Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-06T10:51:23.619Z Has data issue: false hasContentIssue false

INVERSE OF FREQUENTLY HYPERCYCLIC OPERATORS

Published online by Cambridge University Press:  04 February 2021

Quentin Menet*
Affiliation:
Quentin Menet, Département de Mathématique, Université de Mons, 20 Place du Parc, 7000Mons, Belgique (quentin.menet@umons.ac.be)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that there exists an invertible frequently hypercyclic operator on $\ell ^1(\mathbb {N})$ whose inverse is not frequently hypercyclic.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Ansari, S. I., Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), 384390.CrossRefGoogle Scholar
Bayart, F. and Grivaux, S., Hypercyclicité: le r $\hat{\mathrm{o}}$ le du spectre ponctuel unimodulaire [Hypercyclicity: the role of the unimodular point spectrum], C. R. Math. Acad. Sci. Paris 338 (2004), 703708.CrossRefGoogle Scholar
Bayart, F. and Grivaux, S., Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358 (2006), 50835117.CrossRefGoogle Scholar
Bayart, F. and Grivaux, S., Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proc. Lond. Math. Soc. (3) 94 (2007), 181210.CrossRefGoogle Scholar
Bayart, F. and Matheron, É., Dynamics of Linear Operators, Cambridge Tracts in Mathematics No. 179 (Cambridge University Press, New York, USA, 2009).CrossRefGoogle Scholar
Bayart, F. and Ruzsa, I., Difference sets and frequently hypercyclic weighted shifts, Ergod. Theor. Dyn. Syst. 35 (2015), 691709.CrossRefGoogle Scholar
Bernal-gonzález, L., On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), 10031010.CrossRefGoogle Scholar
Bonilla, A. and Grosse-erdmann, K.-G., Frequently hypercyclic operators and vectors, Ergod. Theor. Dyn. Syst. 27 (2007), 383404. Erratum: Ergod. Theor. Dyn. Syst. 29 (2009), 1993–1994.CrossRefGoogle Scholar
Grivaux, S., Matheron, E. and Menet, Q., Linear dynamical systems on Hilbert spaces: typical properties and explicit examples, Mem. Amer. Math. Soc., to appear.Google Scholar
Grosse-erdmann, K.-G., Frequently hypercyclic bilateral shifts, Glas. Math. J. 61 (2019), 271286. doi: https://doi.org/10.1016/j.jfa.2020.108543 CrossRefGoogle Scholar
Grosse-erdmann, K.-G. and Peris, A., Linear Chaos (Universitext) (Springer, London, 2011).CrossRefGoogle Scholar
Guirao, A. J., Montesinos, V. and Zizler, V., Open Problems in the Geometry and Analysis of Banach Spaces (Springer, Springer: New York, USA, 2016).CrossRefGoogle Scholar
Menet, Q., Linear chaos and frequent hypercyclicity, Trans. Amer. Math. Soc. 369 (2017), 49774994.CrossRefGoogle Scholar
Menet, Q., Inverse of $\mathbf{\mathcal{U}}$ -frequently hypercyclic operators, J. Funct. Anal. 279 (2020).CrossRefGoogle Scholar
Shkarin, S., On the spectrum of frequently hypercyclic operators, Proc. Amer. Math. Soc. 137 (2009), 123134.CrossRefGoogle Scholar