Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T10:42:21.914Z Has data issue: false hasContentIssue false

SPECTRAL ANALYSIS OF HYPOELLIPTIC RANDOM WALKS

Published online by Cambridge University Press:  08 May 2014

Gilles Lebeau
Affiliation:
Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France (lmichel@unice.fr; lebeau@unice.fr)
Laurent Michel
Affiliation:
Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France (lmichel@unice.fr; lebeau@unice.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the spectral theory of a reversible Markov chain This random walk depends on a parameter $h\in ]0,h_{0}]$ which is roughly the size of each step of the walk. We prove uniform bounds with respect to $h$ on the rate of convergence to equilibrium, and the convergence when $h\rightarrow 0$ to the associated hypoelliptic diffusion.

Type
Research Article
Copyright
© Cambridge University Press 2014 

References

Bismut, J.-M., Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions, Z. Wahrsch. Verw. Geb. 56(4) (1981), 469505.CrossRefGoogle Scholar
Bally, V. and Talay, D., The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus, Math. Comput. Simul. 38(1–3) (1995), 3541.CrossRefGoogle Scholar
Bally, V. and Talay, D., The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields 104(1) (1996), 4360.Google Scholar
Chow, W.-L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98105.Google Scholar
Diaconis, P., Lebeau, G. and Michel, L., Geometric analysis for the Metropolis algorithm on Lipschitz domains, Invent. Math. 185(2) (2011), 239281.Google Scholar
Diaconis, P., Lebeau, G. and Michel, L., Gibbs/Metropolis algorithms on a convex polytope, Math. Z. 272(1–2) (2012), 109129.CrossRefGoogle Scholar
Diaconis, P. and Saloff-Coste, L., What do we know about the metropolis algorithm, J. Comput. Syst. Sci. 57(1) (1998), 2036.Google Scholar
Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat 13 (1975), 161207.Google Scholar
Goodman, R., Lifting vector fields to nilpotent Lie groups, J. Math. Pures Appl. (9) 57(1) (1978), 7785.Google Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators. III: Pseudodifferential Operators, Grundl. Math. Wiss., Band 274, (Springer-Verlag, Berlin, 1985).Google Scholar
Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53(2) (1986), 503523.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, (Springer-Verlag, New York, 1988).Google Scholar
Nagel, A., Stein, E. and Wainger, S., Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155(1–2) (1985), 103147.CrossRefGoogle Scholar
Rothschild, L. P. and Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math. 137(3–4) (1976), 247320.CrossRefGoogle Scholar