Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T15:46:54.563Z Has data issue: false hasContentIssue false

ON LOCAL AND GLOBAL RIGIDITY OF QUASI-CONFORMAL ANOSOV DIFFEOMORPHISMS

Published online by Cambridge University Press:  16 September 2003

Boris Kalinin
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA (kalinin@umich.edu; sadovska@umich.edu)
Victoria Sadovskaya
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA (kalinin@umich.edu; sadovska@umich.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a transitive uniformly quasi-conformal Anosov diffeomorphism $f$ of a compact manifold $\mathcal{M}$. We prove that if the stable and unstable distributions have dimensions greater than two, then $f$ is $C^\infty$ conjugate to an affine Anosov automorphism of a finite factor of a torus. If the dimensions are at least two, the same conclusion holds under the additional assumption that $\mathcal{M}$ is an infranilmanifold. We also describe necessary and sufficient conditions for smoothness of conjugacy between such a diffeomorphism and a small perturbation.

AMS 2000 Mathematics subject classification: Primary 37C; 37D

Type
Research Article
Copyright
2003 Cambridge University Press