is, of course, the same asTC, which we
discussed earlier in Example 4,19 where we showed that it preserves the circular
Lebesgue measure. Equation (31), in the irrational case, is the prototype of models
generating nonperiodic, nonchaotic dynamics. It can be promptly established that
(31) is isomorphic—via the mapθ : [0, 1) → S1, θ(x)= ei 2πx—to the transfor-
mation of the interval

TI : [0, 1)→ [0, 1),

TI (x) = x + α, mod 1, α irrational,
(32)

which, of course, preserves the Lebesgue measurem.
From a measure-theoretic point of view, the two maps (31) and (32) are in fact the

same. In particular, they have the same ergodicity properties and the same entropy.
Given their extreme simplicity, those transformations can be studied thoroughly
and the discussion has a great pedagogic value for understanding the issues of
complexity and predictability.

For this purpose, we can use two standard results of ergodic theory and state the
following:

PROPOSITION 1.In the irrational case, the transformation(31) is ergodic
(with respect to the invariant measurem̂).

For a proof see, for example, Doob (1994, pp. 120–121).

PROPOSITION 2.Transformation(31) has zero entropy.

For a proof, see Ma˜né (1987, p. 222).
Then, because of isomorphism, Proposition 3 follows.

PROPOSITION 3.Transformation(32) is ergodic(with respect to the Lebes-
gue measure) and has zero entropy.

The results, very interesting in themselves, also help to clarify an element of
confusion in the economic literature. Several recent articles in economic journals
make use of the concept ofergodic chaos(EC) to identify complex, or chaotic,
dynamics [see, e.g., Grandmont (1988), Boldrin (1989), and Bala and Majumdar
(1992)]. In these works, EC is characterized by the existence of a unique, invariant
probability measure that is absolutely continuous and by the property that we have
defined above as ergodicity [see, e.g., the definition used by Bala and Majumdar
(1992, pp. 439–440)]. The reader can verify easily that maps (31) and (32)—in
the irrational case—comply with all of the requirements for EC. Starting from
an arbitrarily given initial point on the relevant set, their orbits move over the
set, filling it up, without ever returning to the same point in finite time. However,
there is nothing particularly complex about their dynamics which, as we have
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just demonstrated, are in fact perfectly predictable. If economic time series were
chaotic in this sense, there would be little trouble in forecasting their future values!

8.2. Chaotic Dynamics

We now contrast the preceding example with another, equally simple, transforma-
tion of the interval, namely, the celebrated and already discussed logistic map:

TL : [0, 1]→ [0, 1]

TL(x) = r x(1− x) 1≤ r ≤ 4.
(33)

Map (33) and other analogous one-dimensional, “one-hump” maps often have
been used as mathematical idealizations of problems arising in economics in-
cluding, among others, macroeconomic models [e.g, Stutzer (1980); Day (1982)];
models of rational consumption [e.g., Benhabib and Day (1981)]; models of over-
lapping generations [e.g., Benhabib and Day (1982), Grandmont (1985)]; models
of optimal growth [e.g., Deneckere and Pelikan (1986)]. Recent overviews of the
matter with further instances of one-hump functions derived from economic prob-
lems can be found in Baumol and Benhabib (1989), Lorenz (1989), Boldrin and
Woodford (1990), and Scheinkman (1990). For a continuous-time generalization
of one-dimensional maps, see Invernizzi and Medio (1991).

It is known that for system (33) there exists a nonnegligible (positive Lebesgue
measure) set of values of the parameterr for which the dynamics of (33) are chaotic.
This, in particular, is true forr = 4. The behavior of the logistic map in this case
can be better studied by considering an even simpler map, the tent map, which
we have already discussed above. This is one of the very few transformations for
which exact results are available and, in the preceding sections, we could evaluate
exactly its K–S entropy and the (equal) LCE. On the other hand, it can be shown
that the logistic (withr = 4) and tent maps are isomorphic, and therefore they have
the same entropy (and the same Lyapunov exponent).

Recalling Definition 7 and the results established in Section 2, we can state the
following:

PROPOSITION 4.The logistic map, with parameter r= 4, TL , and the tent
map T3 are isomorphic.

Because isomorphism preserves entropy, we can conclude that the logistic map
has entropy equal to ln 2> 0 and its dynamics are therefore unpredictable. Notice
that, in this case, the metric entropy and the unique LCE are equal.

For economics, the implications of the results just obtained are puzzling. For
example, consider the case in which models of optimal growth give rise to dy-
namic equations of the logistic type with chaotic parameter [cf. Deneckere and
Pelikan (1986)]. The sequences thus generated are optimal in the sense that they
solve a problem of intertemporal maximization of rational agents, in an economy
satisfying the requirements of competitive equilibrium at each point of time. In the
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absence of exogenous, random disturbances, along optimal trajectories, agents’
expectations are supposed to be always fulfilled, i.e., we assume agents’ perfect
foresight. Although the latter assumption may be acceptable when the dynamics
of the system are simple (e.g., convergence to a steady state or to a periodic orbit),
it makes little sense if the dynamics are chaotic, in the sense discussed here. In
our case, the information set on which agents base their predictions consists of
the observations of past values of the relevant variables. But we have just demon-
strated that—if the entropy of the system is positive—knowledge of the infinitely
remote past with arbitrarily (but not infinitely) great precision of measurement is
not sufficient to forecast future values correctly.

9. BERNOULLI DYNAMICS: DETERMINISTIC VERSUS STOCHASTIC
SYSTEMS

But this is not all. In fact, not all unpredictable (positive entropy) systems are
equally unpredictable. Whereas zero entropy implies that the dynamics of a system
are predictable with regard to any possible finite partition, positive entropy simply
means that the system is unpredictable with regards toat least onepartition. As
we see in a moment, however, there exist systems that are totally unpredictable in
the sense that they are unpredictable foranypossible partition. Among the latter,
there exist a special class calledBernoulli, which is the most chaotic, or the least
predictable, of all. As we see in a moment, Bernoulli systems are fundamental in
at least two ways: first, they are the core of chaotic (positive entropy) systems;
and, second, the output of deterministic Bernoulli systems cannot be distinguished
from that of certain stochastic processes. In what follows, we try to make these
statements more precise.

The first step in our reasoning is to provide a unified characterization ofab-
stract dynamical systems, which will permit us to discuss the comparison between
random processes and deterministic chaotic systems rigorously and effectively.

Consider a stochastic processM, defined on some probability space (Ä,F, µ)
and taking values in a partitioned metric spaceM . The distribution of the process
is defined by the measure onX ≡ MZ (the space of all possible sample paths
{xn}∞−∞), given by the image ofµ under the mappingω 7→ {x(ω)}∞−∞. If M is
stationary, the shift mapσ on X, xn(ω)= xn−1(σ (ω)), preserves the probability
measureµ. We can then define a measure-preserving dynamical system (X, σ, µ),
as well as a functionP on X,P(ω)= x0(ω). The latter defines a partition ofX,
a cell of which is the subset ofX such thatx0 (i.e., the value ofx at time zero)
belongs to a given cell ofM . P is a function fromX to M and can be thought of
as the result of an (finitely precise) observation onX.

The approach sketched in the preceding paragraphs provides a unified treatment
of “concrete” deterministic systems (i.e., systems observed with finite precision)
and (stationary) stochastic processes, both of which then can be looked at as
abstract dynamical systems whose realizations can be compared meaningfully.
Consider, for example, a deterministic system̄M, whose evolution on a state space
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is observed with finite precision—i.e., the system is endowed with an observation
function (partition)P̄. If the ranges of the functions (partitions)P and P̄ are
defined on the same metric spaceM , realizations of the stochastic processesM
and trajectories of the (concrete) deterministic system̄M can be compared and
their distance onM evaluated.

The conceptual apparatus of abstract dynamical systems can be used to discuss
Bernoulli processes, i.e., finite-valued stationary processes with independent and
identically distributed terms, which play a crucial role in probability theory and
the theory of stochastic processes. In this context, Bernoulli processes are defined
as processes whose model is aBernoulli shift on an arbitrary partition. The lat-
ter can be characterized as follows: Consider again an abstract dynamical system
(X, σ, µ,P), where the notation is the same as before. The term “cylinder” (or
sometimes “thin cylinder”) is used to define a subset ofX consisting of all se-
quences having specified entries for a finite number of specified coordinates. In
mathematical terms a cylinder is denoted thus:

{ω : xl (ω) = ml n ≤ l < n+ k},
wherexl is thel th coordinate of an element ofX andml is an element of the par-
titioned state spaceM . Now, let theσ -invariant probability measure on a cylinder
have the following property:

µ{ω : xl (ω) = ml n ≤ l < n+ k} =
n+k−1∏

l=n

µ(ml ).

Considering the definition ofσ andP given above, this can be written equivalently
as

µ{ω : P(σ l ω) = ml , n ≤ l < n+ k} =
n+k−1∏

l=n

µ(ml ),

whereσ l is the l th iterate ofσ . The process defined by (X, σ, µ,P) is called a
Bernoulli shift. Correspondingly, a flowφt will be called aBernoulli flow if and
only if the corresponding time-one-mapφ1 is Bernoulli.

Analogous definitions are used for one-sided sequences. In this case, if the terms
of a sequence are ordered with subscripts increasing from left to right, the mapσ

acts by shifting the sequence one step to the left and dropping the element with
the lowest subscript.

The simplest example of an experiment whose representation is a Bernoulli
process is given by a repeated tossing of a fair coin, with 1/2 probability of heads,
and 1/2 probability of tails. In this case, the probability of anygiven n-sequence of
heads and tails is equal to (1/2)n. The process is commonly denoted byB(1/2, 1/2).

Processes that are isomorphic to a Bernoulli process are calledB-processes.
They include both deterministic (discrete- or continuous-time) dynamical systems
[e.g., the logistic map (forr = 4), the tent map, the Lorenz geometric model, the
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S̆ilnikov model] and stochastic processes (e.g., the i.i.d. processes, the continuous-
time Markov processes). In what follows, the phrase Bernoulli system is used
broadly when we refer to a deterministic system.

A detailed, rigorous treatment of the theoretical issues underlying the study
of Bernoulli processes is totally out of the question here. We only recall a few
results that are directly relevant to our present discussion, omitting the proofs. The
interested reader can find excellent discussions of the main topics and proofs of
the most important results in Ornstein (1974) and Ornstein and Weiss (1991), from
which we have drawn heavily.

We first need the following preliminary definition.

DEFINITION 8. Let T1 : X → X and T2 : Y → Y be two transformations of
measurable spaces X and Y preserving the measuresµ1 andµ2, respectively. If
there exists a mapθ : Y→ X such that(i )µ2(θ

−1(A))=µ1(A) for all measurable
subsets of X(except possibly sets of measure zero) and(i i ) θ ◦ T2= T1 ◦ θ almost
everywhere, then T1 is said to be afactorof T2.

Then, we state the following propositions.

PROPOSITION 5 (Sinai).If the entropy of a dynamical system is positive(i.e.,
if a system is not entirely predictable), then at least one partition of the state
space exists such that the system with respect to that partition is isomorphic to a
Bernoulli shift. This property can be described formally by saying that all systems
that are not entirely predictable have a Bernoulli shift as a factor.

Proposition 5, together with Definition 8, says that, if a dynamical system de-
scribed by the transformationT2 has positive entropy, then we can find a mapθ and
a corresponding systemT1 such thatT1 is Bernoulli. Of course ifθ is one-to-one
and invertible, thenT1 andT2 are isomorphic. In this case, ifT2 is Bernoulli, so is
T1 (and vice versa).

PROPOSITION 6 (Sinai, Ornstein).Bernoulli systems have only Bernoulli fac-
tors and their dynamics are equally unpredictable on any partition of their state
spaces.

Propositions 5 and 6 imply that, although not all chaotic systems are Bernoulli,
the mechanism described by Bernoulli shifts plays an essential role in the genera-
tion of chaos and unpredictability.20

PROPOSITION 7 (Ornstein).Two finite-entropy B-processes are isomorphic if
and only if they have the same entropy.

Recalling that the entropy of a flowφt is the same as that of its time-one
map φ1 and considering that, for a given mapT , the entropy of thet th iter-
ate,h(Tt )= |t |h(T), we can conclude that there exists a unique finite-entropy
Bernoulli flow, up to time rescaling and isomorphism.
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We now can show that the tent map (and consequently the logistic map with
r = 4) is not only chaotic in the sense of positive entropy, but is also Bernoulli.

To prove our assertion, we first state the following:

PROPOSITION 8.The dyadic map

TD : [0, 1)→ [0, 1)

TD(x) = 2x mod 1

is isomorphic to B(1/2, 1/2). Hence it is Bernoulli.

Proof. Making use of the binary notation, i.e., puttingx= ∑∞i=1 ai 2−i , (ai = 0
or 1), we can establish a map between the interval [0, 1) and the space62 whose
elements are one-sided, infinite sequences of the symbols{0, 1}; thus

.a1, a2, a3, . . .↔ (a1, a2, a3, . . .).

[To make the mapping single-valued, we introduce the convention that, at the
dyadic values 2−1, 2−2 . . . , 2−n, . . . , the corresponding sequences will end with
infinite sequences of ones rather than zeros. For example, we postulate that 0.5→
0.0111. . . (an infinite sequence of ones follows), rather than 0.5 → 0.1000. . .

(an infinite sequence of zeros follows).]
Next, consider that (a) The action ofTD on [0, 1) is essentially the same as

that of the one-sided Bernoulli shiftσ on 62. If we denote bya′k a shifted sym-
bol, in both cases we havea′k=ak+1, anda1 is discarded. (b) The measures of
sets of points in [0, 1) and that of corresponding sets of sequences in62 are
the same if for the former we use the Lebesgue measure and for the latter the
product measure on cylinders defined earlier in this section. For example, the
Lebesgue measure of the subinterval [0, 1/4] is 0.25 and so is the measure of
the corresponding cylinder{a : ai = 0, i = 1, 2}, i.e., we haveµ{a : ai = 0, i = 1,
2}=µ(a1= 0)µ(a2= 0)= (0.5)(0.5)= 0.25.

PROPOSITION 9.The tent map T3 is a factor of the dyadic map TD.

Proof. By puttingθ = T3 : [0, 1]←↩, we can verify that, form-almost all points
of the interval, we haveT3 ◦ θ = θ ◦ TD. Because bothTD andT3 preserve the
Lebesgue measurem, the measure structure is preserved byθ = T3, i.e., for all
subintervals of [0, 1], except perhaps sets of measure zero, we havem(T−1

3 (I ))=
m(I ). Notice, however, thatT3 is a two-to-one map and therefore Proposition 9
does not necessarily imply thatTD andT3 are isomorphic.

PROPOSITION 10.T3 is Bernoulli.

Proof. Proposition 10 follows from Propositions 6, 8, and 9.

PROPOSITION 11.TL is Bernoulli.

Proof. This follows from Propositions 4 and 10.
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PROPOSITION 12.Maps TL (with r = 4), T3, TD and the Bernoulli process
B(1/2, 1/2) all have the same entropyln 2.

Proof. In view of the propositions already proved, and the fact that isomorphism
preserves entropy, we only need to prove that the entropyh(TL)= h(T3) is equal
to h(TD). This is easily proved because exactly the same reasoning that we have
used to prove that the entropy of the tent map is equal to ln 2 can be applied to the
dyadic map, with the same result.

In conclusion, from a measure-theoretic point of view, the logistic map (with
parameterr = 4), the dyadic map, the tent map, and the processB(1/2, 1/2) are
the same. This makes the puzzling problem we mentioned at the end of Section 8
even more puzzling. Indeed, when the map governing the system belongs to the
Bernoulli class, economic agents face sequences of values of the variables that have
the same probability structure as that of a random process. To postulate perfect
foresight in this situation is clearly absurd.

9.1. Distinguishing Deterministic Chaos and Randomness: α-Congruence

Equivalence implicit in isomorphism concerns the probabilistic structure of orbits
but not their geometry, much of which can be distorted by the map that relates two
isomorphic spaces. Therefore, geometrically different systems can be isomorphic.
To overcome this difficulty, the notion ofα-congruence has been suggested. The
following definition, which is based on Ornstein and Weiss (1991, pp. 22–23, 63),
is formulated in the more general terms of flows, i.e., continuous-time systems,
and can be adapted easily to discrete-time systems.

DEFINITION 9. Consider two flowsφt and φ̄t , defined on the same metric
space M and preserving the measuresµ and µ̄, respectively. We say thatφt and
φ̄t areα-congruent if they are isomorphic via a mapθ : M → M that satisfies

µ{x : d(x, θ(x)) > α} < α,

where x∈ M and d is a fixed metric in M.

That is to say, the isomorphismθ moves points inM by less thanα, except
for a set of points inM of measure less thanα. Thus if α is so small that (1)
we do not appreciate distances inM smaller thanα and (2) we ignore events
whose probability is smaller thanα, then we considerα-congruent systems as
actually indistinguishable. Thus,α-congruence is a form of equivalence stronger
than isomorphism because it require that systems be close not only in a measure-
theoretic sense but also in a geometric one.

The following results, recently established forα-congruent systems are partic-
ularly relevant to the present discussion [proofs in Radunskaya (1992)].

PROPOSITION 13 (Radunskaya).Let φt be a flow on a manifold M that is
isomorphic to the Bernoulli flow of infinite entropy. Then, for anyα > 0, there is
a continuous-time, finite-state Markov processMt taking measure on M, which
is α-congruent toφt .
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This is a remarkable result but is not sufficient for our present purposes. In the
study of deterministic chaotic systems, we usually consider the dynamics of the
system on a compact attractor whose entropy is finite and bounded by the sum of
the positive LCE’s. Therefore, we are interested here in flows with finite entropy.
The following result is then more important:

PROPOSITION 14 (Radunskaya).Let φt be a B-flow of finite entropy on a
manifold M. Let B∞t be an infinite entropy B-flow on a probability spaceÄ. Then,
for any α > 0, there exists a continuous-time Markov processMt on a finite
number of states{si } ∈ M ×Ä suchMt is α-congruent toφ̄t =φt × B∞t .

These rather abstract results can be given a striking commonsense interpretation.
Let us consider an observer looking at orbits generated by a deterministic Bernoulli
system with finite entropy and let us suppose that observation takes place through
a device (a “viewer”) that distorts by less thanα, with probability greater than
1 − α, whereα is a positive number that we can choose as small as we wish.
Proposition 13 (infinite-entropy case) tells us that the orbits as seen through the
viewer are arbitrarily close to a continuous-time, finite-state Markov process. In
the finite-entropy case, to compare the orbits of the deterministic system with
the sample paths of the (infinite-entropy) Markov process, we need to introduce
some additional entropy by “sprinkling” the deterministic system with a bit of
noninterfering noise. We can again use the parable of orbits observed through a
slightly distorting viewer, but now the errors are random. Proposition 14 tells us
that in this case too the observed orbits are most of the time arbitrarily close to the
sample paths of the Markov process.

These sharp results should produce some skepticism on the possibility of rig-
orously testing—e.g., by estimating the value of correlation dimension or the
dominant LCE—whether a given series has been generated by a deterministic
or a stochastic mechanism. In view of Propositions 13 and 14, if those tests are
applied to a Markov process and to a deterministic Bernoulli system, which are
α-congruent, they should give the same results for sufficiently small values ofα.

Because we are concerned here only with the general consequences of the results
above, we do not discuss them in any detail, but only mention a simple example
of α-congruence between a discrete-time deterministic system and a stochastic
process, once again making use of the tent map that we know to be Bernoulli. For
this map and for any given partition of the state spaceI = [0, 1], we can define
a Markov chain onk states (the number of states depending on the partition),
such that its sample paths are indistinguishable (within the prescribed resolution,
or precision of observation) from the orbits of the deterministic tent map.21 For
example, if the degree of accuracyα is equal to 1/2—i.e., we can only tell whether
the state of the system is on the left or on the right of the middle point of the state
space [0, 1]—then a Markov chain on two statesL andR, with transition matrix[

1/2 1/2

1/2 1/2

]
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will generate sample paths indistinguishable (within the prescribed degree of ac-
curacy) from those of the mapT3.

If we now increase the precision of observation and putα= 2−k, k > 1 (i.e.,
we can locate a point in the state space within subintervals of length 2−k), we can
construct a 2k state Markov chain with transition matrix

1/2 1/2 0 0 · · · · · · 0 0
0 0 1/2 1/2 · · · · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · · · · 1/2 1/2
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 1/2 1/2 · · · · · · 0 0

1/2 1/2 0 0 · · · · · · 0 0


.

Again it will not be possible (within the precisionα) to distinguish between a
sample path of the Markov chain and a typical orbit ofT3 on thek-partitioned
state space.

Our considerations so far can be given a more or less optimistic interpretation
according to one’s point of view and temperament. The results discussed above
indicate that we cannot hope to provide a generally valid test for distinguishing
deterministic chaos and true randomness. This would certainly be impossible for
Bernoulli systems and, to the extent that the conjecture that “most observable
chaos is Bernoulli”22 is correct, it would be generally impossible. Consequently,
at least for a certain class of concrete dynamical systems, the possibility exists
of representing them either as deterministic systems (plus perhaps some random,
noninterfering disturbances) or as stochastic processes. The choice between the
two is a matter of expedience rather than theory. In principle, a deterministic
representation is superior for explanation purposes, but this is only true if the
resulting model is sufficiently simple and we can provide a physical (economic)
interpretation of the state variables and the functional relationships among them.

In the circumstances, we share the view of the meteorologists Vautard and Ghil
(1989, p. 395), who aptly observed that

The right question. . . is not whether a given time series is of purely deterministic
or purely stochastic origin, i.e., whether very few or very many d-o-f [degrees of
freedom] have interacted to produce it. It is rather, how much and what part of the
observed variability is due to a few d-o-f and what part to the infinite rest. The
former part can presumably be modeled deterministically, and analyzed therewith
rather completely; the latter has still to be relinquished to the obscure kingdom of
means and variances.

NOTES

1. For a setA ∈ F the expressionT−1(A) denotes thepreimageof A, i.e., the set of points that are
mapped toA by the mapT .

2. This, of course, means that the set of points ofX for which the limit (5) does not exist is negligible
in the sense that the invariant measureµ assigns zero value to that set.
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3. Notice that, although in the literature one commonly encounters the expression ergodic map, this
only makes sense if it is clear with respect to what invariant measure the map is indeed ergodic.

4. As we shall see, however, the set of points for which (6) doesnothold may well include “almost
every point” with respect to another measure, in particular with respect to the Lebesgue measure.

5. This definition of Lebesgue measure is rather coarse but intuitively clear and sufficient for our
present purpose. The interested reader can find a more rigorous treatment of the matter, for example,
in Cohen (1980) and Edgar (1990).

6. The reader will remember thatei 2πx = (cos 2πx + i sin 2πx). So, for any value ofx ∈ [0, 1),
the functionθ(x) identifies a point on the unit circle and, for any subintervalI ⊂ [0, 1), θ(I ) identifies
an arc0 ⊂ S1. Accordingly, the inverse functionθ−1 maps arcs into intervals.

7. The interested reader will find a thorough discussion of the analytical and numerical questions
concerning the LCEs in Benettinet al. (1980).

8. A rigorous definition of SBR measures can be found in Eckmann and Ruelle (1985, pp. 639–641).
9. Once again, the reason that we iterateT backward is to deal with noninvertible maps.
10. This is the celebrated formula of Shannon, the founder of the modern theory of information.

It is not the only conceivable way of measuring uncertainty (or information). However, it complies
with certain generally accepted axioms of information theory formulated by Khinchin [see Beck and
Schlögl (1993, pp. 47–49)].

11. For a proof that this limit exists, see Billingsley (1965, pp. 81–82); Ma˜né (1987, p. 216).
12. When we want to emphasize the mapT (and the relevant invariant measure is known), we also

can denote the entropy of the system ash(T).
13. For discussion and proof of the K-S theorem, see Billinglsey (op. cit., pp. 84–85); Ma˜né (op.

cit., pp. 218–222).
14. For technical details, see Ornstein and Weiss (1991, pp. 78–85); see also Ruelle (1989, pp.

71–77).
15. For a recent analysis of a case relevant to our discussion, see Venditti (1996).
16. Cf., for example, Reichlin (1986), Hommes (1991), and Medio (1992).
17. Cf., for example, Hommes (1991).
18. The relevant theorem is due to Denjoy [cf. Iooss (1979, pp. 48–49); Anosov and Arnold (1988,

pp. 43–44) and Whitley (1983, p. 200)].
19. In (31),s measures the angle formed by the segment joining the origin and a point onS1, and

the abscissa.
20. There exists an intermediate class of transformations, calledKolmogorov(K ) transformations,

that are unpredictable for any possible partition. Although all Bernoulli transformations areK , the
reverse need not be true [cf. Ornstein and Weiss (1991, pp. 19–20)].K transformations are seldom met
in applications (at least in economics) and we do not deal with them here.

21. I owe this example to a private correspondence with Amy Radunskaya.
22. See Ornstein and Weiss (1991, p. 22).
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