Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-06T06:52:40.025Z Has data issue: false hasContentIssue false

Nonlocal electron heat flow in high-Z laser-plasmas with radiation transport

Published online by Cambridge University Press:  05 July 2007

M.J. Keskinen
Affiliation:
Charged Particle Physics Branch, Naval Research Laboratory, Washington, DC
A. Schmitt
Affiliation:
Laser Plasma Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of radiation transport on nonlocal electron heat flow in high Z laser-produced plasmas is studied. Using a Fokker-Planck model for the electron heat flow, which is coupled to a radiation transport model, it is found that radiation transport strongly modifies electron heat transport at the critical surface and in the overdense regions for an aluminum plasma. It is concluded that, without radiation transport effects, the plasma temperature, as computed from Fokker-Planck models, is overestimated in the critical region and underestimated in the overdense region, for high-Z plasmas.

Type
Research Article
Copyright
© 2007 Cambridge University Press