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Abstract We study the spectral theory of a reversible Markov chain This random walk depends on a
parameter i € ]0, hg] which is roughly the size of each step of the walk. We prove uniform bounds with
respect to & on the rate of convergence to equilibrium, and the convergence when & — 0 to the associated
hypoelliptic diffusion.
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1. Introduction and results

The purpose of this paper is to study the spectral theory of a reversible Markov chain
associated with a hypoelliptic random walk on a manifold M. This random walk will
depend on a parameter i €]0, hg] which is roughly the size of each step of the walk. We
are in particular interested, as in [5, 6], in getting uniform bounds with respect to kA on
the rate of convergence to equilibrium. The main tool in our approach is to compare
the random walk on M with a natural random walk on a nilpotent Lie group. This
idea was used by Rotschild and Stein [14] to prove sharp hypoelliptic estimates for some
differential operators. (See also the article by Nagel, Stein, and Wainger [13] for the study
of hypoelliptic geometries.)

We will also verify that, when h — 0, this random walk converges to a continuous
hypoelliptic diffusion. The discretization of a continuous hypoelliptic diffusion with
applications to numerical simulations has been performed in particular in [2, 3].

Let M be a smooth, connected, compact manifold of dimension m, equipped with a
smooth volume form du such that [ A = 1. We denote by u the associated probability
on M. Let X ={X1,..., X,)} be a collection of smooth vector fields on M. Denote by G
the Lie algebra generated by X. In all the paper we assume that the X are divergence
free with respect to du:

Vk=1,...,p, /Xk(f)du:O, Vf e C®(M), (1.1)
M
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and that they satisfy the Hormander condition:
VxeM, Gy=TM. (1.2)

Let vt € N be the smallest integer such that, for any x € M, G, is generated by
commutators of length at most v. Fork =1,..., pand xo € M, denote by R 2 ¢ e Xk xq
the integral curve of Xy starting from x¢ at t = 0.

Let h €]0, hg] be a small parameter. Let us consider the following simple random walk,
X0, X1, -+, Xpn, ... on M, starting at xo € M: at step n, choose j € {1, ..., p} at random
and ¢ € [—h, h] at random (uniform), and set x, 1 = e'%ix,,.

Due to the condition div(X ;) = 0, this random walk is reversible for the probability u
on M. It is easy to compute the Markov operator T}, associated with this random walk:
for any bounded and measurable function f : M — R, define

1 h
Tinf(x) = o /h f(eXrx)dr. (1.3)

Since the vector fields X are divergence free, for any f, g, we have

/ Tenf(Ngr)du = / FOOTing()du,
M M

and the Markov operator associated with our random walk is

1 p
Thf ()=~ D Tenf (). (1.4)
k=1

One has T, (1) =1, |[Thllpo—pe = 1, and T can be uniquely extended as a bounded
self-adjoint operator on L? = L*(M, du) such that 1Thll 22 = 1. In the following, we
will denote by #;(x, dy) the distribution kernel of Tj,, and by #; the kernel of 7. Then,
by construction, the probability for the walk starting at xo to be in a Borel set A after n
step is equal to

P(x, € A) = / 17 (xq, dy).
A

The goal of this paper is to study the spectral theory of the operator T, and the
convergence of #;(xp,dy) towards u as n tends to infinity. Since 7), is Markov and
self-adjoint, its spectrum is a subset of [—1, 1]. We shall denote by g(k) the spectral gap
of the operator Tj. It is defined as the best constant such that the following inequality
holds true for all u € L*:

lal?s = G, 1)2, < ——(u — Thu, u) 2. (1.5)

1
g(h)

The existence of a non-zero spectral gap means that 1 is a simple eigenvalue of Ty, and
the distance between 1 and the rest of the spectrum is equal to g(h). Our first result is
the following.

Theorem 1.1. There exist hg > 0, 51,8, > 0, A > 0, and constants C; > 0 such that, for
any h €]0, hol, the following holds true.
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(i) The spectrum of Ty is a subset of [—1+81, 11, 1 is a simple eigenvalue of Ty,
and Spec(Ty) N[1 =682, 1] is discrete. Moreover, for any 0 < A < 82h_2, the number of
eigenvalues of Ty, in [1 —h?A, 1] (with multiplicity) is bounded by C1(1 4 A)4.

(i) The spectral gap satisfies

Cah? < g(h) < C3h?, (1.6)
and the following estimate holds true for all integers n:

sup |17 (¥, dy) — pllry < Cae™"8™. (1.7)
x€Q
Here, for two probabilities on M, |[v — |ty = supy [v(A) — w(A)|, where the sup is over
all Borel sets A, is the total variation distance between v and (.

Key ingredients in the proof of Theorem 1.1 are the decomposition of a given function f
on M into its low-frequency and high-frequency parts with respect to the spectral theory
of Ty, f = frL+ fu, and the use of a Nash inequality, which is a Sobolev inequality, on
the low-frequency part. We have already used these types of argument in [5, 6]. However,
in the hypoelliptic setting, a new difficulty appears in the control of the Sobolev norms
of the low-frequency part by the Dirichlet form associated with 7}, (see Lemma 5.3). This
forces us to prove a new result on the semi-classical analysis of a system of vector fields
satisfying the hypoelliptic condition (see Proposition 4.1).

We describe now the spectrum of Tj, near 1. Let %! (X) be the Hilbert space

HUX) ={ue L* (M), Yj=1,...,p, XjueL*(M)).

Let v be the best constant such that the following Poincaré inequality holds true for all

u e MH(X):
E)
lullZe =, D < ==, (1.8)
where
su—i/iwﬁd (L9)
u) = 6p y ku|"ap. .

k=1

Let us recall that local Poincaré inequalities have been proven in the hypoelliptic case by
Jerison, in [11]. By the hypoelliptic theorem of Hérmander (see [10, Vol. 3]), one has, for
some s > 0, H'(X) c H' (M) = {u € D'(M), Pu € L>*(M), YP € W*}, where ¥* denotes
the set of classical pseudodifferential operators on M of degree s. On the other hand,
standard Taylor expansion in formula (1.3) shows that, for any fixed smooth function
g € C*®(M), one has the following convergence in the space C°(M):

1—-Ty,
lim = L(g), 1.10
Jim —5—g = L(g) (1.10)
where the operator L = —% > X,% is the positive Laplacian associated with the Dirichlet
k
form E(u). It has a compact resolvent and spectrum vp =0 < vy =v < vy <---. Let m;
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be the multiplicity of v;. One has mo = 1 since Ker(L) is spanned by the constant function
1 thanks to the Chow theorem [4]. In fact, for any x,y € M there exists a continuous
curve connecting x to y which is a finite union of pieces of trajectory of one of the fields
X;.

j

Theorem 1.2. One has
limp—oh™2g(h) = v. (1.11)

Moreover, for any R > 0 and & > 0 such that the intervals [v; — &, v; +¢] are disjoint for
v; < R, there ewists hy > 0 such that, for all h €]0, h1],

1-Ty
Spec e NJ0, R] C Uj>1[v; —e,vj+¢], (1.12)
and the number of eigenvalues of IZZT" with multiplicities, in the interval [v; —e, vj + €],

is equal to m;.

The paper is organized as follows.

In § 2, we recall some basic facts on nilpotent Lie groups, and we recall the Goodman
version (see [9]) of one of the main results of the Rotschild and Stein paper.

In § 3, the main result is Proposition 3.1, which gives a lower bound on a suitable power
ThP of Tj. This in particular allows us to get a first crude but fundamental bound on the
L norms of eigenfunctions of T, associated with eigenvalues close to 1.

Section 4 is devoted to the study of the Dirichlet form associated with our random walk.
The fundamental result of this section is Proposition 4.1. It allows to separate clearly
the spectral theory of Tj, in low and high frequencies with respect to the parameter i. In
order to prove Proposition 4.1, we construct suitable h-pseudodifferential cutoff operators
adapted to the hypoelliptic setting. In the case of left invariant vector fields on a nilpotent
Lie algebra, Lemma A.2 allows us to use only convolution operators. This construction
is extended to the general case using in particular results from the Rotschild and Stein
paper [14].

Section 5 is devoted to the proof of Theorems 1.1 and 1.2. With Propositions 3.1 and
4.1 in hand, the proof follows the general strategy of [5, 6]. This section also contains a
paragraph on the Fourier analysis associated with Tj, that will be useful in 6. In particular,
Lemma 5.5 gives a precise Sobolev estimate for the eigenfunctions of the Markov operator
Ty, associated with eigenvalues in [1 — ¢4, 1], with ¢4 > 0 small enough, and Proposition 5.6
extends, in our Markov setting, the classical fact that a function is smooth iff its Fourier
coefficients are rapidly decreasing.

Section 6 is devoted to the proof of the convergence when 4 — 0 of our Markov chain to
the hypoelliptic diffusion on the manifold M associated with the generator L = g—; ; X,%.

This is probably a well-known result for specialists, but we have not succeeded in finding
a precise reference. Since this convergence follows as a simple byproduct of our estimates,
we decided to include it in the paper.

Finally, the appendix contains two lemmas. Lemma A.1 shows how to deduce from
Proposition 4.1 a Weyl-type estimate on the eigenvalues of T} in a neighbourhood of 1.
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Lemma A.2 is an elementary cohomological lemma on the Schwartz space of the nilpotent
Lie algebra N.

Remark 1.3. Tt is likely that Theorems 1.1 and 1.2 remain true (with almost the same
proof) in the case of a compact manifold M with boundary, if one assumes that the
boundary d M is non-characteristic, i.e., if, for any point x € dM, there exists j such that
X j(x) is not tangent to dM. In that case, the associated walk near the boundary will be
defined by a Metropolis-type algorithm: at step n, choose j € {1, ..., p} at random and
t € [—h, h] at random (uniform), and set x,4+1 = e Xix, if eXix, € M for all s € [0, ¢], and
Xn+1 = X, otherwise. Then, in Theorem 1.2, the limit operator should be L = Z?:l X?
with the Neumann boundary condition.

2. The lifted operator to a nilpotent Lie algebra

We will use the notation N, = {1, ..., ¢}. For any family of vector fields Zi, ..., Z, and
any multi-index o = (g, ..., o) € N’,‘,, denote by |a| = k the length of «, and let
Z° =Hy(Z1,....Zp) =Za), [ Zay, .. N Zey_+ Zoyy] - - ] (2.1)

Let V1, ..., Yp be a system of generators of the free Lie algebra with p generators F,
and let A% be a set of multi-indexes such that (J*)ye 4 is a basis of F.

Let \V be the free up to step t nilpotent Lie algebra generated by p elements Y1, ..., Y,
and let N be the corresponding simply connected Lie group. We have the decomposition

N=N@& --aN, (2.2)
where N is generated by Yi,...,Y, and N is spanned by the commutators Y¢ =
Hy(Y1,...,Y,) with la|=j for 2<j<t. Let A={a e A%, 0| <t} and A, ={o €
A, |a| =r}. The family (Y%)yeca is a basis for A/, and, for any r € N, {Y%, o € A,}
is a basis of N,. We denote by D = #fA the dimension of . The action of Ry on A is
given by

1.1, V2, ooy 0y) = (F01, 200, oo, £ 0.
A homogeneous norm |v|| which is smooth in N\ o is given by
1/}
o]l = Z |vj|(2t!)/j
J

where |vj| is a Euclidian norm on N, and

Q=Y jdimW\))

is the quasi-homogeneous dimension of N. We will identify the Lie algebra N with
the Lie group N by the exponential map; i.e., the product law a.b on N is given by
exp(a.b) = exp(a) exp(b). In particular, one has with this identification a~! = —a for all
a € N. To avoid notational confusion, we will sometimes use the notation e = opr, so
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that a.e = e.a = a for all a e N. For Y € TN ~ N, we denote by Y the left invariant
vector field on N such that Y(onr) =Y ie.,

~ d

Y(f)x) = E(f(x~sy)|s=0~

The right invariant vector field on A such that Z(on) = Y is defined by

d
Z(f)(x) = a(f(sy.X)ls:o'

Here, sY is the usual product of the vector ¥ € A by the scalar s € R. For a € NV, let 1,
be the diffeomorphism of N defined by 7,(u) = a.u. One has

Y (@) = drg(e)(Y).

Example 2.1. The standard 3D-Heisenberg group is N = R3, with the product law
Ly 0. Y ) = e+ y+ Yt xy — yx),

and the left invariant vector fields associated respectively to the vectors (1, 0, 0), (0, 1, 0),
and (0, 0, 1) are in that case
- 9 B ~ ad

9 1. -
Y = — =y, Y = — -, d _:_Y’Y .
1= 9y Ve T, Ty awd g =l

Remark 2.2. In general, for x = (xy,...,x:) and y = (yi,...,y), xj,yj € Nj, the
product law is given by

(x19""-xt)°(y17"'?yt)z(zlv"'rzt)3 (23)

zj=xj+yj+Pilx<j, y<j),

with the notation x.; = (x1,...,xj-1), and where P; is a polynomial of degree j with
respect to the homogeneity on A; i.e.,

Pi((t.x)<j, (t.)<j) =t/ Pj(x<j, y<)),
which is compatible with the identity ¢.(x.y) = (z.x).(¢.y).
Let A : N'— G be the unique linear map such that, for any o € A, A(Y¥) = X%. Then
A is a Lie homomorphism ‘up to step t’:
AY®, YP) =[x, X (2.4)

for any multi-indexes «, 8 such that |a|+|B8]| < t.

Let xo € M. There exists a subset Ay, C A such that (X¢ (x))O[EAX0 is a basis of TyM
for any x close to xg. Therefore, there exists a neighbourhood € of the origin oxr in A
and a neighbourhood Vj of xg in M such that the map A

A:u= Z ugY® € Qo > e*®x = elaed a X o
acA
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is a submersion from Qg onto Vp, and the map Wy, : C*(Vp) — C*(p) defined by
Wy fuw) = f (e*®™xq) is injective. Since A is a submersion, there exists a system of
coordinates 0 : R" x R" — A defined near opr, where m +n = D, such that A9 : R" —
M is a system of coordinates near xg, and in these coordinates one has A(x,y) = x.
We thus may assume that in these coordinates one has Q¢ = Vy x Uy, where Uy is a
neighbourhood of 0 € R”.

Example 2.3. Take for example the two vectors fields in Rz, X1 =0y, X2 =x0dy. Then
[X1, X2] = dy. Then take for N the 3D-Heisenberg group, and the map A, with T = 29; =
[Y1, Y2], is given by

Aur Y1 +u2Yo +usT) = ur1 X1 +upXo +u3[ Xy, Xo] = uy0x + (u3 +uzx)0y.

Thus we get
1
tW(x, y) = (x+u1,y+u3+u2x+§u1u2). (2.5)

Let Iy = {lu1| < h, |ua| < h, |uz| < h?}. One has Vol(I;) = 8h*, and the set By (x,) =
(™ (x,y), u € I}, with (x, y) fixed and & small, has volume of order:
h? when x # 0, and A® when x = 0.

Let us now recall the notion of the order of a vector field used in [9, 14]. Denote by
{8:}:>0 the one-parameter group of dilating automorphisms on N

8,Y% = rlolye,
Let © be a compact neighbourhood of oxr in M. For any m € N, let
Cp =1{f € CT(Q,R), fw)=O(ull™).
We have the filtration C®(Q) = Cgo D) Cloo D..., and C7.CX CCX Let T :

m+n*

C®(Q) — C*(R). We say that T is of order less than k at 0 if T(Cy’) € C°, for

all integers m > 0. If 9, denotes differentiation in the direction Y¥, then a vector field

T =) @40y is of order < k iff ¢y € C\%ﬂ—k for all o, with the convention C;° = C§° for
o

m < 0.
The following result is the Goodman version of one of the results of the article [14] by
Rothschild and Stein.

Theorem 2.4. For a sufficiently small Qq, there exist C* vector fields Z1, ..., Z, on Qo
such that, for any a € A, and with Z* = Hy(Zy, ..., Z)) (see (2.1)), we have

(i) Z%Wyy = Wy, X°.
(il) Zz* = Yo+ Ry, where Ry is a vector field of order < |a| —1 at 0.

Observe that, in the previous coordinate system (x, y) on g, one can write, for o € A,

d d d
X =Zaa,j(x)$, zaZzaa,j(x)ngZba,,(x,y)a—. (2.6)
J j J I I
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As an obvious consequence of this theorem, we have the following, with W = W,,, and

Au) = > ugZ*.

aeA

Proposition 2.5. Let f € CO(Vy), and let wy CC Qo be a neighbourhood of onr. Then,
there exists ro > 0 such that, for all |ul| < ro, and v € wy, we have

(W) = W(f) ), (2.7)
where the function f, is defined near xo by fu(x) = f(®x).

Using this proposition, we can easily compute the action of W on the operator Tj acting
on functions with support close to xg. We get immediately

~ ~ 1<
WT, =TyW, T,= ; Z ks (2.8)
where, for u € N small,
1 h
Teng(u) = / g(e P uydr. (2.9)
2h
Using the notation T% = Ty, 5 ... Ty,,n for any multi-index o = («q, ..., ag), we get, for

any u € N close to opr such that A(u) = x,

1
T% f(x) = W(T* f)(u) = A f[_h h]k(Wf)(e"Z"l e layydr .. dy. (2.10)

3. Rough bounds on eigenfunctions

Let us recall from §2 that, for u = > uy,Y* € N, the vector field A(u) on M is defined
acA
by Au) = Y uyX%. Let € > 0 and I, be the neighbourhood of opr in N defined by
acA

Iep = {u = ug¥®, uy e]—eh""',eh“'[}.

acA
For any x € M, we define a positive measure S} (x, dy) on M by the formula

Ve ), f F)S;(x.dy) =h™©@ / f(ex) du, (3.1)
uele p

where du = I, du, is the left (and right) invariant Haar measure on N. Let us introduce
the numerical sequence (b,),en+ defined by by = 1 and by, = 2b, 4+ 2, so that, for all
n € N*, we have b, = 3.2""1 —2.

T
Proposition 3.1. For all r =1,...,¢, denote a, = A, = dimN,, and let P =) a,b,
r=1

There exist € > 0, ¢ > 0, and hg > 0 such that, for all h €]0, hg], x € M,
i (v, dy) = pi(x, dy) +cSj (x, dy), (32)

where pp(x,dy) is a non-negative Borel measure on M for all x € M.
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Remark 3.2. As in [5], one can deduce from Proposition 3.1 that the inequality (3.2)
holds true for t/lv (x,dy) as soon as N > P, eventually with different constants € > 0,
¢ >0, and hg > 0 depending on N.

Before proving this proposition, let us give two simple but fundamental corollaries. Like
in [5], these two corollaries will play a key role in the proofs of Theorems 1.1 and 1.2.
Here, we use the same notation for a bounded measurable family in x of non-negative
Borel measure k(x, dy) and the corresponding operator f +— K(f)(x) = [ f(y)k(x,dy)
acting on L.

Corollary 3.3. There exist hg > 0 and y < 1 such that, for all h €]0, hg] and all x € M,

lon(x, dy)llLe—re <y < 1. (3.3)

Proof. By definition, the non-negative measure pj is given by pp(x,dy) = tf (x,dy) —
cS; (x, dy). Therefore

V f(x)dph(LdY)‘SHfHLw/ don(r, dy) < || £l (1—cinf/ S,§<x,dy>),(3_4>
M M xXeM M

since t}f(x, dy) is a Markov kernel. From (3.1), one has fM Sy (x,dy) = h_Qmeas(Ie’h) =
(2¢)P. Combined with (3.4), this implies the result. O

Corollary 3.4. Let a E]y%, 1] be fixed. There exists C = C, > 0 such that, for any A €
la, 1] and any f € L>(M, dw), we have

Thf = if = | fllie < Ch= 5 £1 2. (3.5)

Proof. Suppose that Tj, f = Af; then ThPf = AP f. Hence, S, f = AP f — pn(f) and then

IS fllzoe = AP fllLee — v I fllzee = call fllzoe, (3.6)

with ¢, =a” —y. On the other hand, since u+— e*™x is a submersion from
a neighbourhood of opr € NV onto a neighbourhood of x € M, we get, by the
Cauchy—Schwarz inequality,

1/2
1SE £ ()] < h™Cmeas(Ie ;) "/? ( / | f(e@x)|? du) < Ch 22| fll 2. (3.7)
u

€len

Putting together (3.6) and (3.7), we obtain the announced result. O

Let us now prove Proposition 3.1. We have to show that there exist ¢, € > 0 independent
of h small such that, for any non-negative continuous function f on M, one has
ThP f(x) = ¢S}, f(x). Since M is compact and the operator 7, moves supports of functions
at distance at most i, we can assume without loss of generality that f is supported near

some point xg € M where we can apply the results of §2. Recall that A(u) = > ugZ*.
aeA

From Proposition 2.5, one has f(e*™x) = W(f) (e;\(”)w) for any w close to oar such that
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A(w) = x. Using also (2.8), we are thus reduced to proving the existence of ¢, € > 0
independent of & small such that, for any non-negative continuous function g on N
supported near oas, one has

Thpg(w) > Ch_Q/ g(ex(”)w) du. (3.8)

uelep

For each possibly non-commutative sequence (Ay) of operators, we denote I'IleAk =
Ag ... Ay (ie., A is the first operator acting). Endowing .4, with the lexicographical
order, we can write A, = {a] < -+ < g, } and, for any non-commutative sequence (By)
indexed by A, we define Iyc 4, By = Hj": 1 By; and Tge ABy = T5_  Tge 4, Ba-

Let a = (ap,...,a;) € Nll‘,, and let 7= (t1,...,1%) € R close to 0. One defines by
induction on |a| a smooth diffeomorphism ¢4 () of A near op, with ¢,(0) = Id, by
the following formulas.

If ol =1and a =j e{l,..., p}, set ¢po(t)(w) =eZiw. If o] =k > 2, set a« = (j, B),
with B € N]f;] and t = (#;, t") with ¢ € R*™! and set

$a(t) = 5" (1) 171 (1) (3.9)

Observe that ¢, (f) =1d if one of the ¢; is equal to 0. The map (f, w) = ¢ (¢)(w) is
smooth, and one has, in local coordinates on A, and for ¢ close to 0,

G () (W) = w+ (T1gigpel 1) Z%(w) +ro(t, w), (3.10)

with r(f, w) € (Iigiglo) 1) O([7]). From (3.9), one easily gets by induction on k the
following lemma.

Lemma 3.5. For 2 < k < t, there exist maps
€r s {1, ..., bk} = {1}, L {1, bk —> {0, kY, e {LL L b — {0, .., pl,

such that ex(1) = 1, ex(b/2) = —1, &(1) = 1, &by /2) = 1, 86" () =27 for j <k—1,
ttﬂk_l(k) =2kl ji(m) = ag,(m), and such that, for all t = (t1, ..., 1), one has

by
bu(t) = H eGk(m)lek(m)ij(m). (3'11)

m=1
Since g is non-negative, one has

bja|

~ 1
W ew) > — [ [ Timw.ngw). (3.12)
p acAk=1

Therefore, we are reduced to proving that there exist €, ¢ > 0 independent of 4 small and
w near ops such that the following inequality holds true.

bja|

h=* / g | [TTTe"“e®w |dr > cn=2 / g@@wydz.  (3.13)
[—h,h]1P

acAk=1 2€len
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.....

formula,
T b,
o) = [T [T [Te™ " | w. (3.14)
r=lacA, k=1
> upzf
Since (Z/S(w))ﬂeA is a basis of TyN, u = (ug)pen — ef<4 w is a local coordinate

system centred at w € N, and therefore, there exist smooth functions Upg,, (s) such that

Dy (5) = elpea Upn®ZPy, (3.15)

Moreover, it follows easily from the Campbell-Hausdorff formula, that one has Ug ,,(s) €
O(s'Pl) near s = 0. Let now k : R — R¥ be the map defined by

(fa,l)aeA,leNm = (ea(k)ta,ﬁm(k))aEA,k:l ..... bm' (316)
Then, from Lemma 3.5, we have the following identity for any t = (fo)qeu € RZ:
Dy ok(t) = Myepdy (ty)w. (3.17)

From (3.10) and the Campbell-Hausdorff formula, one gets

— o Xpen 7P
Ha€A¢a(ta)w € wa (318)
T80 = hicigipitpr + 8p (1) 1y 1<ip) +7p(1),

with gg a homogeneous polynomial of degree |8| depending only on (t,,)},|<|s and rg(t) €
O(|1]'P1). Let 8 €13, 1[, and define & = (§ut)acA kel € RY by &1 =0 and &4 = 5h
for k =2,..., |a|. Let £ : RP? — R€ be the map defined by the formula

§ = (sa)ozEA = (fa,k(s))aeA,keNmp (319)
ga,l(s) =Sq, and §a,k(s) =0 Vk=>2,

and let 0 : RP~? — R be the map defined by the formula

V= (Vo,k)aeAk=2,...b > (Oak(V)aeAk=1,... by (3.20)
0x1(0) =0, and oux(v) =ver Vk #1.
Set ke (u, v) =k (C(u)+&)+0(v), and let W, : RP x RP=P — N be defined by
Wy, (u, v) = Oy (K (u, v)). (3.21)
Then, it follows from (3.15) that there exist smooth maps @y, (u, v) such that

W (u, v) = eXacA Pau0Zy, (3.22)
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From (3.17), one has

Wy (u, 0) = Py (k ($(u) +8)) = Nycado(ta, 8h, ..., 5w,

and therefore, from (3.18), we get, since K¢ (u, v) is linear in &, u, v,

Dot (1, V) = 1 B0 + goy 0y (W) 1y <l 81) + Parow (4, 87, V) + G (1, S, ),
(3.23)

where g4 (u,s) is a homogenous polynomial of degree |«| depending only on u, for
ly| < lel, Pa.w(,s,v) is a homogenous polynomial of degree || in (u, s, v) such that
Paw,s,0) =0, and gg,p(u,s,v) € O((u,s, v)! ey near (u, s, v) = (0, 0, 0). Moreover,
from ¢4 (0, 8h,...,8h) =1d, one gets gu.w(0,s) =0 and also gq.,(0,s,0) = 0. Observe
that w is just a smooth parameter in the above constructions. Thus, we will remove the
dependence on w in what follows. Define now

.P _ mD P—-D P
N :REF=R” xR — R (3.24)
(u,v) = ((Uot)ae.Av (Ua,k)aeA,k:Z,...,bM) = ((@(X(u’ U))aE.A’ v),

and, for n, € > 0, let

Acy = {,v) = ((Ue)ae s Vo k)acAk=2....b) € RY, lua| < €h, and
|vg k| < nh for all o, k}.

Lemma 3.6. Let e]%, 1[ be fized. There exist 0 < n K € < 1/2 and ho > 0 such that the
restriction Qe ,; of Q to Ay enjoys the following:

1. there ezists Uey, open neighbourhood of 0 € RY such that Qe : Aecy — Uey is a
C® diffeomorphism,
2. there exists some constant C > 0 such that, for all h €]0, hol and all (u, v) € Acy,
hC™P/C < JQe (@, v) := | det(D,)Qe. )| < ChO7P,
3. there exists M > 1 such that, for all h €]0, hol, the set Ue, contains Iy px]—
nh, nh[P=P, where Ly = [lyeal —ehl®l/M, enl® /M.
Proof. The proof is just a scaling argument. Set uy = hily, Vg k = "ok, and @q = hlelz,
Then the map 9 becomes after scaling 9 : (i1, ¥) — (z, ), and from (3.23) one has
2 = a8 + ga (i )1y <lals 8) + Palii, 8, B) + hGo (@, 8, B, h),

po(t,8,0) =0, go(u, 8, v, h) is smooth and vanishes at order ||+ 1 at 0 as a function
of (u,6,v), and ga(O 8) =0, g4(0,6,0,h) =0. From the triangular structure above, it
is obvious that Q is a smooth diffeomorphism at 0 € R?, such that Q(0) = 0. Thus,
for n < €, h < hp small, and M > 1, we get the inclusion {|zo| < €/M, |Vy x| < n}) C
O({lig| < e, [Va,k| < n}). One has by construction |det(Dq,»Q)| = he-D det(Dg, )Q)|
The proof of Lemma 3.6 is complete.
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It is now easy to verify that (3.13) holds true. One has det D¢, ke = 1 for all (u, v) €
R” and for % <8 <1l,and 0 < n K € < 1/2, there exist some numbers —1 < o; < §; < 1,
i=1,..., P— D depending only on €, n, § and such that Kz (A, ,) is contained in the set
Ze,n ={(,s), t € [—€h,eh]P,s € ]_[f;_lD[aih, Bih]}. Using again the positivity of g and
the change of variable £, we obtain, with a constant ¢ > 0 changing from line to line,

h*‘”f 2(@(1)dt >h*”/A
[—h,h]P Ac

> chfp/‘
Ac

Thanks to Lemma 3.6, we can use the change of variable Q. , to get

g(®(t))dr > h*”f g((1))dt

a ke (Aep)

g(P ok (u, v))dudv = ch™F / g(W(u, v))dudv. (3.25)

o1 AE.’I

h_P/ g(W(u, v))dudv > chD_P_Qf g (eZaeA W Z® w) dzdv
A U,

€n €n

> ch™? / gleXacaze?y)dz = ch=2 f g @w) dz, (3.26)
1€

z€ly
with € = ¢/M, and M is given by Lemma 3.6. The proof of Proposition 3.1 is complete.

"

4. Dirichlet form

Let &, be the rescaled Dirichlet form associated with the Markov kernel Tj,:

-7
0< &) = (h—zh”|”> . Yue LX(M,dp). (4.1)
LZ

The main result of this section is the following proposition.

Proposition 4.1. Under the hypoelliptic hypothesis (1.2), there exist C, ho > 0 such that
the following holds true for all h €]0, hol: for all u € L>(M, du) such that

7>+ En) <1, (4.2)
there exist vy € HYX) and wy € L? such that

u=vp+wy, |wyl <Ch, sup || X vpll2 < C. (4.3)
I<j<sp

This proposition is easy to prove when the vector fields X; span the tangent bundle at
each point, by elementary Fourier analysis. Under the hypoelliptic hypothesis, the proof
is more involved, and it will be done in several steps. In step 1, we reduce the problem to
the construction of suitable operators acting on the Lie algebra A (see formula (4.11)).
In step 2, we construct these operators in the special case of a system of left invariant
vectors on N. Finally, in step 3, this construction is extended to the general case.

Step 1: Localization and reduction to the nilpotent Lie algebra.

Let us first verify that, for all ¢ € C*°(M), there exists C, independent of & €]0, 1]
such that

En(pu) < Co(llull? > + En(w)). (4.4)
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)4
One has 1 — T}, = % > (1 =Tgp) and
k=1

h
2((1 = Tie,p)u|u) =/ if lu(x) — u(e' ™ x) Pdt du(x).
m2h Jy

Since sup,.c l@(x) — @(eX*x)| < C|t|, this implies that, for some constant Cy and all k,
(1= Tr pulpu) < Cp (1 = T p)ulu) + h[lull7,),

and therefore (4.4) holds true. Thus, in the proof of Proposition 4.1, we may assume
that u € L2(M, du) is supported in a small neighbourhood of a given point xg € M where
Theorem 2.4 applies. More precisely, with the notation of §2, we may assume in the
coordinate system A6 centred at xop >~ 0 that u is supported in the closed ball B]" = {x €
R™, |x| < r} C Vo. Let x(y) € C5°(Up) with support in B, C Up, such that fx(y)dy =1.
Set g(x,y) = x(y)u(x). One has g(x, y) = x(y) Wy, (u)(x, y). By hypothesis, one has

ll? >+ En) < 1,

which implies that, for all k,

h
21 = Tepyulu) = f L / () — u(e' ) Pdr du(x) < ph?.
M 2h )y

Thus, for any compact K C Uy, there exists Cg such that, for all k£ and & €]0, hg], one
has

1 h
/V ), lu(x) — u(e'**x)|?dr dxdy < Cxh?. (4.5)
0% -

Here, hy is small enough so that e/X*x remains in Vj for |¢| < hg and x € B,. Let ¢ (x, y) =
x(¥). One has sup, , [¢(x, y) — ¢ (e (x,y))| < C|t] and lgll;2 < C. Thus, decreasing hy,
we get from (4.5) that there exists a constant C independent of k and h €]0, ko] such
that

1 h
/ S| 18Gn y) — g% (x, y)Pdr dxdy < Ch. (4.6)
VoxUp 2h —h
Therefore, there exists Cy independent of h €]0, hp] such that one has
h

14

_ 1

18122y + D72 /V i [ 180 — g P drdy < G (47)
j=1 0XUp -

Lemma 4.2. There exist Cy, hg > 0 such that, for all h €]0, ho], any g with support in
B" x B, such that ({.7) holds true can be written in the form

P
g=fith. Y N Zifllzwpxvy < Cto Mnllr2vpxuy) < Cih.
k=1
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Let us assume that Lemma 4.2 holds true. Then one can write g = x (y)u(x) = fr + 1.
Let ¢ € C3°(Vo x Up) be equal to 1 near B," x B;. Set

w:/wwwmuwm% m=/ﬁuymuJMy

One has vy +wp = [P, »)xMu@)dy = [ x(Vux)dy =u(x) and w2 < Ch.
Moreover, we get, from (2.6),

0
Xk(vn) = / (Zk = bialx, y)a—yl> ¥ (x, ) fn(x, y)dy.
1

Since fy, Zx(fn) € O;2(1) and fb (wfh)dy = —f a}/ (b)Y frdy € 0;2(1), we get that
(4.3) holds true. We are thus reduced to proving Lemma 4.2.

For any given k, the vector field Z; is not singular; thus, decreasing Vj, Uy if
necessary, there exist coordinates (zi,...,zp) = (z1,z’) such that Z; = 3371. Using a
Fourier transform in z;, we get that, if g satisfies (4.7), one has

sin i g ' ' 0
2/( Cvmaw|m&—f%/ — P23 (¢1. 2 dorde’ < Coh,

(4.8)

Let a > 0 be small. There exists ¢ > 0 such that (1 — Smhg‘) > ch?¢? for h|¢1| < a and

1- Sing]) > ¢ for h|¢1| > a. Since

" — L iz181 5 "d L iz181 5 Ndey =
8(z1,2) o e g(¢y, 2)dg + o e g(¢1, 2)der = vpk +wp i,
higil<a hl¢i|>a

we get from (4.8) that g satisfies, for some Cy independent of h €]0, hol,

lglliz2nvy < Co,  support(g) C Vo x U

Yk, g = vnk+whk (4.9)

I Zkvnkll2vy < Cos  Nlwaklli2vy < Coh,

and we want to prove that the decomposition g = vj x + wj x may be chosen independent
of k, i.e., there exists C > 0 independent of i such that

g =vpt+wy

Yk, N Zivnl 2y < C (4.10)

lwnll 2y < Ch.

In order to prove the implication (4.9) = (4.10), we will construct operators ®, C;,
By, j, Ry, depending on h, acting on L? functions with support in a small neighbourhood
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of op in N, with values in L?(N), such that ®, C;, By, Ri, C;hZ;, By jhZy are
uniformly in 4 bounded on L? and

P
1—®=>"CjhZj+hRy
j=1
» , (4.11)
Zj® =Y Bi;Zk+R,
k=1
and then we set
vp = ®(g), wip=(1-2)(g).
With this decomposition of g, we get

p
wy =Y CihZj(pj+wh ;) +hRo(g) € Op2(h),
j=1

and

p
Zi(op) =Y BjiZ; (uh,j - h%wh,,) + Ri(g) € 0,2(1).
j=1

We are thus reduced to proving the existence of the operators ®, C;, By ;, R;, with
suitable bounds on L2, and such that (4.11) holds true. This is a problem on the
Lie algebra N with vector fields Z; given by the Rothschild-Stein-Goodman theorem,
Theorem 2.4. We will first do this construction in the special case where the vector
fields Z; are equal to the left invariant vector fields )7j on N. In that special case, we
will have R; =0 in formula (4.11). We will conclude in the general case by a suitable
h-pseudodifferential calculus.

Step 2: The case of left invariant vector fields on N.

Let f *u be the convolution on N,

f*u(X)=/ f(X-yfl)u(y)dy=/ f@u(z" x)dz.
N N

Here, dy is the left (and right) invariant Haar measure on N, which is simply equal
to the Lebesgue measure dyj ...dy, in the coordinates used in formula (2.3). Then, for
u € L'(N), the map f + f*u is bounded on L?(N) by |lu|/;1 for any g € [1, 00]. The
vector fields Y are divergence free for the Haar measure dy.

If fisa functlon on N, and a € NV, let 1,(f) be the function defined by ,(f)(x) =
f(a'.x). One has, for any a e N and Y € TN ~ N, 1,¥ = Y1,, and the following
formula holds true:

T (f) =08a* f (4'12)
Yf=fxYs,.

Let us denote by 7, the scaling operator T,(f)(x) = h~2 f(h~'.x). One has h.(x"!) =
(hx)™' and Th(fxg) = Th(f)*Th(g). The action of 7, on the space D'(N) of
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distributions on N, compatible with the action on functions, is given by (7,(T), ¢) =
(T, x +> ¢(h.x)). Thus one has T8, = 8, and T(Y;(8.)) = h¥;(8) for j € {1,..., p}.

Let S(N) be the Schwartz space on NV, and let ¢ € S(N), with [y, ¢(x)dx = 1. For
h €]0, 1], let ®; be the operator defined by

Ou(f) = fron  on(x)=h"%0h™"x) = Th(p). (4.13)

Since the Jacobian of the transformation x — h.x is equal to 12, one has ||¢y, Izt = llellp
for all 4 €]0, 1], and therefore the operator ®;, is uniformly bounded on L2.
If we define the operators By jn by Bi jn(f) = f*Tn(ex ), with ¢ j € S(N), the

equation
p

?jcbh = Z Bk,j,hf}k
k=1
is equivalent to finding the ¢ ; € S(N) such that

P
Yip= Z 10 *Qk, ;- (4.14)
k=1

One has fN )7j () (x)dx = 0, and, since f > Yi8. * f is the right invariant vector field Z
on N such that Zi(on) = Y, (4.14) is solvable, thanks to Lemma A.2 in the appendix.
Moreover, the operators ®;, By, j i, and Bk,j,hh?k are uniformly in & €]0, 1] bounded on
L? (one has By jn(hYe(f) = fxTn(Yie(Se) * ¢ j) and Yi(8e) * gr,j € SN)).

Let now ¢j € C®(WN \ {onr}) be Schwartz for |x|| > 1, and quasi-homogeneous of degree
—Q+1near oy (ie., cj(tx) = t_Q'ch(x) for 0 < [lx|| < 1 and ¢ > 0 small). Let C;;, be
the operators defined by C; 4(f) = f *Ti(c;). Then the equation 1 — ®;, =) Cj)hh?j is

J

equivalent to

5e—¢=217jae*cj. (4.15)
j

In order to solve (4.15), we denote by E € C®(N \{on}) the (unique) fundamental
solution, quasi-homogeneous of degree —Q +2 on N, of the hypoelliptic equation (for
the existence of E, we refer to [8, Theorem 2.1, p. 172])

14
o= Z}(E), Zj(f)=T;dxf.
j=1

Let ¢ € Cgo(/\/) with ¥ (x) = 1 near e = opr. We will choose c; of the form
cj=vZ;(E)—dj, djeSWN). (4.16)

Then equation (4.15) is equivalent to

14 14
o+ 2/, VIZi(E) =90 =) Z;(d). (4.17)

J=1 J=1
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p
One has go € S(NV) and [, go(x)dx = 0, since [, p(x)dx =1 and [\, Y [Z;, ¥1Z;(E)dx
j=1

P
=—[y 2 1//212.(E)dx = —1. Thus, (4.14) is solvable thanks to Lemma A.2. Moreover,
j=1

since ¢; € L'(N), the operators C j,n are uniformly in 2 bounded on L?. It remains
to verify that the operators C j,hh? ; are uniformly in & bounded on L%. One
has CjphY;(f) = f*Th(Zj(c;)). Since [|T(f)ll2 =h"22|fll.2, it is equivalent to
prove that the operator g+ g* Z;(c;) is bounded on L%. By construction, one has
Zi(cj) = ijz.(E) +1j,1; € SW). With the terminology of [8], the distribution Z;(E)
is homogeneous of degree 0 (i.e., quasi-homogeneous of degree —Q), and thus of the
form ij.(E) =ajd.+ fj, where f; € C*WN \{on}), quasi-homogeneous of degree —Q,
and such that fb<|u|<b, fj(w)du = 0. Thus, by [8, Proposition 1.9, p. 167], the operator
g+ g*Zj(c;j) is bounded on L.

Step 3: A suitable h-pseudodifferential calculus on N .

Let Z* be the smooth vector fields defined in a neighbourhood  of oxr in N given
by the Goodman theorem, Theorem 2.4. In this last step, we will finally construct the
operators such that (4.11) holds true. We first recall the construction of the map ®(a, b),
which play a crucial role in the construction of a parametrix for hypoelliptic operators in
[14]. Let us recall that (YY = Hy(Y1,...,Y,) € T.N,a € A) is a basis of T,N. Fora e N
closetoeand u = Y u,Y* € T,N close to 0, let A(u) = Y uyeZ® and

acA acA
®(a,u) =erWq. (4.18)

Clearly, (a, u) — (a, ®(a, u)) is a diffeomorphism of a neighbourhood of (e, 0) in N x T,N°
onto a neighbourhood of (e, ) in N' x N, and ®(a, 0) = a. We denote by ®(a, b) the map
defined in a neighbourhood of (e, €) in N'x A into a neighbourhood of o in N >~ T,
by

®(a, ©(a, b)) = b. (4.19)

For b = ®(a, u), one has ® (b, —u) = 2V (eAWg) = e~ AW (eAW4) = g. Thus one has
the symmetry relation

Oa,b) = —O(b,a) = O(b,a)" . (4.20)

Observe that, in the special case Z; = Y i, A(u) is equal to thg left invariant vector field

on N such that A(u)(on) = u, ie., A(u) =i and ®(a, u) = e'a = a.u, and this implies
in that case that

Oa,b) =al.b. (4.21)

Let ¢ € SWW), with [y ¢(x)dx = 1. By step 2, there exist functions ¢ ; € S(N), and

cj € C*¥WN \{on}), Schwartz for |x|| > 1, quasi-homogeneous of degree —Q + 1 near oy,
such that the following hold true:
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)4
Yi9) = Zi(gr.))
k=l (4.22)
Se—p =) Zc).
j

Let wg CC w; be small neighbourhoods of o such that ®(y, x) is well defined for
(v, x) € wo x w1, and x € Cy°(w1) be equal to 1 in a neighbourhood of @p. We define the
operators @y, By jx, and C;j for 1 < j, k < p by the formulas

Op(f)(x) = x(x) h=2 /Ngo(hl.®(y,x))f(y)dy

Bejn(f)(x) = x(0) b0 /N 0 (™ .0(y. ) f () dy (4.23)

Cin(f)(x) = x(x) h2 /N ¢j(h~1.0(y, x)) f(y)dy.

All these operators are of the form

An(F)) = 0 ng(x, Oy, 1)) f()dy. (4.24)

where the function g(x,.) is smooth in x, with compact support w;, and takes values in
L'(N), ie., SUPy e, ||8£g(x, INiLiy < oo for all B. The function A, (f) is well defined
for f € L®°(N) such that support(f) C wy. We have introduced the cutoff x(x) just to
have Ay (f)(x) defined for all x € N, and one has A, (f)(x) =0 for all x ¢ w;.

Lemma 4.3. Let g(x,.) be smooth in x with compact support in wy, with values in LY(N).
Then the operator Ap defined by (4.24) is uniformly in h €10, 1] bounded from L9 (wp)
into LY(N) for all g € [1, oo].

Proof. The proof is standard. By interpolation, it is sufficient to treat the two cases g =
oo and ¢ = 1. When g = oo, the Jacobian of the change of coordinates y = u = @(y, x)
is bounded by C for all x € wy, y € wg. Thus we get

|AR(H] < CILf Nz h ™ /N lgCe, b )ldu = CIl f | o) g (e, D1

Since x — g(x, .) is smooth in x with values in L'(\), one has Coo = SUPyeq, 18X, It <
00. Thus we get |[Ap(f)lle < CCooll fllLo%(wp)-
For g = 1, we first extend g as a smooth L-periodic function of x € N, with L large

enough, g(x,u) = Y gr(u)e?™k*/L the equality being valid for x € w;. Observe that
kezP
llgkllL1(ary is Tapidly decreasing in k. Then one has

AN =) Ans(H@S A () =h° fN ge(h ™0y, ) f (y)dy.
k

https://doi.org/10.1017/51474748014000073 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000073

470 G. Lebeau and L. Michel

The Jacobian of the change of coordinates (x, y) — (u = ®(y, x), y) is bounded by C for
all (x,y) € w; X wp, and one has

[ 1anecneonar < en@ [ lgn ol rolarde = Cif il

w] N Jay

Thus we get supj,cio.17 | Ankll 1 = di with di rapidly decreasing in k, and this implies that

supye10.1) 1Anllpr < Y- di < oo. The proof of Lemma 4.3 is complete. O
k

Observe that, in the special case Z; = Y j, using (4.21), we get that the operators
@y, By, jn, Cjn defined by formula (4.23) are precisely equal, up to the factor x(x), to
the operators we have constructed in step 2.

In the general case, it remains to show that the following assertion hold true.

(i) The operators R;j, defined by

14
Rop=h"" (1 — D), — Z Cj,hhz,)

=1
) ! (4.25)

Rin=2;®—Y BijnZi, 1<j<p
k=1

are uniformly bounded in 4 €]0, 1] on L2
(ii) The operators C;j,hZ; and By jnhZy, k > 0 are uniformly bounded in & €]0, 1] on
L

For the verification of (i) and ii), we just follow the natural strategy which is developed
in [14]. If f is a function defined near a € N, let ®,(f) be the function defined near 0
in N>~ T,N by ®,(f)(u) = f(®(a,u)). The following fundamental lemma is proven in
[14, Theorem 5] and also in [9] (§ 5, ‘Estimation of the error’).

Lemma 4.4. For all j €{1,..., p}, and a € N near e, the vector field V;, defined near
0inN,

Via(g) = @u(Z; (') — Y;(g), (4.26)

is of order < 0 at 0. If we introduce the system of coordinates (uy) = (u1 ) with l(o) = ||
and 1 <k < ap =dimN)), we thus have

T aj
5
Via=2_ D vitk@ 05— (4.27)

=1 k=1

where the functions v« (a,u) are smooth and satisfy vjx(a,u) € oO(|lullh).

Let us denote by Ap[g] an operator of the form (4.24). Recall that g(x, u) is smooth
in x with compact support in ;, with values in L'(N). More precisely, we have two
cases to consider: (a) g is Schwartz in u, and (b) g is smooth in u in N\ {onr}, Schwartz
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for ||u|| > 1, and quasi-homogeneous of degree —Q + 1 near opr. We have to compute the
kernel of the operators Z;Ap[g] and Aj[glZ;.

We first compute the kernel of Z;A;(g). For any fixed y, perform the change of
coordinates x = ®y(u) so that ©(y,x) = u. Denote by Z}? the vector field Z; acting
on the variable x. Using Lemma 4.4, we get

Zj(Anlgl(f)x) = h=2 fN Zi(g(xe, h=1.0(y, 0))) f (n)dy
=17 [ B o000 £ 0y

170 [ (2390 b 00 ) F0)dy
N

T aj
+ Z Zh’Q/ i1k, Oy, x)h™

=1 k=1 N

g
ouy

X ——(x,h".0(y, x)) f (y)dy. (4.28)

By Lemma 4.3, the second term in (4.28) is uniformly bounded in A €]0, 1], from L% (wp)

into L2(N). The same holds true for the third term. To‘ see this point, following the

proof of Lemma 4.3, first write v;;x(y, u) =) vj,l,k,n(u)ezl”"'Y/L, with vk () rapidly
n

decreasing in n and O(|lu||) near u = opnr. We are then reduced to showing that an
operator of the form

ag

5 (x, i~ 1.0y, x)) f(»)dy,
Ul k

Ri(f) =h—Qf h GOy, x))
N

with G(u) smooth and G(u) € O(||lul|)), is uniformly bounded in & €]0, 1] from L?(wo)
into L>(N) by a constant which depends linearly on a finite number of derivatives of
G. Clearly, there exists such a constant C such that A~/ |G(©(y, x))| < C|lh~ .0y, x)|".
Thus the result follows from the proof of Lemma 4.3, since |ul|! 98 (x,u)is L' in u in

u
both case (a) and case (b) (the vector field [|ul|’ Bual_k is of order 0). N
If we denote by Ry, any operator uniformly bounded on L2, we have thus proven that
ZjAnlgl = h~ AulY g1+ Ry. (4.29)
Let us now compute the kernel of A;[g]Z;. The basic observation is the following identity
(recall that ul=—uand Zi(f) = f’j (8¢) * f is the right invariant vector field such that
Z;(0)=7Y;):
~¥;(f(=u) = Z;(f)(~u). (4.30)

Let [; be the smooth function such that ‘Z; = —Z; +1;. For any given x, perform the
change of coordinates y = @, (u). By (4.20), one has ®(y, x) = —0O(x, y) = —u. We thus
get from Lemma 4.4 and (4.30) the following formula:

AlNZj (&) = h~ 2 /Ng(x,h_l-®(y,X))Zj(f)(y)dy
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_ 0 /N(_zjy. F1 (g0, 1.0y, 1)) f(y)dy
_ th/ W (24 (e, Oy, x)) £ (y)dy
N

he /N g h=1.O(y, )L (5) £ ()dy

T aj
£33 /N )4, —O(y, XA

=1 k=1

0
- & (x, k™ .0y, x)) f(y)dy. (4.31)
Ul k

X

As above, this gives the identity, with R, uniformly bounded on L2,
Anlg1Z; = h™' AnlZY gl + Ry (4.32)

Observe that formulas (4.22), (4.29), and (4.32) imply that (4.25) holds true.
Moreover, from (4.32) and Lemma 4.3, the operators By jshZi, k > 0 are uniformly
bounded in h €]0,1] on L2. In order to get from (4.32) the same uniform bounds
for the operators C;,hZ;, we just observe that, in the case where g(x,u) is
quasi-homogeneous in u of degree —Q + 1 near opr, one has Z}‘g(x,u) =Cj(x)é. +
fi(x, u) with fb<|u‘<b, fi(x,u)du =0, and we conclude as at the end of step 2 by
Proposition 1.9 of [8].

The proof of Proposition 4.1 is complete.

5. Proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorems 1.1 and 1.2. Let By be the bilinear
form associated with the rescaled Dirichlet form &j,:

1-T
Bu(f, g)=< ) hflg) E frg € L*(M, dp). (5.1)
L

Proposition 5.1. Let f € H'(X). Let (rj,, yn) € H'(X) x L? be such that the sequence (rn)
converges weakly (when h — 0) in HYX) tor e HI(X), and supy, llvallp2 < oo. Then

p

. 1
lim By (f. ri +hyn) = & l;(xmxkr)y. (5.2)

Proof. Write rj, = r 4 r}. The weak limit of r; in HY(X) is 0. Since By, (f, ry) = By (f, r) +
By(f, ry,), we have to prove the following two assertions:

. 1 ¢ !
lim B (f.r) = o l;(xmxkr)y, Vf.reH (), (5.3)
and, under the hypothesis that the weak limit of r, in H!(X) is 0,
fim (LT 0, Vkell } (5.4)
m =0, .., P .
h1—>0 h2 T Vh L2 P
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In order to verify (5.4), since M is compact, we may assume that f is supported in
a small neighbourhood of a point xg € M where the Goodman theorem, Theorem 2.4,
applies. With the notation of §2, we may thus assume in the coordinate system A6
centred at xo > O that f, ry, y;, are supported in the closed ball B/* = {x e R", |x| < r} C
Vo. Let x(y) € C;°(Up) with support in B}, C Up, such that [ x(»dy =1, and write
du(x) = p(x)dx with p smooth. For u, v € L2(M) supported in B, one has

(u|v) 2 2/ M(X)U(x)dM(X)Z/ u(x)p(x)x (y)v(x)dxdy.
Vo Vox Uy

Set  f(x,y) = Wy ()(x, y) = F0), Fax, y) = p) x 0ra(x), 7r(x, ) = p(0)x )y (x).
We get, from (2.8),

1— Tk‘h 1- fk,h S\ =
s flrn+hyn ) = 5= f )Fn 4 hyn dxdy. (5.5)
h L? Vox Uy h

Observe that 7, is bounded in L2(Vy x Up). Since the injection H!'(X) c L2(M) is
compact, r, converges strongly to 0 in L27 and therefore 7, converges strongly to 0 in
L%(Vy x Up). Moreover, Zy(ry) converges weakly to 0 in L%(Vy x Uo) Finally, since Tk h
increases the support of at most ~ h, we may replace f by F = 6(y) f with 6 € Cg° equal
to 1 near the support of x. Then F is compactly supported in Vp x Uy and satisﬁes FelL?
and ZyF € L%. Since the vector field Z; is not singular, decreasing Vo, Up if necessary,
there exist coordinates (z1,...,zp) = (z1, z) such that Z; = 3 . One has dxdy = ¢(2)dz
with ¢ > 0 smooth. Set gr, = Ry, gyn = Qp. Using a Fourier transform in zy, it remains
to show that

im £ =0, 1=~ / (1 _ Si““’”) Fer, ) RaEr, 2)dE1d7

- (5.6)
lim Jy =0, Jy=h"" f (1 - Sm}f;”) F&1.7)0n(Er, 2)dEdz .

Recall that Qj, is bounded in L%, Rj, converges strongly to zero in L2, 97, R, converges
weakly to zero in L2, and F, 8, F € L. We write the first integral in (5.6) in the form

Iy = f W (hENEF (81, 2)E Ry (81, 2)dE1d7,

with ¥ (x) = x2(1 — %). One has ¥ € C*°R) and |¢(x)]| < Cl lxz. Then we write
Iy =5Lp+ DIy with I1 ), defined by the integral over |£1] < M and I defined by the
integral over |&1| > M. Since & ﬁh(é1, ') is bounded in L2, and ¢ € L®, we get, by the
Cauchy—-Schwarz inequality,

X 1/2
Lyl <C (/ |&1F (1, Z/)Izdé;‘ldz/> — 0 when M — oo.
[§11>M

On the other hand, one has ¥ (x) = ¥ (0) 4+ t(x) with ¥(0) = 1/6 and sup, g T(x)/x < C
Thus we get

1 ~ -~ ~ -~
Iin = 5/ E1F (&1, 2)& Rh(él,z’)déldz’+/ t(h&ELF (&1, 2)E1 Ry (€1, 2)dE1dZ.
ler1<M lEr1<M 57
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For any fixed M, the first term in (5.7) goes to 0 when A — 0 since E1R, (&1, 7) converges
weakly to 0 in L? and £ F(&,7) € L% Since & Ry (&1, 7/) is bounded in L? by say A, by
the Cauchy—-Schwarz inequality, the second term is bounded by CohM A|d;, F|l;2. Thus
one has ;}irr%) I, =0.

—

We proceed exactly in the same way to prove that ;}irr}) Jn = 0: one has, with xy = ¢,
—

Jp = / P (heN)E F (&1, 7)) On(E1, 2)dEde,

and we use the fact that ¢ € L°°, Qh(“g‘l, Z') is bounded in L%, ¢(0) =0, and ¢(x)/x €
L®(R).

Let us now verify (5.3). From (1.10), this is obvious if f is smooth and r € H!(X).
Standard smoothing arguments show that C°°(M) is dense in H!(X). Let now f € H'(X),
and choose f; € C®(M) converging strongly to f in H!(X). Then }}irr%)(kakar)Lz =

—
(Xk f|1Xgr) 2, and from (5.4) one has also }}i_r)r%)Bh(fh, r) = }}i_r)r})Bh(r, fn) = Bu(f, r).

The proof of Proposition 5.1 is complete. O

5.1. Proof of Theorem 1.1
Let |Ap| be the rescaled (non-negative) Laplacian associated with the Markov kernel Tj:

1— Th
hz
From Proposition 4.1 and Lemma A.1, there exist hg > 0 and C4, Cs > 0 independent

of h €10, hol, such that Spec(|Az]) N[0, A] is discrete for all A < C4h~™2, and one has the

Weyl-type estimate

= (5.8)

#(Spec(|Ap]) N[0, A]) < Cs(A)ImID/2s =y < Cuh~2. (5.9)

In particular, since T, (1) = 1, 1 is an isolated eigenvalue of Tj. Let us verify that 1 is a

simple eigenvalue of Tj,. Let f € L?> = L?(M, du) such that T;,(f) = f. One has, for any
2

gelLs,

1
(1 =Th)glg)2 = E/ lg(x) — g Pt (x, dy)dp(x). (5.10)
Thus we get, for all k € {1, ..., p},
h
/ / | f(x) = f(e"¥kx)[* drdpu(x) = 0.

MJ—h
This gives f(x) — f(e'®kx) =0 for almost all (x,f) € Mx]—h, h[. Therefore, one has
Xif =0 in D'(M) for all k, and this implies that f = Cre thanks to the Hormander

and Chow theorems. We can also give a more direct argument: we have ThP (f)=f,and
therefore if we use (5.10) with the Markov kernel ThlD and Proposition 3.1, we get

/ / |f(x) = £ ®x)* dudp(x) = 0.
M Juel. ),
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Since u — "™y is a submersion, this implies that f(x) — f(y) = 0 for almost all (x, y)
in a neighbourhood of the diagonal in M x M, and therefore f = Cte.

Let us now verify that there exists §; > 0 such that, for all 4 €]0, hg], the spectrum of
Ty, is a subset of [—1 4 681, 1]. It is sufficient to prove that the same holds true for an odd
power Th2N +1of Ty. We are thus reduced to proving the existence of hg, Co > 0 such that
the following inequality holds true for all & €]0, ko] and all f € L?(R):

1
S+ 1N =5 /M Mr,fN“(x,dny(x)+f<y>|2du(x) >CollflZ.. (5.11)

Take N large enough such that Proposition 3.1 applies for TthH, ie., t,%N‘H(x, dy) >
¢S} (x, dy). Then we are reduced to proving the existence of C independent of & such that

/M . S AV F )+ fFO)1Pdux) = ClFI. (5.12)
From definition (3.1) of S;, we get
/ S G dy)I £ () + £ () Pdu(e) = / he / 17GO) + £ Pdudu(x) = B.
MxM M uele p
Define A by the formula

A= f n2e f / FEWy) + £ y) Pdudvd(y).
M u€lepn Jvelep

Since A(v) is divergence free as a linear combination with constant coefficients of
commutators of the vector fields Xy, the change of variables e*™y = x gives

A =/ h_fo / |f () + (Vx> dudvdu(x).
M u€leppn Jvelep

Therefore, one has, for some constant ¢, > 0 independent of 4, B > ¢ A. Clearly, one has

/ Re( / / f(e““y)f(e““)y)dudv)du(y)>0,
M u€lepp Jvelen

and this implies, still using the change of variables e*y = x, that

A2 / p20 / / £ @) y) Pdudvdu(y)
M u€leppn Jvele

= 2¢P f h=¢ / | £V y)Pdvdu(y) = 2€*P f |f)Pdux).  (5.13)
M UEIe/z,h M
From (5.13) and B > ccA, we get that (5.12) holds true.

Lemma 5.2. There exist Cy, C3 > 0 such that the spectral gap of Ty, satisfies

Coh? < g(h) < C3h®. (5.14)
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Proof. The right inequality in (5.14) is an obvious consequence of the min—max principle,

since for any f € C*®°(M) one has }}imo lzzThf = L(f). From (5.9), we get that, for any

a €]0, 1], m, = 4(Spec(Tp) N [1 — ah?, 1) is bounded by a constant independent of A small,
and we have to verify that there exist hg > 0 and a > 0 independent of h €]0, hg] such
that m, = 0. If this is not true, there exist two sequences ¢,, h, — 0 and a sequence
fa € L2, with || fy]l,2 = 1 and (fu|1),2 = [,, fudi = 0 such that

Th,, fn = (1 _hﬁen)fn'

This implies that &, (f;) = €,. Using Proposition 4.1, we get f;, = v, +h,y, with
supy, [[¥allL2 < 00 and [[vnllgy1xy < C. The hypoelliptic theorem of Hérmander implies the
existence of s > 0 such that one has %' (X) € H*(M); hence the injection H!(X) c L*(M)
is compact. As a direct byproduct, we get (up to extraction of a subsequence) that the
sequence f,, converges strongly in L? to some f € H'(X), and v, converges weakly in
H'(X) to f.Set v, = f +r,. Then r, converges weakly to 0in H (X)), fu = f +ru +hnyn,
and one has

5h,, (fn) = gh,, f +2Re(8h,, (fsrn+hyn)) +€h,, (rn + hnvn).

Since one has &,(.) > 0, Proposition 5.1 implies that
12
65 2 I1Xef 2 = lim €, (f) < liminf &, (f) =0, (5.15)
k=1

and therefore f = Cre. But since f,, converges strongly in L% to f, one has I fll;2 =1and
(fID 2 = fM fdu = 0. This is a contradiction. The proof of Lemma 5.2 is complete. [

To conclude the proof of Theorem 1.1, it remains to prove the total variation estimate
(1.7). Let Ty be the orthogonal projector in L?(M,du) onto the space of constant
functions

Mo(f)(x) = /M fap. (5.16)

Then

2 sup ||t (x,dy) — pllry = 1T} — Holl oo oo (5.17)
xeM
Thus, we have to prove that there exist Cy, hg, such that, for any n and any h €]0, hg],
one has

| T} — M| oo 1o < Coe ™8™, (5.18)

Observe that, since g(h) ~ h?, and | T — ol Lo Lo < 2, in the proof of (5.18), we may
assume that n > Ch™% with C large. Let Ej 1 be the (finite-dimensional) subspace of
L*(M, du) spanned by the eigenvectors e i.n of |Ay], associated with eigenvalues Ajj <
C4h™2, with C4 > 0 small enough. Here, the subscript L means ‘low frequencies’. Recall
from (5.9) that dim(Ejp 1) < Ch~4mM)/25 e will denote by Jj, the set of indices

In=1{j. hjn < Cah™?). (5.19)
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Lemma 5.3. There exist p > 2 and C independent of h €10, hol such that, for allu € Ej 1,
the following inequality holds true:

Il T p gy < CCEGu) + llull32). (5.20)
Proof. We denote by C > 0 a constant independent of &, changing from line to line. Let
u € Ep 1 such that & (u)+ ||u||i2 < 1. From Proposition 4.1, one has u = v, + wy with

lvallygixy < € and |lwpll2 < Ch. From the continuous imbedding HY (X)) c HS (M) C
L9(M) with s >0,g > 2,s =dim(M)(1/2—1/q), we get

lvnlle < C.
One has u = > Zj.nej,n with > |zj,h|2 < 1. From Corollary 3.4, one has, for
Ajn<Cah™2 Ajn<Cah™2
C4 > 0 small enough, |le; Lo < Ch~9/%. Therefore, by the Cauchy-Schwarz inequality,
we get
1/2
lulle < CR™C2 3" Jzial | (dim(EpL))'/? < ChmC/2AmODAS o (501)

Ajn <Cyh2

From the proof of Proposition 4.1 (see Lemma 4.3), one has ||v||ze < C|lu|pe. Thus
we get lwpllzee < flullzee + lloplizee < CA=QR27AMD/ES Since |wpll 2 < Ch, we get by
interpolation that there exists ¢’ > 2 such that

lwall ¢ < C.
Then (5.20) holds true with p = min(g, ¢’) > 2. The proof of Lemma 5.3 is complete. [

We are now ready to prove (5.18), essentially following the strategy of [5], but with
some simplifications. We split T} in two pieces, according to spectral theory. We write
T, —o = Th 1+ Ty 2, with

TiaGe.y)= Y (A=kjpejn()ejn(y). (5.22)
M <Aja<Cah™2
One has T} — g = T} | + T}, and we will get the bound (5.18) for each of the two terms.

We start with very rough bounds. From |e; |z~ < Ch=9/% |1 —hz)»j,h)| < 1, we get,
with A = Q/2+dim(M)/4s, as in the proof of (5.21), with C independent of n > 1 and
h,

IT7 ooz < NTH N2 oo < Ch™A (5.23)
Since T} is bounded by 1 on L, we get, from 7, —Tlp = T} | + T,

1Ty 5l Lo roe < CRTA. (5.24)

Let P be the integer defined at the beginning of §3. Let M) be the Markov operator
My = ThP. Write n = kP +r, with 0 < r < P. From Proposition 3.1 and Corollary 3.3,
one has My, = p, + Ry, with

oo <y <1,

IRAll g2 oo < Coh™ @12,
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From this, we deduce that, for any k = 1,2, ..., one has M,lj = Ag.n+ Bip, with Ay =
on, Bi.n = Rp, and the recurrence relation Axi1., = pnAk.h, Bi+1,n = pnBi.n +RhM;f.
Thus one gets, since M;l‘ is bounded by 1 on L2,

so_y g0 < pk
Ak pllLoo—s oo < ¥F, (5.26)
Bkl g2 poo < Coh™ @2 +y 4+ +y*) < Coh=92 /(1 —y).

Let 6 =1—C4 < 1 so that |T}2]l;2_,72 < 6. Then one has

T 5l ooz < NP5 o2 < O™ (5.27)
Form > 1,k>1,and 0 <r < P — 1, one gets, using the fact that 7} is bounded by 1 on
L, and (5.24), (5.26), and (5.27),
NT 5 o poe = Ty MET oo oo < IMET [l Lo

< NARKT | oo oo + 1 Bea Ty ll oo 100
< Chy* 4+ Coh=9%0™ /(1 — ). (5.28)

Thus we get that there exist C > 0, u > 0, and a large constant B > 1, such that
1Ty s llLoesroe < Ce™™, Vh, ¥n > Blog(1/h), (5.29)

and thus the contribution of 7}, is far smaller than the bound we have to prove in (5.18).
It remains to study the contribution of Th 1

=l

p—

From Lemma 5.3, using the interpolation inequality ||u||2 lull [ P |lu ||L1 , we deduce
the Nash inequality, with 1/d =2—-4/p > O:
24+1/d 1/d
lluell’, > TV <& + ) lul /1 , YuekEpyL. (5.30)
L L

For Ajh C4h_27 one has hz)»j,h < 1, and thus, for any u € Ej 1, one gets &, (u) <
||u||L2 — ||Thu||L27 and thus we get, from (5.30),

1/d

2+1 d _
el 23V < Ch2(ully = 1 Thae 2 + 2l 22) )

Vu € Epp. (5.31)

From (5.29) and T} —Tlo = T | + T,, we get that there exists C3 such that, for all h and
all n > Blog(1/h), one has ||T1’fh||Loo_>Loo < (7, and thus, since T is self-adjoint on L2,
||Tl’fh||L1_)L1 < Cy. Fix p ~ Blog(l/h). Take g € L? such that gl <1, and consider
the sequence ¢, n > 0 defined by

e = 1T, 77 gl1% (5.32)
Then, 0 < ¢p41 < ¢, and, from (5.31) and T;Tpg € Ep 1, we get
145 _ 1/d
e M < Ch™2(en = engr +HPen) 1T g

< CCY N ey — cnpr + hey). (5.33)
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Thus there exists A which depends only on C, Cs, d, such that, for all 0 < n < h™2, one
has ¢, < (%)M (this is the key point in the argument; for a proof of this estimate, see
[7]). Thus, for all 0 < n < h™2, and with p ~ Blog(1/h), one has

d
Ah™?
173778l < (1 +n) lglle, (5.34)

and since Ty is self-adjoint on L2, we get, by duality,

d
Ah™2
17,17 gl < <1+n> ligllz2- (5.35)

Thus there exists Cy such that, for N ~ h~2, one has
1T, gl < Collgl . (5.36)
and so we get, for any m > 0, and with N ~ h=2,
N7, 57 " glloe < Coll = h2ay0)™ gl 2. (5.37)
Thus, for n > h™2 4+ N + p, since h?A1, = g(h) and 0 < (1 —r)" < e ™" for r € [0, 1], we
get

||T}:l’1 [l Looms oo < Coe~ "~ N+PD3Mh) — cpeN+PIg(h)g=ngh) Cée—ng(h). (5.38)

The proof of Theorem 1.1 is complete.

5.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is exactly the same that the one given in [6]. Let R > 0 be
fixed. If v € [0, R] and uj, € L?(M) satisfy |Ap|up, = vyuy, and llunll 2 = 1, then, thanks
to Proposition 4.1, uj;, can be decomposed as u;, = vy +wy, with ||lwp|l;2 = O(h) and vy
bounded in H!(X). Hence (extracting a subsequence if necessary) it may be assumed
that v, weakly converges in H!'(X) to a limit v and that v, converges to a limit v.
Hence uy, converges strongly in L? to v. It now follows from Proposition 5.1 that, for any

fec=m,
v(flv) = ]}i_f)l})(ﬂvhuh) = }}i_f)rb(|ﬁh|(f)|uh)
1 P
= Jim By (f, i +wn) = £ ];(XkﬂXkU)LZ = (fILv). (5.39)

Since f is arbitrary, it follows that (L —v)v = 0. By the Weyl-type estimate (5.9), the
number of eigenvalues |Ay| in the interval [0, R] is uniformly bounded. Moreover, the
dimension of an orthonormal basis is preserved by strong limit. So the above argument
proves that, for any € > 0 small, there exists h. > 0 such that, for 4 €]0, k], one has

Spec(JAR) N[0, R] C Uj[v; —€,vj +€] (5.40)
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and
gSpec(|Ap) N[v; —€,v; + €] < mj. (5.41)

The fact that one has equality in (5.41) for € small follows exactly like in the proof
of Theorem 2(iii) in [6]: this uses only Proposition 5.1, the min—max principle, and a
compactness argument. The proof of Theorem 1.2 is complete.

Remark 5.4. Observe that estimate (5.14) on the spectral gap is a direct consequence
of Theorem 1.2, and moreover observe that in the proof of Theorem 1.2 we only use
Proposition 5.1 in the special case f € C*°(M), and that, for f € C*°(M), Proposition 5.1
is obvious. However, we think that the fact that Proposition 5.1 holds true for any function
f € H'(X) is interesting by itself, and, since it is an easy byproduct of Proposition 4.1,
we decided to include it in the paper.

5.3. Elementary Fourier analysis

We conclude this section by collecting some basic results on Fourier analysis theory
(uniformly with respect to h) associated with the spectral decomposition of Tj. These
results are consequences of the preceding estimates. We start with the following lemma,
which gives an honest L estimate of the eigenfunction e;; € Ej 1. Recall that (x) =
(1+x3H)1/2.

Lemma 5.5. There exists C independent of h such that, for any eigenfunctione;, € Ep 1,
llejnllz2 =1, associated with the eigenvalue 1 — hz)\j,h of Ty, the following inequality holds
true:

lejnllzee < Cljn). (5.42)

Proof. This is a byproduct of the preceding estimate (5.35). Apply this inequality to
g =ej . This gives

d
Ah~2
(L =120 0)" P llejnllie < (1+n> . (5.43)

Thus we get, with n ~ h’z()»j,h, )1

d
Ah~2 =205 =1
||€j,h||L°° < (W) (11— hzkj,h) h=%(Aj.n) Blog(1/h) < C<)\j,l1)d- (5_44)
Js
The proof of Lemma 5.5 is complete. O

Let ho > 0 be a small given real number. We will use the following notation. If X is
a Banach space, we denote by X the space L*°(]0, hg], X), i.e., the space of functions
h + xp, from h €]0, ho] into X such that sup,c 4, I¥nllx < 00. For a > 0, the notation
xp, € Ox(h*) means that there exists C independent of 4 such that ||x;|x < Ch%, and
xp € Ox(h*) means that x; € Ox(h®) for all a. We denote C;° = ﬂ;@oCﬁ(M).

Let I1j, 1 be the Lz—orthogonal projection on Ej 1, and denote Iy o =1d—TIlj 1. Let
(ej,n) jes, be an orthonormal basis of Ej, ; with Tj,(e; ;) = (1 — hz)»j,h)ej,h. For f € L? we
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denote by cj ,(f) = (flej) the corresponding Fourier coefficient of f. Recall that Jj, is
defined in (5.19).

Proposition 5.6. Let f, € C;°. For all integers N, the following holds true:

1N fr e C° and 3 Cy, sup Z ky,1|6j,h(fh)|2 < Cy. (5.45)

helo.hol jog,

Moreover, one has the following estimates:

a2 (fn) € Or=m)(1) (5.46)
and
0 (fi) € Orsoany(hY). (5.47)
Proof. Let X be a vector field on M, and let f € C®°(M). The smooth function F(z, x) =
f(e'Xx) satisfies the transport equation
F=X(f), F@Oux)=f(x).
Thus, one has, by Taylor expansion at t = 0, and for any integer N,
tn
F(t,x) = ) —=X"(NH0)+ 1" ry (2,
n!
n<N
with ry(f, x) smooth. From the definition of T}, we thus get

n

h 1 &
Thifx) Y. CES] (;;XZ(f>(x))+hN+1FN(h,x>,

n even <N

with 7y (h, x) € C;°. This implies, for f; € C;°, that

|Anlfn = L(fn) +h’gn,  gn e CX.

Therefore, one has |A| f;, € C;°, and hence by induction AN i € C;° for all N. The
second assertion of (5.45) follows from supycjo p l8nll2 < oo for any g, € C;° and the
fact that

N 2 N 2 N 2
> N lein (Dl = ITn Ll Al fll 32 < HArl™ ful 7.
J€JIn

For the proof of (5.46), we just write
My, (fo) = Z cjn(fn)ejn,
J€JIn

and we use estimate (5.42) of Lemma 5.5 to get the bound

Il < €Y lejn (il hja)

J€Jn
12 1/2
< C D el (rgay> =N > )
jey =

https://doi.org/10.1017/51474748014000073 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000073

482 G. Lebeau and L. Michel

From the Weyl-type estimate (5.9), there exist N and C independent of & such that
1/2
Z(?»j,h)_zN <C,

JE€JIn

and therefore (5.46) follows from (5.45). It remains to prove the estimate (5.47). We first
prove the weaker estimate,

2(fn) € Op2py (h™). (5.48)
Observe that Ij 2(f) satisfies, for all N > 1, the equation
RN (AN fo) = WP ARDN T2 (fi) = Ad = T T 2) N T2 (fi). (5.49)

By (5.27), the operator Id — T, I15 » = Id — T, » is invertible on L? with inverse bounded
by (1—6)~1. Since |A4|N fi € C°, we get, from (5.49), Ty 2(fi) € Op2(2V).

Set gn = My o(fa). One has [A4|N fiy = Hp (124N fi) + 1881 g From (5.45) and
(5.46), one has I, L(|Ah|th) € oLoo(1) Thus we get |An|Ng, € Op=(1), for any N.
Let My, = h cand [Ap| = Ad+Tp + -+ TP 1)|Ah| Then gj, satisfies the equation

h*|Anlgn = gn — Magh. (5.50)
As in (5.25), write M), = py + Rp,. Since Ty is bounded by 1 on L, one gets
gh—pngh = W°ri+ Rugn, o = |Anlgn € Or=(1). (5.51)

By the second line of (5.25) and (5.48), one has Rjgj € Or=(h™), and by the first line
of (5.25), the operator Id — pj, is invertible on L* with inverse bounded by (1 — y) L
Thus we get, from (5.51), g5 € Or(h?). Since |Aplgn = My 2184 fi) and |Apl fi € CF°,
the same estimates shows that |Ay|gn = rp € Opec(h?). Then (5.51) implies that g €
O~ (h*). By induction, we get g, € Op(h*N) for all N. The proof of Proposition 5.6 is
complete. O

Let Fy = Ker(L — vg). Recall that my = dim(Fy) is the multiplicity of the eigenvalue vy
of L. Let us denote by Ji the set of indices j such that, for 4 small, A;j is close to v,
and Fjp; =span(ej s, j € Ji). By Theorem 1.2 and its proof, the set J is independent
of h €]0, hy] for hy small, and one has #(Jx) = dim(Fy, x) = k for h €]0, hg]. Let I1f, and
[F,, be the L2—orth0g0nal projectors on Fy and Fj k.

Lemma 5.7. For all f € Fy, one has

Iim ||/ = T ()l = 0. (5.52)
Proof. For f € Fy, and h small, one has
f=Ug, ()= Z cin(frejn+Tpa(f). (5.53)
VSAW/

One has f € C;°, and thus, by (5.47), we get
M), 2(f) € Opoo (h™). (5.54)
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Since f € Fy, for any given j € J,\ Ji, one has ]}irr})cj,h(f) = gin})(ﬂej,h)y =0.
— —

Therefore, it remains to prove that

lim sup lcin(O)IllejnllLe = 0. (5.55)
N—o00 he]O,ho]jeJ%:}N

Let N > vr. From (5.42), the Cauchy—Schwarz inequality, (5.45), and the Weyl-type
estimate (5.9), there exist Ny and a constant C(f) independent of h such that one has
the estimate

Yo deiaDllejnlie < C Y lejn(HIa)

jen,j=N je€n,j=ZN
1/2 172
< C D lejn(PF )22 > )
J€Jn JE€In,jZN
172
< C(f) sup Yo M —0 (N> o).
hel0,ho] jedn,j=N
(5.56)

In fact, since by (5.9) one has #{j, 2j, < m} < Cs5(m)dmM)/2s " one can choose No = 1+
dim(M)/4s. Then one has

sup Z ()Lj,h)—ZNO < Cs Z <m>—2N0(m+l>dim(M)/2s’
hel0hol je gy, j>n mEm(N)

with m(N) the bigger integer such that An p = m(N) for any h €]0, ho]. Observe that
(5.9) implies that Nlim m(N) = co. The proof of Lemma 5.7 is complete. O
— 00

6. The hypoelliptic diffusion

We refer to the paper of Bismut [1] and references therein for a construction of the
hypoelliptic diffusion associated with the generator L.

For a given xo € M, let X, = {w € CO([0, oo[, M), w(0) = xo} be the set of continuous
paths from [0, oco[ to M, starting at xq, equipped with the topology of uniform convergence
on compact subsets of [0, oo[, and let B be the Borel o-field generated by the open sets
in Xy,. We denote by Wy, the Wiener measure on X,, associated with the hypoelliptic
diffusion with generator L. Let p;(x, y)du(y) be the heat kernel, i.e., the kernel of the
self-adjoint operator e 'Lt > 0. Then Wy, is the unique probability on (Xy,, B), such
that, for any 0 <] <, < --- <t and any Borel sets Ay, ..., Ay in M, one has

Wi (w(t) € A1, w(2) € Az, ..., w(t;) € Ag)
=/ Pri—ti_1 Xk Xk—1) « -+ Pry—r (X2, X1)
AL XAx XX Ag

X pyy (x1, x0)dp(x)dp(xz) . . . dp(xg). (6.1)
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Let us first introduce some notation. Let ¥ = {1,..., p} x[—1, 1], and let p be the
uniform probability on Y, which means that, for any function g(k, s) on Y, one has

1 & +1
/Ygd,o = Z Z/ g(k, s)ds. (6.2)

We denote by YN the infinite product space YN ={y = (y1, 2, ..., Yns...), yj € Y}
Equipped with the product topology, it is a compact metrisable space, and we denote
by pY the product probability on YN. Let MY be the infinite product space MY = {x =
(x1,x2,...,%n,...), Xj € M}. Equipped with the product topology, MY is a compact
metrisable space. For h €]0, 1], and xo € M, let my,; be the continuous map from YN
into MY defined by

ih Xy .

T (K si)js1) = () j>1,  xj = €708 L e X th X g (6.3)

We will use the notation XZ % = (7Txg,n)n- This means that XZ 0 is the position after n
steps of the random walk starting at xo. Let Py, be the probability on MY defined by
Proh = (nxO,h)*(pN). Then, by construction, one has, for all Borel sets Ay, ..., Ay in M,

Pxo,h(xl € Al,xp € Ay, ..., X € Ag)
= / th(Xg—1, dxg) . . . tp(x1, dx2)ts (x0, dxp). (6.4)
Al XAy XX A

siy1hXk, LsihXy, .
Let us recall that x;11 = g’ "J“xj. Then ¢ € [0, h?] > er? ™! "f“xj is a smooth

curve connecting x; and x;41. Let jy, » be the map from YN into Xy, defined by, with
Yy = ((kj, sj)j=1),

t

Jon(y) = < Vj 20, Viel0,h?], w(h®+1) = et

Jj+l X (6.5)
with x;j = (7,1 () if j > 1. Let Px,,» be the probability on Xy, defined as the image

of pN by the continuous map Jxo,n- Our aim is to prove the following theorem of weak
convergence of Py, ; to the Wiener measure Wy, when h — 0.

Theorem 6.1. For any bounded continuous function w — f(w) on Xy,, one has

l}lm()/ JfdPxyn = /deXO' (6'6)

Observe that the proof below shows that our study of the Markov kernel 7, on M is also
a way to prove the existence of the Wiener measure W,, associated with the hypoelliptic
diffusion. Let g be a Riemannian distance on M, and let dg the associated distance. We
start by proving that the family of probability Py, is tight, and hence is compact by
the Prohorov theorem.

Proposition 6.2. For any ¢ > 0, there exists he > 0 such that the following holds true for
any T > 0:

I P d Lot = 0. 6.7
=0 <hes]g,rl)1£] o (“Kgl%x@g s, ) > 8>> o7
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Proof. We start with the following lemma.

Lemma 6.3. Let f € C®°(M). There exists C such that, for all h €]0, hgl, one has

V8 €[0,11, sup |T'(f) — f —nh?|AplfllLe < C82. (6.8)
nh?<8

Proof. We may assume that § > 0 and n > 1. Then nh? <$ implies that h < /8. With
the notation of §5, one has

T = £ =m0 f = ey, ¢ (D (= 123" =1 =0k )ejn+ Rn, )

R(n, h) = T T2 (f) = i (f +nh?| gl f).
(6.9)
One has [Ay|f € C;°, by (5.45), T, is bounded by 1 on L*°, and nh? < § < 1. Thus, from

(5.47), we get

sup [R(n, h)||L= € O™®) C 0(®). (6.10)
nh2<s

For all j € Jp,, one has hz)\j,h € [0, 1], and, for all x € [0, 1],

—1
(1= x)" — 1 —nx| < "(nT)x?.
Therefore, we get
2 2 n*h? 2
> DA =2 =1 =nh®hjn)esn| < 30 A plesn(Dlllesallim.
JjeJIp Lo J€JIn

(6.11)
By the Weyl-type estimate (5.9), (5.42), and (5.45), there exists a constant C such that

sup > A2 lesn(Plllesalls < C.

hel0.hol iy

Therefore (6.8) is consequence of (6.10) and (6.11). The proof of Lemma 6.3 is complete.
O

The proof of Proposition 6.2 is now standard, and it proceeds as follows. Let gy > 0 be
small with respect to the injectivity radius of the Riemannian manifold (M, g), and let
£ €]0, g9] be fixed. One has

,ON(dg(XZ,xO,xo) >e) = / t (x0, dy) = T} (14, (y.x0)>¢) (X0)- (6.12)
dg(y,x0)>¢

Let ¢(r) € C*([0, oo[) be a nondecreasing function equal to 0 for r < 3/4 and equal to
1 for r > 1, and set

(6.13)

dg(x,
Oxge(X) =@ (g(xTXO)> .
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Then ¢y ¢ is a smooth function, and, from 1g,(yxp)>e < ¢xge < 1, We get, since Tj is
Markovian,

0< T;:l(ldg(y,xo)>s) < T}?((ﬂxo,s)o (6.14)

Since Tj, moves the support at distance < ch, one has ¢y, ¢(x0) +nh2(|Ah|<pr,g)(xo) =0
for ch < &/2. From Lemma 6.3, we thus get that there exist h, > 0 and C, such that

sup  sup T} (@xy.e) (x0) < Ceb”. (6.15)
hel0,hel nh2<s

Since M is compact, it is clear from the proof of Lemma 6.3 that we may assume C; to
be independent of xo € M. From (6.12), (6.14), and (6.15) we get

sup sup sup p (d (X; xp0 X0) > &) < < Cp82. (6.16)
X0EM hel0,he]l nh2<s

Let T > 0 be given. One has, for & €]0, h¢], the following inequalities.
PN @I <RI, (= R < 8, dg(X;, X, ))4e)

c . -
< 5 sup pNEJI AT, dg(X) . X))
YoEM

1

< = sup pM'@j <78, dg(X]] ) . yo) > 26)

yoeM

C
-5 sw ,ON(dg(X?O, 20) > €)
20€M,nh?<8

(by (6.16)) < 2CC,8. (6.17)

D o

<

In fact, for the first inequality in (6.17), we just use the fact that the interval [0, T] is a
union of ~ C/§ intervals of length §/2. The second inequality is obvious, since the event
(Fj <n28,dg(X; |, X}, m)>4e} is a subset of {3j < h7?8, de(Xj . yo) > 2¢}. For the
third one, we use the fact that the event A = {3j < h™28, d, (X],yo’ yo) > 2¢} is contained
in B Uj<k (Cj ND;) with B = {dg(Xk hoyo? yo) > €} (k is the greatest integer < 8h_2), Cj=
{d, (Xh Yo X, yO) > ¢}, D; = {d, (Xh }O,yo) > 2¢ and dg(Xil,yo’ vo) < 2¢ for [ < j}, and the
fact that C; and D; are 1ndependent and the D; are disjoints.

Since Py, p = (jxo,h)*(,ol\l)7 (6.7) follows easily from (6.17) and definition (6.5) of the
map jx,». The proof of Proposition 6.2 is complete. O

With the result of Proposition 6.2, the proof of Theorem 6.1 follows now the classical
proof of weak convergence of a sequence of random walks in the Euclidian space R? to
Brownian motion on R?, for which we refer to [12, Chapter 2.4]. We have to prove that
any weak limit Py, of a sequence Py, p,, hix — 0, is equal to the Wiener measure Wy,. We
denote by wy,(¢) the map from YN into M defined by wy(1)(y) = Jxo,n (¥)(#). By Theorem
4.15 of [12], it is sufficient to show that, for any m > 1, any 0 < 1] < -+- < fy, and any
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continuous function f(xy, ..., x;;) defined on the space M™, one has
lim / fl@n(t), ..., optn))dp"
h—0 JyN

:/f(xly‘--,xm)Ptmftm,l(xmaxmfl)--~P12711(x2,x1)
X pry (x1, x0)dpe(x1)dp(x2) . . . dpe(xm). (6.18)

As in [12], we may assume that m = 2. For a given t > 0, let n(¢, h) € N be the greatest
integer such that hn(r, h) < t. By (6.5), one has, for some ¢ > 0 independent of h and
Y€ YN , dg(wp(1), X"(t h)) < ch. Since f is uniformly continuous on M™, we are reduced
to provmg that

lim / FOGUD X2y pN = / £ @1 %2) prygy (22, %1) pry (21, X0) A () d i (x2).
(6.19)

Fr 6.4), one has

h,xq h,xq

Om
/ F(xnh - xnahyy g )N / £, xR (e qiey et (g diey). (6.20)

By (6.19), (6.20), we have to show that, for any continuous function f(xi,x2) on the
product space M x M, one has

lim £ Gen ) T ey d) P (g, da)
h—=0 Jpxm

=/M Mf()él,xz)pzﬁ1 (x2, x1) pry (x1, x0)d e (x1)d e (x2), (6.21)
or, equivalently,
lim 70 (T (f (e ) ) (o) = e (7L (£ G ))(en)) (o).
(6.22)

Since ||T}:'(t’h)||Loo <1 and |le7f|z~ < 1, the following ‘central limit’ theorem will
conclude the proof of Theorem 6.1.

Lemma 6.4. For all f € CO%(M), and all t > 0, one has
lim le™ () = 7, (Pl = 0. (6.23)

Since one has ||Tn(t h)IILoo <1 and [le™F |1~ < 1, it is sufficient to prove that (6.23)
holds true for f € D, with D a dense subset of the space CO(M), and therefore we may
assume that f € F; is an eigenvector of L associated with the eigenvalue vy. We set
n = n(t, h), and we use the notation of §5. One has

Ti(f) =Y cin(HUA=Rnjn)"ejn+ Ron(f), (6.24)
j€Jk
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with
Rou(f)= D cin(HA=R1jn) " ejn+ T a(f). (6.25)
J€IN\Tk
One has |(1—h%A; )" < 1, and Ty is bounded by 1 on L*®. By (5.54) and (5.55), we
thus get

li R o =0.
lim Ry ()l =0

One has }}irr})(l —h2xj )" = e~ for all j € Ji. Moreover, one has §Jx = my and
—

SUPc10,ho1 SUPje g, N€jnllLe < 00, by Lemma 5.5. Therefore, Lemma 5.7 and e 'L (f) =
e ™ f imply that

lim |3 c;n(N)A =m0 ejn—e ()| =0,

The proof of Lemma 6.4 is complete. O
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A.

Let P = P(x,d,) be an elliptic second-order differential operator on M, with smooth
coefficients, such that P = P* > Id, where P* is the formal adjoint on L?(M, u) = L?
Let (e;)j>1 be an orthonormal basis of eigenfunctions of P in L% andlet 1 <vy <vy...
be the associated eigenvalues. By the classical Weyl formula, one has

#j.v,)2 <} im0, (A1)

For s e Rand f =) fje; in the Sobolev space H*(M), we set
J

iz = Zv|f,|2 (P 1) 2.

Let us recall that this H*-norm depends on P, but another choice for P gives an equivalent
norm. The following elementary lemma is useful for us.

Lemma A.1. Let s >0, and let Ay = A >0, h€]0,1], be a family of non-negative
self-adjoint bounded operators acting on L*(M, ). Assume that there exists a constant
Co > 0 independent of h such that, for all u € L>(M, 1), the following holds true:

((Id+ Ap)ulu) < 1= I(v, w) € H® x L? such that u = v+w, |[v]gs < Co, w2 < Coh.
(A2)
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Let C; < #. There exists Co > 0 independent of h such that Spec(Ap) N[0, A —1] is
0

discrete for all » < C1h™2, and
#(Spec(Ap) N[0, A — 1) < Cr)ImOD/2s vy < C1h 2. (A3)

Here, #(Spec(Ap) N[0, r]) is the number of eigenvalues of Ay in the interval [0, r] with
multiplicities, and (L) = ~/1+ A2,

Proof. Let B, = Id+ Aj. Let Cj, be the bounded operator on L? defined by

Cy, Z”jej = Zmin(h_l, v;/z)ujej.
J j

For u = v+ w, one has
IChull7> < 21Chvl12 + 21Chwl7s < 2(0l5s +h 2 w]3,).
From (A 2), we get, for all u € L?,
IChull, < 4CF(Bulu). (A4)

For any non-negative self-adjoint bounded operator T on L2, set, for j > 1,

dim(F)=j \ueF,|ul2=1

Aj(T) = min ( max (Tu|u)>.

It is well known that, if #{j, 1;(T) € [0, a[} < oo, the spectrum of T in [0, a[ is discrete,
and, in that case, the A;(T) € [0, a[ are the eigenvalues of T in [0, a[ with multiplicities.
From (A 4), we get, for all j > 1, the inequality

1 2
Lj(Bp) = @M(Ch)- (A5)

For all j such that Uj < h™2, one has )»j(C%) = v;, and, therefore, for all A < h™2,
we get from (A1), #{J, )Lj(Cz) < A} < C)IMMD/2s - Therefore, the spectrum of By in
[0, h=2/4C3] is discrete, and (A 3) follows from (A 5) and Spec(A;) = Spec(B;) — 1. The

proof of Lemma A.1 is complete. O

Lemma A.2. Let N = N1 @ ---® N, be the free up to rank v nilpotent Lie algebra with p
generators. Let (Y1,...,Yp) be a basis of M, and let (Zi, ..., Z,) be the right invariant
vector fields on N such that Z;(0) =Y;. Let S(N) be the Schwartz space of N. Let
@ € S(N) be such that fN @dx = 0. Then there exists ¢ € S(N) such that

p
0= Zilp). (A6)

k=1

Proof. Let Y* = Hy(Yy,...,Y)), and let Z% be the right invariant vector fields on N
such that Z¥(0) = Y*. Let uqy, o € A be the coordinates on N associated with the basis
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(Y%, a € A) of N. Let 9, be the derivative in the direction of u,. Let ¢ € S(N) such that
/ v ¢dx = 0. Using the Fourier transform in coordinates (uq), and ¢(0) = 0, one easily
gets that there exist functions ¥, € S(N) such that

9= 9a(Va) (A7)
acA

By (2.3), the vector field Z* is of the form

Z% =0y + Z Pa,p(up) 9 = 0o + Z 98 Pa.p<ip))s
|B1>let] |81} et

where the py g are polynomials in # depending only on (up,...,u;) with j < |[B].
Therefore, there exist polynomials gy g such that

9y = 2%+ Z ZPqup.
181> ol

Since the Schwartz space S(N) is stable by multiplication by polynomials, we get from
(A7) that there exists ¢y € S(N) such that

0= Z%G0a) (A8)
acA

For |a| > 1, there exist j € {1,..., p} and 8 with |8]| = |e¢| — 1 such that Z* = ZjZ/S -
2z j. By induction on |e|, since the Schwartz space S(N) is stable by the vector fields
Z;, this shows that, for any o and ¢ € S(N), there exists ¢; € S(N) such that Z%(¢) =
P
Y Zj(¢j). Thus (A6) follows from (A 8). The proof of Lemma A.2 is complete. O
j=1
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