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Abstract

The effects of radiation transport on nonlocal electron heat flow in high Z laser-produced plasmas is studied. Using a
Fokker-Planck model for the electron heat flow, which is coupled to a radiation transport model, it is found that
radiation transport strongly modifies electron heat transport at the critical surface and in the overdense regions for an
aluminum plasma. It is concluded that, without radiation transport effects, the plasma temperature, as computed from
Fokker-Planck models, is overestimated in the critical region and underestimated in the overdense region, for high-Z

plasmas.
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1. INTRODUCTION

Energy transport in laser-produced plasmas is an important
issue in current high energy density plasma research, e.g.,
inertial confinement fusion (ICF; Sunahara et al., 2003), fem-
tosecond laser interactions with solids (Anwar et al., 2006;
Petrov, 2005; Fisher et al., 2005), and laboratory simulations
of astrophysical phenomena using lasers. Thermal and super-
thermal electrons (Sherlock et al., 2006; Nakamura et al.,
2006), radiation transport (Xu et al., 2006; Lan et al.,
2005), and shocks can all contribute to energy (Khalenkov
et al., 2006) and heat transport in laser-produced plasmas.
In particular, the physical mechanism for energy transport
in high-Z laser plasmas is an important issue since high-Z
layers have been proposed to improve implosion symmetry
(Obenschain et al., 2002) of ICF targets.

In ICF, laser energy, absorbed in the hot, low density
corona, must be effectively conducted toward colder,
higher density regions of the target. A large inward heat
flux from the critical surface, toward higher density
regions, implies that newly heated material at the surface of
the cold target will expand outward rapidly leading to large
fuel compression. Large compressions can lead to higher
fusion gains. Much experimental data have indicated
(Yaakobi & Bristow, 1977; Kruer, 1979; McClellan et al.,
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1980; Malone et al., 1975) that the heat flux is below the
flux predicted by classical electron thermal conduction.
Strong inhibition of thermal transport below classical
thermal conduction seems to exist in both long and short
pulse laser deposition and in both high and low Z targets.
In addition, the measured heat transport seems to be
reduced, both inward toward higher density regions and lat-
erally toward the exterior.

Several models have been advanced to explain the reduced
heat flux in ICF experiments, e.g., ion acoustic turbulence
(Bickerton, 1973; Manheimer, 1977; Gray & Kilkenny, 1980),
direct current magnetic field effects (Straus et al., 1984), and
kinetic theory in steep temperature gradients (Bell et al., 1981;
Matte & Virmont, 1982; Luciani et al., 1983; Albritton,
1983; Matte et al., 1984; Bell, 1985; Albritton et al., 1986;
Epperlein er al,, 1988; Rickard er al, 1989; Epperlein &
Short, 1991; Epperlein, 1994; Sunahara et al., 2003).

For studies of electron heat flow in steep temperature gra-
dients, Fokker-Planck (FP) models have been used since the
collision mean free path can be on the order of the tempera-
ture gradient scale length. Previous FP studies have included
improved models for collisional effects, as well as inverse
bremsstrahlung absorption and ion motion (Luciani et al.,
1983; Albritton, 1983; Matte er al., 1984; Bell, 1985;
Albritton et al., 1986; Epperlein, 1994; Sunahara et al.,
2003). For moderate to high Z plasmas, radiation transport
effects need to be included in FP models. For example, emis-
sion due to radiative recombination scales as Z*. However,
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the inclusion of radiation transport effects on nonlocal FP
electron heat flow has not been studied in detail.

The objective of this paper is to study, using an FP
approach, nonlocal electron heat flow in laser-produced
plasmas including secondary radiation transport effects. It
is found that, for aluminum plasmas, radiation transport
strongly modifies plasma temperatures in the critical
surface, and in the overdense regions due to enhanced radia-
tive heating and cooling. The outline of this paper is as
follows. In Section 2, we discuss the basic FP electron heat
flow model including secondary radiation transport effects.
In Section 3, we present results from the model. Finally, in
Section 4, we summarize our results.

2. MODEL

In this section, the FP model used for electron heat
transport, including secondary radiation transport effects, is
presented.

2.1. Electron heat transport

The FP equation for a fully ionized plasma can be written
(Shkarofsky et al., 1966) as follows:
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where fis the electron distribution function, E and B are the
electric and magnetic fields, I is the unit tensor, and { =
(27111264/1’112) InA with n, Z, and InA the density, ion
charge state, and Coulomb logarithm, respectively.
Here C,, represents electron-electron collisions and S rep-
resents all source terms, e.g., laser absorption and radiation
transport. For this study, we ignore magnetic field effects
and consider a moderate to high Z plasma.

It is assumed that, to lowest order, the electron distribution
function f is weakly anisotropic. As a result, we make the
standard decomposition (Shkarofsky et al., 1966; Epperlein,
1994) for f:
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with the e-i and e-e collisional effects given by (Epperlein,
1994; Shkarofsky et al., 1966):
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where v,; = (dmne’Z* /m*V)nA, v,, = (4mme* /m*v)inA,
¢ = (Z* + 4.2)/(Z* 4 0.24), and Z* = (Z*)/(Z). Here, the
angle brackets denote an average over all ion species.
Using Z* and ¢ allows the representation of e-i and e-e colli-
sional effects in C,, n = 1, 2, without using the second term
in the definition of C, in Eq. (6). This is shown to be a good
approximation for moderate to high Z plasmas (Bell, 1985).
In Eq. (3), So=Sig + S;ag- Here, Sig represents laser
inverse bremstrahllung absorption and S,4 describes
secondary radiation sources. For Sig, we use the Langdon
prescription (Langdon, 1980). For S,4, we take S.q=
(1/n,m)(1/47v*)qraa With Qg being the net radiative
heating rate.
The current and heat flux are found from Eqgs. (3)—(5):

J=— gJ VEdy, ©)

q :%Jﬁf@. (10)

The electric field E in Egs. (3)—(5) is found self-consistently
from the zero current condition, i.e., J = 0. Including only
Egs. (3)-(4), taking f, =0, using J =0, and assumimg
a Maxwellian for f, the standard Spitzer heat flow
and thermal conductivity (Spitzer & Harm, 1953) is
recovered.

2.2. Radiation transport

The model used to compute q,,q and, hence, S..q4 in Eq. (3) is
now presented. In slab geometry, with the laser incident from
the z-direction, the fundamental radiative transfer equation
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can be written (Griem, 1997):

dL, .
—=—-rl, ’ 11
dz Kby v (D

where I, is the radiation intensity, k,, is the absorption coeffi-
cient, and j, is the emission rate. In terms of the optical depth
7, where d7 = k,dz, Eq. (11) can be written:

d1,
g, -1, 12
dr (12)

where S, =j,/k, is the radiation source. Eq. (12) can be
solved formally (Griem, 1997):

L(7) = 1(0)e " + Jrsv(#)e*(” ) 13)
0

where 1(0) is the intensity at 7= 0.
The net radiative heating rate q.,q can be written (More,
1986; Key, 1985; Zel’dovich & Raizer, 1966):

Qrag = 47JdVKvIv — 47TJ dvk,S, (14)

The first term gives the radiative heating rate and the second
term the radiative cooling rate. Depending on the sign of qyag,
there will be a net radiative heating (q,,q > 0) or a net radia-
tive cooling (qrq < 0).

To compute q,,q in Eq. (14), the spatial and temporal spe-
cification of the source S, must be specified. The intensity
L(z) can then be found from Eq. (12). Laser heating of the
plasma in the vicinity of the critical surface produces radia-
tive emission in both the forward and backward directions.
This radiation consists (Duston et al., 1983, 1985) primarily
of soft X-ray and XUV photons for aluminum targets. The
soft X-rays, with energies above approximately 1.5 keV,
are emitted from plasmas with temperatures above about
250 eV, and result from bound-bound transitions from
K-shell electrons. The XUV photons, with energies below
about 1keV, are emitted from plasma with temperatures
between 10 and 150 eV, and result from bound-free pro-
cesses. From photon energies between 0.5 and 1.5 keV con-
tinuum emission dominates.

To include radiation transport in the FP model, the source S,
and absorption coefficient k, must be specified. We take S, =
S(z)f(z) with f(z) = exp(—(z — z.)*/L.), where S,(z.) is
the radiation source. The absorption coefficient k, consists
of free-free, bound-free, and bound-bound processes. For a
laser-produced aluminum plasma with laser intensity in the
range of 10"3-10" W/cmz, the dominant (Duston et al.,
1983, 1985) absorption process consists of bound-free,
free-free, and inner shell processes. The absorption coeffi-
cient can be written (More, 1986; Duston et al., 1983,
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1985) as K, = Kvﬁr+ Kybf with

87 QﬁPnaa(z)ne e\’
Kybf *ET m (1 — f(e)), (15)

where Q,, is the effective ion charge for shell n, a is the Bohr
radius, h is Planck’s constant, « is the fine structure constant,
P, is the number of electrons in shell n, v is the frequency,
and f is the electron distribution function energy € and

16 7Q%n,n;

Kvﬁr = T =T a2 > (16)
V27 hem?/2T!/2p3
with T, being the electron temperature, n, being the electron
density, n; being the ion density, and m, being the electron
mass. The absorption cross-section for inner shell photoioni-
zation is taken from Duston et al. (1983). It is noted that
Kopr =~ Q. The total absorption cross-section for aluminum
peaks in the photon energy regime of approximately 0.1—
1 keV.

3. RESULTS

We have numerically solved the model equations consisting
of Egs. (3), (4), (13), (14), (15) with f, = 0. We have applied
the model to a one-dimensional aluminum slab. The FP code
is one-dimensional in space and two-dimensional in velocity
space (v, 7 = v,/v), with a Legendre polynomial expansion
for n to an order of two. Self-consistent electric fields,
electron-ion and electron-electron collisional effects,
inverse bremsstrahlung absorption, and radiation transport
are included in the model. Ion motion and other hydrodyn-
amic transport effects are not included. The radiation
source S,(z.) is shown in Figure 1 for an aluminum plasma
(Duston et al., 1983). This source term is used as an initial
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Fig. 1. Plot of radiation intensity for aluminum plasma for 1.06 pm laser
with intensity of 10'* W /cm?,
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condition in the FP code Eqgs. (3)—(4). The scale size L. =
10 pm. The laser wavelength is 1.06 wum with intensity
10°-10"* W/cm?. Similar spectral intensities were also
computed at shorter laser wavelengths of 0.35 wm for the
same laser irradiance. The inverse bremsstrahlung Sig and
secondary radiation S,y source terms are treated as time-
independent in the solution of Egs. (3)—(4).

Figure 2 shows the temperature and density at £ = 200 ps
with and without radiation transport. Without inclusion of
radiation transport effects, it is found that the plasma temp-
erature is overestimated in the critical region, and underesti-
mated in the overdense plasma. This is due to the presence
of radiative cooling in the critical region and radiative
heating in the overdense region. Similar results were also
obtained at the higher laser intensity of 10'* W/cm? and
with different initial temperature and density profiles.

4. SUMMARY

In summary, radiation transport effects on FP nonlocal elec-
tron heat flow has been studied for aluminum laser-produced
plasmas. It is found that, without radiation effects, the plasma
temperature at the critical surface is underestimated and over-
estimated in the overdense plasma. The physical mechanism
is due to a radiation-induced cooling at the critical layer and
additional radiative heating in the overdense regions. It is
concluded that, without radiation transport effects, the
plasma temperature, as computed from FP models, is
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Fig. 2. Plot of temperature and density vs. z. Temperature plotted at ¢t =
200 ps (solid line) without radiation transport and with radiation transport
at t = 105 ps (dashed), = 200 ps (dot-dashed). Density denoted by dotted
line. Here Ty = 0.8 keV and N = 10?! cm 3.
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overestimated in the critical region and underestimated in
the overdense region, for high-Z aluminum plasmas.
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