Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-11T21:11:21.111Z Has data issue: false hasContentIssue false

SPECTRAL INVARIANCE FOR CERTAIN ALGEBRAS OF PSEUDODIFFERENTIAL OPERATORS

Published online by Cambridge University Press:  28 April 2005

Robert Lauter
Affiliation:
Universität Mainz, Fachbereich 17-Mathematik, D-55099 Mainz, Germany (lauter@mathematik.uni-mainz.de)
Bertrand Monthubert
Affiliation:
Laboratoire Emile Picard, Université Paul Sabatier (UFR MIG), 118 route de Narbonne, F-31062 Toulouse, CEDEX 4, France (bertrand.monthubert@math.ups-tlse.fr)
Victor Nistor
Affiliation:
Pennsylvania State University, Mathematics Department, University Park, PA 16802, USA (nistor@math.psu.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct algebras of pseudodifferential operators on a continuous family groupoid $\mathcal{G}$ that are closed under holomorphic functional calculus, contain the algebra of all pseudodifferential operators of order 0 on $\mathcal{G}$ as a dense subalgebra and reflect the smooth structure of the groupoid $\mathcal{G}$, when $\mathcal{G}$ is smooth. As an application, we get a better understanding on the structure of inverses of elliptic pseudodifferential operators on classes of non-compact manifolds. For the construction of these algebras closed under holomorphic functional calculus, we develop three methods: one using semi-ideals, one using commutators and one based on Schwartz spaces on the groupoid.

One of our main results is to reduce the construction of spectrally invariant algebras of order 0 pseudodifferential operators to the analogous problem for regularizing operators. We then show that, in the case of the generalized ‘cusp’-calculi$c_n$, $n\ge2$, it is possible to construct algebras of regularizing operators that are closed under holomorphic functional calculus and consist of smooth kernels. For $n=1$, this was shown not to be possible by the first author in an earlier paper.

AMS 2000 Mathematics subject classification: Primary 35S05. Secondary 35J15; 47G30; 58J40; 46L87

Type
Research Article
Copyright
2005 Cambridge University Press