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Abstract We consider a transitive uniformly quasi-conformal Anosov diffeomorphism f of a compact
manifold M. We prove that if the stable and unstable distributions have dimensions greater than two,
then f is C∞ conjugate to an affine Anosov automorphism of a finite factor of a torus. If the dimensions
are at least two, the same conclusion holds under the additional assumption that M is an infranilman-
ifold. We also describe necessary and sufficient conditions for smoothness of conjugacy between such a
diffeomorphism and a small perturbation.
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1. Introduction

The goal of this paper is to investigate the local and global rigidity of uniformly quasi-
conformal Anosov diffeomorphisms. First we study the global rigidity, i.e. a classification
of these systems up to C∞ conjugacy. Then we consider local rigidity, i.e. the question
when an Anosov diffeomorphism is smoothly conjugate to a small perturbation.

The global rigidity properties of conformal and quasi-conformal Anosov systems were
studied by Sullivan [18], Kanai [13] and Yue [19] in the case of geodesic flows of compact
manifolds of negative curvature of dimension at least three. Based on the earlier work
of Kanai, Yue showed that if the flow is uniformly quasi-conformal, then the manifold is
of constant curvature. The approach used in these papers was centred at studying the
properties of the sphere at infinity. In [17], Sadovskaya considered a more general class of
uniformly quasi-conformal contact Anosov flows and symplectic Anosov diffeomorphisms.
Using a different approach, she proved that these systems are essentially C∞ conjugate
to algebraic models, i.e. automorphisms of tori and geodesic flows of compact manifolds
of constant negative curvature. The following theorem generalizes this result for the case
of arbitrary transitive uniformly quasi-conformal Anosov diffeomorphisms.

Theorem 1.1. Let f be a transitive C∞ Anosov diffeomorphism of a compact manifold
M which is uniformly quasi-conformal on the stable and on the unstable distributions.
Suppose either that both distributions have dimension at least three, or that they have
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dimension at least two and M is an infranilmanifold. Then f is C∞ conjugate to an
affine Anosov automorphism of a finite factor of a torus.

The example in § 4 shows that there exist non-trivial finite factors of conformal Anosov
toral automorphisms. We prove this theorem in § 3. We use the results of Sadovskaya
in [17] and the theorem of Benoist and Labourie in [1] on classification of Anosov dif-
feomorphisms with C∞ Anosov splitting preserving a C∞ affine connection.

We note that the global rigidity results described above do not have analogues for
systems with one-dimensional stable or unstable distributions, since all maps in dimension
one are conformal.

We apply Theorem 1.1 to investigate the local rigidity of quasi-conformal Anosov
diffeomorphisms. The proofs of all the statements are given in § 5.

If f is an Anosov diffeomorphism and g is sufficiently C1 close to f , then it is well known
that f and g are topologically conjugate. In general, the conjugacy is only Hölder contin-
uous. A necessary condition for the conjugacy to be C1 is that the Jordan normal forms of
the derivatives of the return maps of f and g at the corresponding periodic points are the
same. This condition is also sufficient in the case of Anosov systems with one-dimensional
stable and unstable distributions [2,3,6,16]. Examples constructed by de la Llave in [3]
show that this condition, in general, is not sufficient for higher-dimensional systems.
In contrast to the one-dimensional case, these examples have different stable (unstable)
Lyapunov exponents, i.e. different exponential rates of contraction (expansion). However,
even if there is only one stable and one unstable Lyapunov exponent, one cannot expect
to generalize the one-dimensional result. Indeed, in [4], de la Llave gave an example
of an automorphism of a four-dimensional torus with double stable (unstable) eigen-
value and a non-trivial Jordan block in the stable (unstable) direction, for which the
condition above does not guarantee C1 conjugacy to a perturbation. This suggests that
the quasi-conformality of the unperturbed system is a natural assumption for higher-
dimensional generalizations. Indeed, for a uniformly quasi-conformal Anosov diffeomor-
phism, the derivative of the return map at any periodic point is diagonalizable over C,
and all of its stable (unstable) eigenvalues are equal in modulus. In [4], de la Llave proved
that the coincidence of the Jordan normal forms at the corresponding periodic points
guarantees the smoothness of the conjugacy for a certain class of conformal Anosov sys-
tem. We discuss this result in more detail below. If the unperturbed system is uniformly
quasi-conformal, the following corollary of Theorem 1.1 gives alternative necessary and
sufficient conditions for the regularity of the conjugacy.

Corollary 1.2. Let f be a diffeomorphism as in Theorem 1.1, and let g be a C∞

Anosov diffeomorphism of M that is topologically conjugate to f . Then uniform quasi-
conformality of g is necessary for the conjugacy to be Lipschitz and sufficient for the
conjugacy to be C∞.

Next we would like to describe some conditions on the derivatives of the perturbed
system at the periodic points which guarantee its quasi-conformality. We use the following
proposition, which can be viewed as an analogue of a non-commutative Livšic theorem.
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Proposition 1.3. Let g be a transitive Anosov diffeomorphism of a compact manifold
M satisfying the following ‘bunching’ conditions: there exist numbers 0 < νs � µs < 1 <

µu � νu such that, for all x ∈ M,

νs‖v‖ � ‖df s
x(v)‖ � µs‖v‖ for all v ∈ Es(x),

µu‖v‖ � ‖dfu
x (v)‖ � νu‖v‖ for all v ∈ Eu(x),

and
µ2

s

νs
< 1,

µs

νsµu
< 1,

νu

µ2
u

< 1,
νuµs

µu
< 1. (1.1)

Suppose there exists a continuous Riemannian metric on M such that, for all periodic
points, the stable and the unstable differentials of the return map are conformal. Then g

is uniformly quasi-conformal.

We note that once g in the proposition is uniformly quasi-conformal, the results of
Sadovskaya in [17] imply that g is actually conformal with respect to a smooth Rieman-
nian metric (see Corollary 3.3 below).

Let f be a diffeomorphism satisfying the assumptions of Theorem 1.1. Then it follows
from the theorem that f also satisfies conditions (1.1) above, and so does any sufficiently
C1-small perturbation of f . Thus Corollary 1.2 and Proposition 1.3 imply the following
theorem.

Theorem 1.4. Let f be a diffeomorphism as in Theorem 1.1 and let g be its C1-small
perturbation. Suppose that there exists a continuous Riemannian metric on M such that
for all periodic points of g the stable and the unstable differentials of the return map are
conformal. Then g is C∞ conjugate to f .

It would be interesting to know to what extent the assumption of Theorem 1.4 can
be relaxed. Since uniform quasi-conformality is a necessary condition, the derivative of
the return map at any periodic point must be diagonalizable over C, and all of its stable
(unstable) eigenvalues must be equal in modulus. This is equivalent to the fact that, for
each periodic orbit, there exists an invariant conformal structure that, however, may vary
from orbit to orbit in a non-continuous fashion.

Remark 1.5. After this paper was written, we became aware of a result by de la Llave [5,
Theorem 10.3], which is similar to Proposition 1.3. In this theorem, the assumption of
continuity of the Riemannian metric is essentially replaced by the assumption of its
uniform boundedness. Hence the assumption of Theorem 1.4 can be similarly relaxed.
The proof of Proposition 1.3 can be modified using the specification property to obtain
the stronger version.

We note that if the stable and the unstable differentials of the return maps at periodic
points of g are scalar multiples of identity, then they preserve any conformal structure,
and hence the assumption of Theorem 1.4 is trivially satisfied. Thus we obtain the fol-
lowing corollary.
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Corollary 1.6. Let f be a diffeomorphism as in Theorem 1.1 such that, for any periodic
point x,

dfm|Es(x) = as(x) · Id and dfm|Eu(x) = au(x) · Id, (1.2)

where m is the period and as(x), as(x) are real numbers. Let g be a C∞ diffeomorphism
of M that is sufficiently C1-close to f , and let h be the topological conjugacy between f

and g. Suppose that, for any periodic point x, the derivatives dfm
x and dgm

h(x) have the
same Jordan normal form. Then h is a C∞ diffeomorphism, i.e. g is C∞ conjugate to f .

A similar result was obtained in [4] by de la Llave under the additional assumption
that the subspaces Es(x) and Eu(x) for all x ∈ M can be continuously identified with
R

dim Es(x) and R
dim Eu(x) in such a way that the restrictions of the differential of f to

Es(x) and Eu(x) are scalar multiples of identity. We note that this implies conformality
of f with respect to a continuous metric on M.

It is an open question whether the additional assumption (1.2) can be removed. This
question is closely related to generalizing Proposition 1.3 and Theorem 1.4.

2. Preliminaries

In this section we briefly introduce the main notions used throughout this paper.

2.1. Anosov diffeomorphisms

Let f be a smooth diffeomorphism of a compact Riemannian manifold M. The diffeo-
morphism f is called Anosov if there exist a decomposition of the tangent bundle TM
into two f -invariant continuous subbundles Es and Eu, and constants C > 0, 0 < λ < 1,
such that, for all n ∈ N,

‖dfn(v)‖ � Cλn‖v‖ for v ∈ Es,

‖df−n(v)‖ � Cλn‖v‖ for v ∈ Eu.

The distributions Es and Eu are called stable and unstable. It is well known that these
distributions are tangential to the foliations W s and W u, respectively (see, for exam-
ple, [14]). The leaves of these foliations are C∞ injectively immersed Euclidean spaces,
but in general the distributions Es and Eu are only Hölder continuous transversally to
the corresponding foliations.

2.2. Uniformly quasi-conformal diffeomorphisms

Let f be an Anosov diffeomorphism of a compact Riemannian manifold M. We say that
the diffeomorphism is uniformly quasi-conformal on the stable distribution or uniformly
s-quasi-conformal if the quasi-conformal distortion

Ks(x, n) =
max{‖dfn(v)‖ : v ∈ Es(x), ‖v‖ = 1}
min{‖dfn(v)‖ : v ∈ Es(x), ‖v‖ = 1}
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is uniformly bounded for all n ∈ Z and x ∈ M. This is equivalent to the classical
definition of uniform quasi-conformality, since

Ks(x, n) = lim sup
r→0

sup{ds(fny, fnx) : y ∈ Ss(x, r)}
inf{ds(fny, fnx) : y ∈ Ss(x, r)} ,

where ds is the induced metric along the W s leaves and

Ss(x, r) = {y ∈ W s(x) : ds(x, y) = r}.

If Ks(x, n) = 1 for all x and n, the diffeomorphism is called s-conformal. The notions of
u-conformality and uniform u-quasi-conformality are defined similarly.

If a diffeomorphism is both uniformly u-quasi-conformal (u-conformal) and uniformly
s-quasi-conformal (s-conformal), then it is called uniformly quasi-conformal (conformal).
We note that the notion of uniform quasi-conformality does not depend on the choice of
a Riemannian metric on the manifold.

2.3. Conformal structures

(See [13] for more details.) A conformal structure on R
n, n � 2, is a class of propor-

tional inner products. The space Cn of conformal structures on R
n identifies with the

space of real symmetric positive-definite n × n matrices with determinant 1, which is
isomorphic to SL(n, R)/SO(n, R). It is known that the space Cn = SL(n, R)/SO(n, R)
carries a GL(n, R)-invariant metric for which Cn is a Riemannian symmetric space of
non-positive curvature. Any linear isomorphism of R

n induces an isometry of Cn.
Now, let f be an Anosov diffeomorphism of a compact manifold M. For each x ∈ M,

let Cs(x) be the space of conformal structures on Es(x). Thus we obtain a bundle Cs over
M whose fibre over x is Cs(x). A continuous (smooth, measurable) section of Cs is called
a continuous (smooth, measurable) conformal structure on Es. A measurable conformal
structure τ on Es is called bounded if the distance between τ(x) and τ0(x) is uniformly
bounded on M, where τ0 is a continuous conformal structure on Es.

Clearly, a diffeomorphism is conformal with respect to a Riemannian metric if and
only if it preserves the conformal structure associated with this metric.

2.4. Affine connections

Let M be a smooth manifold. An affine connection ∇ on M is a mapping that asso-
ciates a vector field ∇XY to a pair of smooth vector fields X and Y on M and satisfies
the following properties,

(1) ∇ϕX+ψY Z = ϕ∇XZ + ψ∇Y Z,

(2) ∇X(Y + Z) = ∇XY + ∇XZ,

(3) ∇X(ϕY ) = (Xϕ)Y + ϕ∇XY ,

where X, Y , Z are smooth vector fields and ϕ, ψ are smooth functions on M. A connec-
tion ∇ is of class Cr, r � 0, if ∇XY is Cr for any two C∞ vector fields X and Y .
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3. Proof of Theorem 1.1

Let f be a C∞ transitive uniformly quasi-conformal Anosov diffeomorphism of a compact
manifold M with dimEu � 2 and dimEs � 2. First we recall the following two results
established in [17].

Theorem 3.1 (cf. Theorem 1.3 of [17]). Let f be a topologically transitive uniformly
u-quasi-conformal C∞ Anosov diffeomorphism of a compact manifold M. Then it is
conformal with respect to a Riemannian metric on Eu, which is Hölder continuous on
M and C∞ along the leaves of the unstable foliation.

Theorem 3.2 (cf. Theorem 1.4 of [17]). Let f be a C∞ Anosov diffeomorphism
of a compact manifold M with dim Eu � 2. Suppose it is conformal with respect to
a Riemannian metric on the unstable distribution, which is continuous on M and C∞

along the leaves of the unstable foliation. Then the stable holonomy maps are conformal
and the stable distribution is C∞.

Since the diffeomorphism f is also uniformly s-quasi-conformal, Theorems 3.1 and 3.2
also hold for the corresponding distributions and holonomy maps. Thus both the stable
and the unstable distributions are C∞, and both the stable and the unstable holonomy
maps are C∞ and conformal with respect to the corresponding metrics.

Let τu and τ s be the conformal structures associated with the conformal metrics on
Eu and Es. Since the distribution Eu is C∞, and the stable holonomy maps preserve
the structure τu and are C∞, we conclude that τu is C∞ not only along the leaves of
W u, but also along the leaves of W s. Thus the structure τu is C∞ on the manifold M.
Similarly, τ s is also C∞ on M. Normalizing these structures using C∞ functions on M,
we obtain metrics on Eu and Es that are C∞ on M. Combining these two metrics, we
obtain the following corollary.

Corollary 3.3. Let f be a transitive uniformly quasi-conformal C∞ Anosov diffeomor-
phism of a compact manifold M with dim Eu � 2 and dim Es � 2. Then the Anosov
splitting is C∞ and f is conformal with respect to a C∞ Riemannian metric on M.

To prove Theorem 1.1, we use a result of Benoist and Labourie, who showed in [1]
that any Anosov diffeomorphism with C∞ Anosov splitting, which preserves a C∞ affine
connection, is C∞ conjugate to an automorphism of an infranilmanifold. The main part
of our proof is a construction of an f -invariant smooth affine connection. Then Corol-
lary 3.3 and the result of Benoist and Labourie imply that f is C∞ conjugate to an
Anosov automorphism an infranilmanifold. Since the diffeomorphism is uniformly quasi-
conformal, the corresponding nilpotent group has to be abelian. Indeed, if the group is
not abelian, then the Anosov automorphism must have at least two unstable Lyapunov
exponents and thus can not be uniformly quasi-conformal. Since the group is abelian,
the infranilmanifold is finitely covered by a torus. To complete the proof of Theorem 1.1,
we will construct an f -invariant smooth affine connection.

In [8], Feres proved that any 1
2 -pinched Anosov diffeomorphism preserves a unique

invariant continuous affine connection. We generalize this result in Corollary 3.6. In [9],
Feres noted that the exponential map of an invariant connection gives a non-stationary
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local linearization. Our approach is different: we use a non-stationary local linearization
to obtain an f -invariant affine connection, which is as smooth as the linearization.

Proposition 3.4. Let f be a diffeomorphism of a compact manifold M. Suppose that
there exists a family of C∞ diffeomorphisms hx, x ∈ M, from a neighbourhood Ux of x

to TxM , such that

(i) hfx ◦ f = dfx ◦ hx;

(ii) hx(x) = 0 and (dhx)x is the identity map;

(iii) hx depends Cr smoothly on x, r = 0, 1, . . . ,∞.

Then there exists a Cr f -invariant affine connection.

Proof. To obtain the f -invariant connection ∇, we pull back the affine connection ∇x

on TxM using the map hx at each point x ∈ M . More precisely, for vector fields X and
Y on M, we define

(∇XY )(x) = (hx)−1
∗ ∇x

(hx)∗X(hx)∗Y.

It is easy to see that ∇ is an affine f -invariant connection, which is as smooth as the
dependence of hx on x. �

Thus, to obtain a smooth f -invariant affine connection, it suffices to construct a local
non-stationary linearization and show that it is smooth. First we use the following propo-
sition from [17] to obtain linearizations in the stable and in the unstable directions
separately.

Proposition 3.5 (cf. Proposition 4.1 of [17]). Let f be a diffeomorphism of a com-
pact Riemannian manifold M and let W be a continuous invariant foliation with C∞

leaves. Suppose that ‖df |TW ‖ < 1 and there exist numbers C > 0 and ε > 0 such that,
for any x ∈ M and n ∈ N,

‖(dfn|TxW )−1‖ · ‖dfn|TxW ‖2 � C(1 − ε)n. (3.1)

Then, for any x ∈ M, there exists a C∞ diffeomorphism hw
x : W (x) → TxW such that

(i) hw
fx ◦ f = dfx ◦ hw

x ;

(ii) hw
x (x) = 0 and (dhw

x )x is the identity map;

(iii) hw
x depends continuously on x in C∞ topology.

Clearly, condition (3.1) is satisfied for uniformly s-quasi-conformal diffeomorphisms,
with W being the stable foliation. Thus we obtain a family of diffeomorphisms
hs

x : W s(x) → Es(x). Similarly, for a uniformly u-quasi-conformal diffeomorphism, we
obtain a family hu

x : W u(x) → Eu(x).
If, for an Anosov diffeomorphism, there exist stable and unstable linearizations hs and

hu as above, we can construct a local linearization hx : Ux → TxM, where Ux is a small
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open neighbourhood of x ∈ M and hx depends continuously on x. We define the map
hx as follows:

hx|Wu(x) = hu
x, hx|W s(x) = hs

x, (3.2)

and, for y ∈ W u(x) ∩ Ux and z ∈ W s(x) ∩ Ux, we set

hx([y, z]) = hu
x(y) + hs

x(z), (3.3)

where [y, z] = W s
loc(y) ∩ W u

loc(z). It is easy to see that h satisfies conditions (i)–(iii) of
Proposition 3.4 with r = 0.

Thus, as a corollary of Propositions 3.4 and 3.5, we obtain the following statement.
Since our assumption is clearly weaker than 1

2 -pinching, it generalizes the result of Feres
mentioned above.

Corollary 3.6. Let f be an Anosov diffeomorphism of a compact Riemannian manifold
M. Suppose there exists C > 0 and ε > 0 such that, for any x ∈ M,

‖(dfn|Es(x))−1‖ · ‖dfn|Es(x)‖2 � C(1 − ε)n for n > 0

and

‖(dfn|Eu(x))−1‖ · ‖dfn|Eu(x)‖2 � C(1 − ε)|n| for n < 0.

Then f preserves a continuous affine connection.

So far, we have constructed a local non-stationary linearization h and an invariant
continuous affine connection ∇ for the uniformly quasi-conformal Anosov diffeomorphism
f . To complete the proof of Theorem 1.1, it remains to show that hx depend smoothly
on x, and hence ∇ is smooth. Since the stable and unstable foliations are C∞, it is clear
from the definition of hx above that it suffices to prove that the maps hs

x and hu
x depend

smoothly on x. We will show this for hs
x.

An important property of the maps hs
x is that they are conformal in the following sense.

Recall that τ s is the invariant conformal structure on the stable distribution. For each
x ∈ M, we extend the conformal structure τ s(x) at 0 ∈ Es(x) to all other points of Es(x)
via translations. We denote this constant (translation-invariant) conformal structure on
Es(x) by σs. Since the conformal structure τ s is f -invariant, σs is df -invariant. The
following lemma from [17] shows that hs

x is conformal, i.e. it takes τ s on W s(x) into σs

on Es(x). We include the proof for the sake of completeness.

Lemma 3.7 (cf. Lemma 3.1 of [17]). If the family of maps hs
x satisfies properties (i)–

(iii) of Proposition 3.5, then hs
x is conformal, i.e. it takes τ s on W s

x into σs on Es(x).

Proof. For any map g and conformal structure ρ(x) at a point x ∈ M, we denote by
g(ρ(x)) the push forward of ρ(x) to the point g(x) by dgx. To simplify the notations, for
this proof we put h = hs, τ = τ s and σ = σs.

We need to show that, for any y ∈ W s(x), hx(τ(y)) = σ(hx(y)). To do this, we move
forward using the diffeomorphism f . First we note that, for any ε > 0, there exists n > 0
such that

dist(hfnx(τ(fny)), σ(hfnx(fn(y)))) < ε.
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Indeed, it follows from Proposition 3.5 (iii) that the restrictions of the derivative of hx

to the ball of radius 1 around x in W s(x), x ∈ M, form an equicontinuous family. Hence
if fny is sufficiently close to fnx, then dhfnx(fny) is close to dhfnx(fnx), which is the
identity. Thus hfnx(τ(fny)) is close to hfnx(τ(fnx)) and, by the definition of σ,

hfnx(τ(fnx)) = σ(hfnx(fnx)) = σ(hfnx(fny)).

To obtain the following equalities, we note that df−n induces an isometry between
the spaces of conformal structures, τ is f -invariant, σ is df -invariant and hx(y) =
df−n(hfnx(fny)) by Proposition 3.5 (i). Thus

ε > dist(hfnx(τ(fny)), σ(hfnx(fny)))

= dist(df−n(hfnx(τ(fny))), df−n(σ(hfnx(fny))))

= dist(df−n(hfnx(fn(τ(y)))), σ(df−n(hfnx(fny))))

= dist(hx(τ(y)), σ(hx(y))).

As the above holds for any ε > 0, it follows that hx(τ(y)) = σ(hx(y)). �

Now we show that the maps hs
x depend smoothly on the base point. We fix a point

x in M and consider the local coordinates given by the C∞ map hx : Ux → TxM
defined by (3.2) and (3.3). Let us identify TxM with R

n × R
m in such a way that Es(x)

corresponds to R
n, and Eu(x) corresponds to R

m. Then hx identifies the neighbourhood
Ux ⊂ M of x with an open neighbourhood U of 0 in R

n × R
m. It follows from (3.3)

that the local stable (unstable) manifolds correspond to subspaces parallel to R
n (Rm).

The tangent space TpM, p ∈ Ux, is identified with R
n × R

m by (dhx)p in such a way
that 0 corresponds to p̃ = hx(p). We will show that, when written in these coordinates,
the maps hs

p, p ∈ Ux, are identity maps and hence they depend smoothly on p.
Let us define the map

ψp = hx|W s
p∩Ux

: W s
p ∩ Ux → R

n
p̃ ∩ U,

where R
n
p̃ is the subspace through p̃ parallel to R

n. We denote by h̃s
p the coordinate

representation of hs
p, i.e.

h̃s
p = (dψp)p ◦ hs

p ◦ ψ−1
p : R

n
p̃ ∩ U → R

n
p̃ .

It is clear from the construction of hx that

ψp = H̃u
0,p̃ ◦ hs

x ◦ Hu
p,x,

where Hu
p,x is the unstable holonomy map from W s(p) to W s(x), and H̃u

0,p̃ is the projec-
tion from R

n to R
n
p̃ along R

m in R
n ×R

m. The holonomy map Hu
p,x is C∞ and conformal

by Theorem 3.2. The map hs
x is C∞ and conformal by Proposition 3.5 and Lemma 3.7.

Hence the map ψp is also C∞ and conformal. Since hs
p is conformal, we conclude that h̃s

p

is C∞ and conformal. We also note that

h̃s
p(p̃) = p̃ and (dh̃s

p)p̃ = (dψp)p ◦ (dhs
p)p ◦ (dψ−1

p )p̃ = Id, (3.4)

since, by Proposition 3.5 (ii), we have (dhs
p)p = Id, where Id is the identity map.
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To conclude that h̃s
p depends smoothly on p we will use the fact that the holonomy map

Hu
p,x from W s(p) to W s(x) is defined globally on the whole stable leaf. If dimEs > 2, this

fact is given by Proposition 3.8 below. If dimEs = 2, we use the assumption that M is
an infranilmanifold. In this case, the transitive Anosov diffeomorphism f of M is known
to be topologically conjugate to an Anosov automorphism of M [10, 15], which again
implies that the holonomy map Hu

p,x from W s(p) to W s(x) is defined globally on the
whole stable leaf. This is the only place in the proof where we use the extra assumption
that M is an infranilmanifold in the case of dimEs = 2 (or dimEs = 2). Now it is easy
to see that the map ψp can be extended to the whole W s(p). Hence the map h̃s

p can be
extended to a conformal C∞ map from R

n
p̃ to itself. Since n � 2, this implies that h̃s

p is
a linear map. Now it follows from equations (3.4) that h̃s

p is the identity map. Thus we
conclude that the maps hs

p, hu
p, and hence hp, depend C∞ smoothly on the base point p.

To complete the proof of Theorem 1.1, it remains to prove the following proposition.

Proposition 3.8. Let f be a uniformly s-quasi-conformal transitive Anosov diffeomor-
phism of a compact manifold M with dimension of the stable distribution greater than 2.
Then the unstable holonomy maps are defined globally, i.e. on the whole leaves of the
stable foliation.

Proof. Recall that, by Theorems 3.1 and 3.2, the unstable holonomies are C∞ and
conformal with respect to a continuous Riemannian metric on Es, which is smooth along
the leaves of W s. By Proposition 3.5 and Lemma 3.7, there exists a continuous (in
C∞ topology) family of C∞ conformal maps hs

x : W s(x) → Es(x) that give a non-
stationary linearization of f along the stable leaves.

We note that the maps hs
x induce a conformal affine structure on the stable

leaves via identifications of W s(x) with Es(x). Indeed, for z ∈ W s(x), the map
hs

z ◦ (hs
x)−1 : Es(x) → Es(z) is a globally defined smooth conformal map and hence it is

a conformal affine map. Thus we have a notion of a sphere in W s(x). Since the unstable
holonomy maps are conformal and dimEs > 2, the holonomies map spheres to spheres.
This follows from the fact that a conformal map from an open set in R

n to R
n, n > 2, is

a composition of an affine map and an inversion.
The rest of the proof is an adaptation of an argument used by Ghys in [7] to study

holomorphic Anosov systems. To prove the proposition, it suffices to show that, for any
point x ∈ M and any nearby point y ∈ W u(x), the holonomy Hu

x,y is defined on any ball
in W s(x) containing x. Here, by a ball we mean a compact set in W s(x) whose boundary
is a sphere. Let us fix such x and y and consider a ball B in W s(x) containing x.

We fix some Riemannian metric on M and connect x and y by a shortest path
γ : [0, 1] → W u(x) with x = γ(0) and y = γ(1). Let t0 be the supremum of t ∈ [0, 1]
such that the holonomy map Hu

x,γ(t) from W s(x) to W s(γ(t)) is defined on the whole
ball B. Since B is a compact set, it is clear that the holonomy is defined from B to any
sufficiently close stable leaf, and hence t0 > 0. It suffices to show that Hu

x,γ(t0) is defined
on the whole ball B. Indeed, in this case, Hu

x,γ(t0)(B) is compact and hence the holonomy
could be extended beyond t0, which forces t0 = 1.
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If the supremum R of diamHu
x,γ(t)(B) for 0 � t < t0 is finite, then Hu

x,γ(t0) is defined
on the whole ball B. This follows from the fact that, for any t sufficiently close to t0, the
holonomy Hu

γ(t),γ(t0) is defined on the whole ball of radius R around γ(t).
Suppose, to the contrary, that diamHu

x,γ(tn)(B) tends to infinity as tn → t0. We
denote xn = γ(tn). Recall that Hu

x,xn
(B) is a ball in W s(xn), i.e. the image of a ball

B(z̃n) in Es(xn) centred at some point z̃n under the map (hs
xn

)−1. It is easy to see that
Hu

x,xn
(B) is the image of a ball in Es(zn) centred at zero under the map (hs

zn
)−1, where

zn = (hs
xn

)−1(z̃n). This follows from the fact that hs
zn

◦ (hs
xn

)−1 is a conformal affine
map and thus takes B(z̃n) to a ball in Es(zn) centred at 0 = hs

zn
◦ (hs

xn
)−1(z̃n). We note

that for any point z ∈ M, the images of the balls centred at zero in Es(z) under the
map (hs

z)
−1 exhaust W s(z). Hence the diameter of the largest metric ball contained in

Hu
x,xn

(B) tends to infinity.
We recall that for a transitive Anosov diffeomorphism f there exists a family {µs}

of measures on the stable leaves which are conditional measures of the Bowen–Margulis
measure (the unique measure of maximal entropy) [14]. These measures are invariant
under the unstable holonomies, i.e. µs(V ) = µs(Hu

x,y(V )), where V is an open sub-
set of W s(x) with compact closure. These measures also contract uniformly under f ,
i.e. µs(fnV ) = e−hnµs(V ), where h is the topological entropy of f . Since the measures
are invariant under the unstable holonomies and the Bowen–Margulis measure is positive
on open sets, it is easy to see that µs(Bs

1(x)) is bounded away from zero, where Bs
1(x) is

a ball of radius 1 in W s(x). Now it follows from the uniform contraction property that
µs(Bs

R(x)) → ∞ as R → ∞ uniformly in x. This implies that µs(Hu
x,xn

(B)) → ∞, which
contradicts the fact that µs(Hu

x,xn
(B)) = µs(B) by holonomy invariance.

Thus we conclude that the holonomy map Hu
x,γ(t0) is defined on the whole B and hence

γ(t0) = y. Since the choice of B is arbitrary, it follows that the holonomy Hu
x,y is defined

on the whole stable leaf W s(x). �

4. A conformal Anosov automorphism of an infratorus

In this section we construct an example of a conformal Anosov automorphism of an
orientable finite factor of the four-dimensional torus T

4.
We consider a group Γ of isometries of R

4 = R
2 ×R

2 generated by the integral transla-
tions Z

4 = Z
2×Z

2 and an element γ such that, for (x, y) ∈ R
2×R

2, γ(x, y) = (x + v,−y),
where

v =
(

0
1
2

)
.

Note that γ2 ∈ Z
4, and Z

4 is a normal subgroup of index 2 in Γ .
It is easy to see that the group Γ acts on R

4 without fixed points. Hence N = R
4/Γ

is a flat manifold whose double cover is T
4. Note that N is orientable, since both Z

4 and
γ preserve the orientation of R

4. Also, N is not a torus, since Γ is not abelian. Indeed,
if β(x, y) = (x, y + y′), where y′ 	= (0, 0), then β ◦ γ 	= γ ◦ β.
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Let A be the direct product of an Anosov automorphism A of R
2 with itself,

A =

(
A 0
0 A

)
: R

4 → R
4, where A =

(
3 2
1 1

)
.

To show that the action of A on R
4 projects to N , we verify that, for any (x, y) ∈ R

4,
A(Γ (x, y)) = Γ (A(x, y)). Since detA = 1, A(Z4) = Z

4. Thus it suffices to check that
A(γ(x, y)) ∈ Z

4(γ(A(x, y))) and hence A(Z4(γ(x, y))) = Z
4(γ(A(x, y))). This can be

seen as follows:

A(γ(x, y)) − γ(A(x, y)) = A(x + v,−y) − γ(Ax, Ay)

= (Ax + Av,−Ay) − (Ax + v,−Ay)

= (Av − v, 0)

=
((

1
1
2

)
−

(
0
1
2

)
, 0

)

=
((

1
0

)
, 0

)
∈ Z

2 × Z
2.

Thus we obtain a conformal Anosov automorphism of N .

5. Proofs of the local rigidity results

In this section we prove our results on local rigidity. First we note that, as indicated
in § 1, Theorem 1.4 follows from Corollary 1.2 and Proposition 1.3, and Corollary 1.6
follows from Theorem 1.4. Below we give the proofs of Corollary 1.2 and Proposition 1.3.

5.1. Proof of Corollary 1.2

If g is Lipschitz conjugate to f , then it easily follows from the definition that g is
uniformly quasi-conformal (see § 2.2).

Suppose that g is uniformly quasi-conformal. Then, by Theorem 1.1, both f and g are
C∞ conjugate to affine automorphisms of a finite factor of a torus T

k, where k = dimM.
These affine automorphisms and the corresponding conjugacy lift to the torus T

k. For
this we note that the fundamental group of M has a unique maximal abelian subgroup
isomorphic to Z

k. Thus it suffices to show that any two Anosov automorphisms A and B

of T
k that are topologically conjugate are also C∞ conjugate. Let h be a conjugacy, i.e. a

homeomorphism of T
k such that A ◦ h = h ◦ B. Let H be the induced action of h on the

fundamental group Z
k of T

k. Then H is an integral matrix with determinant ±1, and
hence it induces an automorphism of T

k. From the induced actions of A, B and h on the
fundamental group Z

k, we see that A ◦ H = H ◦ B. Thus H gives a smooth conjugacy
between A and B. In fact, H = h, since the conjugacy to an Anosov automorphism is
known to be unique in a given homotopy class [14].

https://doi.org/10.1017/S1474748003000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000161


Rigidity of quasi-conformal Anosov diffeomorphisms 579

5.2. Proof of Proposition 1.3

We will show that g is uniformly s-quasi-conformal. Uniform u-quasi-conformality of
g follows in the same way.

Recall that Cs is a fibre bundle over M whose fibre over x is the space Cs(x) of
conformal structures on Es(x). Let σ be the continuous conformal structure on the stable
distribution induced by the Riemannian metric given in Proposition 1.3. For σ, or any
other conformal structure, we denote by gn(σ(x)) ∈ Cs(gnx) the push forward of σ(x) ∈
Cs(x) to the point gnx by dgn|Es(x).

Since g is topologically transitive, we can consider a point x with dense orbit. Let
τ(x) ∈ Cs(x) be an arbitrary conformal structure at x. On the orbit of x we define an
invariant conformal structure τ as follows: τ(gnx) = gn(τ(x)) for n ∈ Z. We will show
that the structure τ is bounded, i.e. g is uniformly s-quasi-conformal along the orbit of x.
Since this orbit is dense, this easily implies that g is uniformly s-quasi-conformal on M.

We denote by l(x) the distance between the conformal structures τ(x) and σ(x). We will
show that the function l is uniformly continuous on the orbit of x, and hence extends to a
continuous function on M. This implies that l is bounded. Let y = gmx and suppose that
gny is close enough to y to apply the Anosov closing lemma (see [14, Theorem 6.4.15]).
Then there exists a periodic point z ∈ M with gnz = z such that

dist(giy, giz) � k · dist(y, gny) for i = 0, 1, . . . , n,

where k is a uniform constant. Then it follows from Lemma 5.1 below that

‖(dgn
z )−1 ◦ dgn

y − Id ‖ � Ck · dist(y, gny). (5.1)

Since the differential dgn|Es(y) induces an isometry on the space of conformal structures
and τ is invariant, we obtain

l(gny) = dist(τ(gny), σ(gny))

= dist(gn(τ(y)), σ(gny))

� dist(gn(τ(y)), gn(σ(y))) + dist(gn(σ(y)), σ(gny))

= dist(τ(y), σ(y)) + dist(gn(σ(y)), σ(gny))

= l(y) + dist(gn(σ(y)), σ(gny)).

To estimate the last term we note that gn(σ(z)) = σ(gn(z)) = σ(z). We also recall that
σ is continuous on M and hence it is bounded and uniformly continuous. Let ω(ε) be its
modulus of continuity, i.e. if dist(x, y) < ε, then dist(σ(x), σ(y)) < ω(ε), and ω(ε) → 0
as ε → 0. Then, using (5.1), we obtain

dist(gn(σ(y)), σ(gny))

� dist(gn(σ(y)), gn(σ(z))) + dist(σ(gnz), σ(gny))

� dist(((dgn
z )−1 ◦ dgn

y )∗σ(y), σ(z)) + ω(dist(z, gny))

� dist(((dgn
z )−1 ◦ dgn

y )∗σ(y), σ(y)) + dist(σ(y), σ(z)) + ω(k · dist(y, gny))

� k1kC · dist(y, gny) + 2ω(k · dist(y, gny)),
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where the constant k1 depends on the bounded structure σ. Thus we see that

|l(y) − l(gny)| � k1kC · dist(y, gny) + 2ω(k · dist(y, gny)) =: ω̃(dist(y, gny)).

Clearly, ω̃(ε) → 0 as ε → 0 and hence the function l is uniformly continuous. This implies
that l is bounded and thus the conformal structure τ is bounded along the dense orbit
of x, i.e. the quasi-conformal distortion Ks(x, n) � K for all n ∈ Z (see § 2.2). Since the
orbit of x is dense and Ks(y, n) depends continuously on y for any fixed n, it is easy to
see that Ks(y, n) � 2K for any y ∈ M and n ∈ Z. Thus g is uniformly s-quasi-conformal.

To complete the proof of the proposition, it remains to prove the following lemma.

Lemma 5.1. Let g be an Anosov diffeomorphism of a compact manifold M satisfying
condition (1.1) of Proposition 1.3. Then there exist C > 0 and ε0 > 0 such that, for any
ε < ε0, x, y ∈ M and n ∈ N with

dist(gi(x), gi(y)) < ε for 0 � i � n,

we have ‖(dgn
x )−1 ◦ dgn

y − Id ‖ � Cε.

Here, to consider the composition of the derivatives, we identify the tangent spaces at
nearby points preserving the Anosov splitting. Since condition (1.1) implies, in particular,
that the Anosov splitting is C1 (see [11,12]), this identification can be also chosen C1.

Proof. Since the differential dgx is the direct sum of the stable differential dg|Es(x) and
the unstable differential dg|Eu(x), it suffices to prove the lemma for these restrictions.
We will prove the lemma for the stable differential, and to simplify the notations we will
write dgx for dg|Es(x).

If ε0 is small enough, there exists a unique point z ∈ W u
loc(x) ∩ W s

loc(y) with

dist(gi(x), gi(z)) < Kε and dist(gi(z), gi(y)) < Kε for 0 � i � n.

Thus it is sufficient to prove the lemma for x and y lying on the same stable or on the same
unstable manifold. We use the notations xi = gi(x) and yi = gi(y) for i = 0, 1, . . . , n.

First we consider the case when y ∈ W s(x). Then

(dgn
x )−1 ◦ dgn

y = (dgn−1
x )−1 ◦ ((dgxn−1)−1 ◦ dgyn−1) ◦ dgn−1

y

= (dgn−1
x )−1 ◦ (Id +rn−1) ◦ dgn−1

y

= (dgn−1
x )−1 ◦ dgn−1

y + (dgn−1
x )−1 ◦ rn−1 ◦ dgn−1

y

= · · · = Id +
n−1∑
i=0

(dgi
x)−1 ◦ ri ◦ dgi

y,

where we write (dgxi)−1 ◦ dgyi = Id +ri. Since the stable differential is Lipschitz contin-
uous and y ∈ W s(x), we have

‖ri‖ � L · dist(xi, yi) � L · ε · µi
s.
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Now, using the first equation in (1.1), we conclude that

‖Id −(dgn
x )−1 ◦ dgn

y ‖ �
n−1∑
i=0

‖(dgi
x)−1‖ · ‖ri‖ · ‖dgi

y‖

�
n−1∑
i=0

ν−i
s · Lεµi

s · µi
s

� Lε

n−1∑
i=0

(
µ2

s

νs

)i

� Cε.

Similarly, we consider the case when y ∈ W u(x),

dgn
x ◦ (dgn

y )−1 = dgn−1
x1 ◦ (dgx ◦ (dgy)−1) ◦ (dgn−1

y1 )−1

= dgn−1
x1 ◦ (Id +rn−1) ◦ (dgn−1

y1 )−1

= dgn−1
x1 ◦ (dgn−1

y1 )−1 + dgn−1
x1 ◦ rn−1 ◦ (dgn−1

y1 )−1

= · · · = Id +
n−1∑
i=0

dgi
xn−i ◦ ri ◦ (dgi

yn−i)−1,

where we write dgxn−i ◦ (dgyn−i)−1 = Id +ri. Since the stable differential is Lipschitz
continuous and y ∈ W u(x), we have

‖ri‖ � L · dist(xn−i, yn−i) � L · µ−i
u · dist(xn, yn) � L · ε · µ−i

u .

Now, using the second equation in (1.1), we conclude that

‖Id −dgn
x ◦ (dgn

y )−1‖ �
n−1∑
i=0

‖dgi
xn−i‖ · ‖ri‖ · ‖(dgi

yn−i)−1‖

�
n−1∑
i=0

µi
s · Lεµ−i

u · ν−i
s

� Lε

n−1∑
i=0

(
µs

µuνs

)i

� Cε.

This completes the proof of the lemma. �
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