Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-11T06:26:48.288Z Has data issue: false hasContentIssue false

IDENTIFICATION OF THE POISSON AND MARTIN BOUNDARIES OF ORTHOGONAL DISCRETE QUANTUM GROUPS

Published online by Cambridge University Press:  16 November 2007

Stefaan Vaes
Affiliation:
CNRS, Institut de Mathématiques de Jussieu, Algèbres d'Opérateurs, 175, rue du Chevaleret, F-75013 Paris, France Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium (stefaan.vaes@wis.kuleuven.be; nikolas.vandervennet@wis.kuleuven.be)
Nikolas Vander Vennet
Affiliation:
Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium (stefaan.vaes@wis.kuleuven.be; nikolas.vandervennet@wis.kuleuven.be)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Poisson and Martin boundaries for invariant random walks on the dual of the orthogonal quantum groups $A_{\mathrm{o}}(F)$ are identified with higher-dimensional Podleś spheres that we describe in terms of generators and relations. This provides the first such identification for random walks on non-amenable discrete quantum groups.

Type
Research Article
Copyright
2007 Cambridge University Press