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Introduction

Group invariant random walks on countable groups have been studied intensively and
the identification of the associated Poisson and Martin boundaries is a natural problem.
We refer to [12] for an excellent survey. The study of random walks on discrete quantum
groups was initiated by Biane [3] who considered duals of compact groups and obtained
a theory parallel to the theory of random walks on discrete abelian groups.

Random walks on arbitrary discrete quantum groups (i.e. duals of Woronowicz’s com-
pact quantum groups [20]) and their Poisson boundaries were introduced by Izumi in [10],
motivated by the study of infinite product actions of compact quantum groups. In [10],
Izumi identified the Poisson boundary of the dual of SUq(2) (see [19]) with the Podleś
sphere [15]. Later, Neshveyev and Tuset [14] associated a Martin boundary with a ran-
dom walk on a discrete quantum group and proved that the Martin boundary of the dual
of SUq(2) is still given by the Podleś sphere. This generalized Biane’s work [5] on the
dual of SU(2).

The Poisson boundary for the dual of SUq(n) was computed by Izumi, Neshveyev and
Tuset in [11], but its Martin boundary remains mysterious. Partial results on the Martin
boundary for the dual of SU(n) were obtained by Biane [4] and Collins [7].
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The discrete quantum groups appearing in the previous paragraphs are all duals of
classical groups or their q-deformations. A quite different class of compact quantum
groups was introduced by Van Daele and Wang [18] and studied by Banica [1, 2]. In
this paper, we identify the Poisson and Martin boundaries for the dual of the orthogonal
compact quantum groups Ao(F ).

The orthogonal compact quantum groups Ao(F ) are quite peculiar. Given an n × n

matrix F satisfying FF̄ = ±1, they are defined as the compact quantum group generated
by an n-dimensional unitary representation U satisfying U = FŪF−1. On the one hand,
their representation theory is similar to the one of SU(2), both having the same fusion
rules. More precisely, every Ao(F ) is monoidally equivalent to an SUq(2) for a uniquely
determined q, in the sense of [6]. The quantum groups SUq(2) appear as Ao(F ) for F a
2×2 matrix. On the other hand, once F is at least 3×3, the dimensions of the irreducible
representations of Ao(F ) start growing exponentially, yielding a very different operator
algebraic behaviour. In a sense, the operator algebras associated with Ao(F ) for F at
least 3 × 3 share several properties with the free group C∗- and von Neumann algebras
(see [16]). In particular, the dual discrete quantum group becomes non-amenable. As
such, for the first time, Poisson and Martin boundaries of a non-amenable quantum
group are identified.

In Theorem 5.2, the Poisson boundary for the dual of Ao(F ) is identified with a kind of
‘higher-dimensional Podleś sphere’, that we describe in terms of generators and relations.
In Theorem 6.1, it is shown that the Martin boundary for the dual of Ao(F ) can be
identified with the C∗-counterpart of these higher-dimensional Podleś spheres.

Our method to obtain the Poisson boundary for the dual of Ao(F ) goes as follows. We
exploit the monoidal equivalence of Ao(F ) and SUq(2) in order to reduce the identification
problem to a purely SUq(2)-problem. The latter is solved invoking Izumi’s computation
for the Poisson boundary of the dual of SUq(2) (see [10], or the alternative approach
in [11]). The Martin boundary is obtained by using a result of [16], allowing to deduce
the Martin boundary from the Poisson boundary. Altogether, our proofs depend on the
known computation for the Poisson boundary of the dual of SUq(2), but do provide an
alternative method to identify the Martin boundary for the dual of SUq(2) (as was done
in [14]).

The method of this paper to identify the Poisson boundary for the dual of Ao(F ) by
using the notion of monoidal equivalence suggests that there is a general way to describe
the behaviour of Poisson boundaries when passing to monoidally equivalent quantum
groups. This will be the subject of a forthcoming paper of the second author.

1. Preliminaries

Consider a subset S of a C∗-algebra. We denote by 〈S〉 the linear span of S and by [S] the
closed linear span of S. We use the notation ωη,ξ(a) = 〈η, aξ〉 and we use inner products
that are linear in the second variable.

We use the symbol ‘⊗’ to denote several types of tensor products. In particular
‘⊗’ denotes the minimal tensor product of C∗-algebras, but it also denotes the tensor
product of Hilbert spaces and von Neumann algebras. From the context, it will always be
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clear what we mean. We also make use of the leg numbering notation in multiple tensor
products: if a ∈ A ⊗ A, then a12, a13, a23 denote the obvious elements in A ⊗ A ⊗ A,
e.g. a12 = a ⊗ 1.

Compact quantum groups

We give a brief overview of the theory of compact quantum groups which was developed
by Woronowicz in [20]. We refer to [13] for a survey of basic results.

Definition 1.1. A compact quantum group G is a pair (C(G), ∆), where

• C(G) is a unital C∗-algebra;

• ∆ : C(G) → C(G) ⊗ C(G) is a unital ∗-homomorphism satisfying the co-associa-
tivity relation

(∆ ⊗ id)∆ = (id⊗ ∆)∆;

• G satisfies the left and right cancellation property expressed by

∆(C(G))(1 ⊗ C(G)) and ∆(C(G))(C(G) ⊗ 1) are total in C(G) ⊗ C(G).

Remark 1.2. The notation C(G) suggests the analogy with the basic example given
by continuous functions on a compact group. In the quantum case however, there is no
underlying space G and C(G) is a non-abelian C∗-algebra.

A fundamental result in the theory of compact quantum groups is the existence of a
unique Haar state.

Theorem 1.3. Let G be a compact quantum group. There exists a unique state h on
C(G) which satisfies (id⊗ h)∆(a) = h(a)1 = (h ⊗ id)∆(a) for all a ∈ C(G). The state h

is called the Haar state of G.

Another crucial set of results in the framework of compact quantum groups is the
Peter–Weyl representation theory.

Definition 1.4. A unitary representation U of a compact quantum group G on a Hilbert
space H is a unitary element U ∈ M(K(H) ⊗ C(G)) satisfying

(id⊗ ∆)(U) = U12U13. (1.1)

Whenever U1 and U2 are unitary representations of G on the respective Hilbert spaces
H1 and H2, we define

Mor(U1, U2) := {T ∈ B(H2, H1) | U1(T ⊗ 1) = (T ⊗ 1)U2}.

The elements of Mor(U1, U2) are called intertwiners. We use the notation End(U) :=
Mor(U, U). A unitary representation U is said to be irreducible if End(U) = C1. If
Mor(U1, U2) contains a unitary operator, the representations U1 and U2 are said to be
unitarily equivalent.
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We have the following essential result.

Theorem 1.5. Every irreducible representation of a compact quantum group is finite
dimensional. Every unitary representation is unitarily equivalent to a direct sum of irre-
ducibles.

Because of this theorem, we almost exclusively deal with finite-dimensional represen-
tations. By choosing an orthonormal basis of the Hilbert space H, a finite-dimensional
unitary representation of G can be considered as a unitary matrix (Uij) with entries in
C(G) and (1.1) becomes

∆(Uij) =
∑

k

Uik ⊗ Ukj .

The product in the C∗-algebra C(G) yields a tensor product on the level of unitary
representations.

Definition 1.6. Let U1 and U2 be unitary representations of G on the respective Hilbert
spaces H1 and H2. We define the tensor product

U1
T© U2 := U1

13U
2
23 ∈ M(K(H1 ⊗ H2) ⊗ C(G)).

Notation 1.7. Let G be a compact quantum group. We denote by Irred(G) the set of
equivalence classes of irreducible unitary representations. We choose representatives Ux

on the Hilbert space Hx for every x ∈ Irred(G). Whenever x, y ∈ Irred(G), we use x⊗y to
denote the unitary representation Ux

T©Uy. The class of the trivial unitary representation
is denoted by ε. We define the natural numbers mult(x ⊗ y, z) such that

x ⊗ y ∼=
⊕

z∈Irred(G)

mult(x ⊗ y, z)Uz.

The collection of natural numbers mult(x ⊗ y, z) are called the fusion rules of G.

The set Irred(G) is equipped with a natural involution x �→ x̄ such that U x̄ is the
unique (up to unitary equivalence) irreducible unitary representation satisfying

Mor(x ⊗ x̄, ε) �= {0} �= Mor(x̄ ⊗ x, ε).

The unitary representation U x̄ is called the contragredient of Ux.
For every x ∈ Irred(G), we take non-zero elements tx ∈ Mor(x ⊗ x̄, ε) and sx ∈

Mor(x̄ ⊗ x, ε) satisfying (t∗x ⊗ 1)(1 ⊗ sx) = 1. Write the antilinear map

jx : Hx → Hx̄ : ξ �→ (ξ∗ ⊗ 1)tx

and define Qx := j∗
xjx. We normalize tx in such a way that Tr(Qx) = Tr(Q−1

x ). This
uniquely determines Qx and fixes tx, sx up to a number of modulus 1. Note that
t∗xtx = Tr(Qx).

Definition 1.8. For x ∈ Irred(G), the value Tr(Qx) is called the quantum dimension of
x and is denoted by dimq(x). Note that dimq(x) � dim(x), with equality holding if and
only if Qx = 1.
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The irreducible representations of G and the Haar state h are connected by the orthog-
onality relations

(id⊗h)(Ux(ξη∗ ⊗ 1)(Uy)∗) =
δx,y1

dimq(x)
〈η, Qxξ〉,

(id⊗h)((Ux)∗(ξη∗ ⊗ 1)Uy) =
δx,y1

dimq(x)
〈η, Q−1

x ξ〉,
(1.2)

for ξ ∈ Hx and η ∈ Hy.

Notation 1.9. Let G = (C(G), ∆) be a compact quantum group. We denote by C(G)
the set of coefficients of finite dimensional representations of G. Hence,

C(G) = 〈(ωξ,η ⊗ id)(Ux) | x ∈ Irred(G), ξ, η ∈ Hx〉

Then, C(G) is a unital dense ∗-subalgebra of C(G). Restricting ∆ to C(G), C(G) becomes
a Hopf ∗-algebra.

Also, for x ∈ Irred(G), denote by

C(G)x = 〈(ωξ,η ⊗ id)(Ux) | ξ, η ∈ Hx〉.

Definition 1.10. The reduced C∗-algebra Cr(G) is defined as the norm closure of C(G)
in the GNS-representation with respect to h. The universal C∗-algebra Cu(G) is defined
as the enveloping C∗-algebra of C(G). The von Neumann algebra L∞(G) is defined as
the von Neumann algebra generated by Cr(G).

A compact quantum group G is said to be co-amenable (and the discrete quantum
group Ĝ is said to be amenable) if the homomorphism Cu(G) → Cr(G) is an isomorphism.

Given an arbitrary compact quantum group G, we have surjective homomorphisms
Cu(G) → C(G) → Cr(G), and we are only interested in Cr(G) and Cu(G). Note that if
G is the dual of a discrete group Γ , we have Cr(G) = C∗

r (Γ ) and Cu(G) = C∗(Γ ).

Proposition 1.11. The Haar state h is a KMS-state on both Cr(G) and Cu(G) and the
modular group is determined by

(id⊗σh
t )(Ux) = (Qit

x ⊗ 1)Ux(Qit
x ⊗ 1)

for every x ∈ Irred(G).

Discrete quantum groups and duality

A discrete quantum group is defined as the dual of a compact quantum group by
putting together all irreducible representations.

Definition 1.12. Let G be a compact quantum group. We define the dual (discrete)
quantum group Ĝ as follows.

c0(Ĝ) =
⊕

x∈Irred(G)

B(Hx), 	∞(Ĝ) =
∏

x∈Irred(G)

B(Hx).

https://doi.org/10.1017/S1474748008000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000017


396 S. Vaes and N. Vander Vennet

We denote the minimal central projections of 	∞(Ĝ) by px, x ∈ Irred(G). We have a
natural unitary V ∈ M(c0(Ĝ) ⊗ C(G)) given by

V =
⊕

x∈Irred(G)

Ux. (1.3)

This unitary V implements the duality between G and Ĝ. We have a natural comultipli-
cation

∆̂ : 	∞(Ĝ) → 	∞(Ĝ) ⊗ 	∞(Ĝ) : (∆̂ ⊗ id)(V) = V13V23.

One can deduce from this the following equivalent way to define the comultiplication
on 	∞(Ĝ).

∆̂(a)S = Sa for all a ∈ 	∞(Ĝ), S ∈ Mor(y ⊗ z, x).

The notation introduced above is aimed to suggest the basic example where G is the
dual of a discrete group Γ , given by C(G) = C∗(Γ ) and ∆(λx) = λx ⊗ λx for all x ∈ Γ .
The map x �→ λx yields an identification of Γ and Irred(G) and then, 	∞(Ĝ) = 	∞(Γ ).

Remark 1.13. It is possible to give an intrinsic definition of a discrete quantum group.
This was already implicitly clear in Woronowicz’s Tannaka–Krein theorem and was
explicitly done in [8,17]. For our purposes, it is most convenient to take the compact
quantum group as a starting point: indeed, most examples of concrete discrete quantum
groups (and that are not discrete groups) are defined as the dual of a compact quantum
group.

The discrete quantum group 	∞(Ĝ) comes equipped with a natural modular structure.

Notation 1.14. We have canonically defined states ϕx and ψx on B(Hx) related to (1.2)
as follows:

ψx(A) =
1

dimq(x)
t∗x(A ⊗ 1)tx =

Tr(QxA)
Tr(Qx)

= (id⊗h)(Ux(A ⊗ 1)(Ux)∗)

and

ϕx(A) =
1

dimq(x)
t∗x̄(1 ⊗ A)tx̄ =

Tr(Q−1
x A)

Tr(Q−1
x )

= (id⊗h)((Ux)∗(A ⊗ 1)Ux),

for all A ∈ B(Hx).

Remark 1.15. The states ϕx and ψx are significant, since they provide a formula for
the Haar weights on 	∞(Ĝ). The left Haar weight is given by

∑
x∈Irred(G) dimq(x)2ψx,

and the right Haar weight is given by
∑

x∈Irred(G) dimq(x)2ϕx.

Examples: the universal orthogonal compact quantum groups

This class of compact quantum groups was introduced by Wang and Van Daele in [18]
and studied by Banica in [1].
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Definition 1.16. Let F ∈ GL(n, C) satisfying FF̄ = ±1. We define the compact quan-
tum group G = Ao(F ) as follows.

• C(G) is the universal C∗-algebra with generators (Uij) and relations making
U = (Uij) a unitary element of Mn(C) ⊗ C(G) and satisfying U = FŪF−1, where
(Ū)ij = (Uij)∗.

• ∆(Uij) =
∑

k Uik ⊗ Ukj .

In these examples, the unitary matrix U is a representation, called the fundamen-
tal representation. The definition of G = Ao(F ) makes sense without the requirement
FF̄ = ±1, but the fundamental representation is irreducible if and only if FF̄ ∈ R1. We
then normalize such that FF̄ = ±1.

Remark 1.17. It is easy to classify the quantum groups Ao(F ). For F1, F2 ∈ GL(n, C)
with FiF̄i = ±1, we write F1 ∼ F2 if there exists a unitary matrix v such that F1 = vF2v

t,
where vt is the transpose of v. Then, Ao(F1) ∼= Ao(F2) if and only if F1 ∼ F2. It follows
that the Ao(F ) are classified up to isomorphism by n, the sign FF̄ and the eigenvalue list
of F ∗F (see, for example, [6, § 5] where an explicit fundamental domain for the relation
‘∼’ is described).

If F ∈ GL(2, C), we get, up to equivalence, the matrices

Fq =

(
0 |q|1/2

−(sgn q)|q|−1/2 0

)
(1.4)

for q ∈ [−1, 1], q �= 0, with corresponding quantum groups Ao(Fq) ∼= SUq(2) (see [19]).

The following result has been proved by Banica [1]. It tells us that the compact quan-
tum groups Ao(F ) have the same fusion rules as the group SU(2).

Theorem 1.18. Let F ∈ GL(n, C) and FF̄ = ±1. Let G = Ao(F ). Then Irred(G) can
be identified with N in such a way that

x ⊗ y ∼= |x − y| ⊕ (|x − y| + 2) ⊕ · · · ⊕ (x + y),

for all x, y ∈ N.

Actions of quantum groups and spectral subspaces

Definition 1.19. Let B be a unital C∗-algebra. A (right) action of G on B is a unital
∗-homomorphism δ : B → B ⊗ C(G) satisfying

(δ ⊗ id)δ = (id⊗ ∆)δ and [δ(B)(1 ⊗ C(G))] = B ⊗ C(G).

The action δ is said to be ergodic if the fixed point algebra Bδ := {x ∈ B | δ(x) = x ⊗ 1}
equals C1. In that case, B admits a unique invariant state ω given by ω(b)1 = (id⊗h)δ(b).

Definition 1.20. Let δ : B → B ⊗ C(G) be an action of the compact quantum group
G on the unital C∗-algebra B.
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• For every x ∈ Irred(G), the spectral subspace Bx is defined as the linear subspace
Bx ⊂ B given by

Bx := {b ∈ B | δ(b) ∈ B ⊗ C(G)x}.

Note that δ : Bx → Bx ⊗ C(G)x and that B∗
x = Bx̄.

• We define B as the linear span of the Bx, x ∈ Irred(G). Then, B is a dense ∗-sub-
algebra of B.

• The action δ is said to be universal if B is the universal enveloping C∗-algebra of
B. It is said to be reduced if the conditional expectation (id⊗h)δ of B on Bδ is
faithful.

• If δ is an ergodic action, Bx is finite dimensional and its dimension is of the form
dim Hx mult(x, δ), where mult(x, δ) is called the multiplicity of x in δ.

Remark 1.21. If G is co-amenable, C(G) has a bounded co-unit and a faithful Haar
state. Hence, any action of G is both universal and reduced.

Actions on von Neumann algebras are defined as follows.

Definition 1.22. A right action of a compact (respectively discrete) quantum group
G (respectively Ĝ) on a von Neumann algebra N is an injective normal unital ∗-homo-
morphism

δ : N → N ⊗ L∞(G) (respectively δ : N → N ⊗ 	∞(Ĝ))

satisfying (δ ⊗ id)δ = (id⊗ ∆)δ (respectively (δ ⊗ id)δ = (id⊗ ∆̂)δ).

2. The Poisson boundary of a discrete quantum group

We give a brief survey of Izumi’s theory of Poisson boundaries for discrete quantum
groups and his computation of the Poisson boundary for the dual of SUq(2) (see [10]).
We state as well some of the results of [11] that are useful in the rest of the paper.

General results

Fix a discrete quantum group Ĝ.

Notation 2.1. For every normal state φ ∈ 	∞(Ĝ)∗, we define the convolution operator

Pφ : 	∞(Ĝ) → 	∞(Ĝ) : Pφ(a) = (id⊗φ)∆̂(a).

We are only interested in special states φ ∈ 	∞(Ĝ)∗, motivated by Proposition 2.2
below. For every probability measure µ on Irred(G), we set

ψµ =
∑

x∈Irred(G)

µ(x)ψx and Pµ := Pψµ
.

Recall that the states ψx are defined in Notation 1.14. Note that we have a convolution
product µ ∗ ν on the measures on Irred(G), such that ψµ∗ν = (ψµ ⊗ ψν)∆̂.
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Proposition 2.2. Let φ be a normal state on 	∞(Ĝ). Then the following conditions are
equivalent.

• φ has the form ψµ for some probability measure µ on Irred(G).

• The Markov operator Pφ preserves the centre of 	∞(Ĝ).

• φ is invariant under the adjoint action αG : 	∞(Ĝ) → 	∞(Ĝ) ⊗ L∞(G) : a �→
V(a ⊗ 1)V∗.

Definition 2.3 (see §2.5 in [10]). Let µ be a probability measure on Irred(G). Set

H∞(Ĝ, µ) = {a ∈ 	∞(Ĝ) | Pµ(a) = a}.

Equipped with the product defined by

a · b := s*-lim
n→∞

1
n

n∑
k=1

P k
µ (ab),

the space H∞(Ĝ, µ) becomes a von Neumann algebra that we call the Poisson boundary
of Ĝ with respect to µ.

Definition 2.4. A probability measure µ on Irred(G) is called generating if there exists,
for every x ∈ Irred(G), an n � 1 such that µ∗n(x) �= 0.

In all the results below, the probability measure µ is assumed to be generating. In that
case, it is not hard to concretely realize H∞(Ĝ, µ) as a von Neumann algebra. Indeed,

π∞ : H∞(Ĝ, µ) →
∞⊗

n=0

(	∞(Ĝ), ψµ) : π∞(a) = s*-lim
n→∞

πn(a),

where

πn := ∆̂(n) : 	∞(Ĝ) →
n−1⊗
k=0

	∞(Ĝ).

Moreover, the product becomes a · b = s*-limn→∞ Pn
µ (ab).

The restriction of the co-unit ε̂ yields a state on H∞(Ĝ, µ), called the harmonic state.
It is clear that this state is faithful when µ is generating.

Definition 2.5. Let µ be a generating measure on Irred(G). The Poisson boundary
H∞(Ĝ, µ) comes equipped with two natural actions, one of G and one of Ĝ:

αG : H∞(Ĝ, µ) → H∞(Ĝ, µ) ⊗ L∞(G) : αG(a) = V(a ⊗ 1)V∗,

α
Ĝ

: H∞(Ĝ, µ) → 	∞(Ĝ) ⊗ H∞(Ĝ, µ) : α
Ĝ
(a) = ∆̂(a).

Note that αG is the restriction of the adjoint action of G on 	∞(Ĝ), while α
Ĝ

is nothing
else than the restriction of the comultiplication. The actions αG and α

Ĝ
are well defined

because of the following equivariance formulae:

(id⊗Pµ)(∆̂(a)) = ∆̂(Pµ(a)) and (Pµ ⊗ id)(αG(a)) = αG(Pµ(a)).
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When Ĝ is a discrete group, the action αG is the trivial action on 	∞(Ĝ). In gen-
eral, the fixed point algebra of αG is precisely the algebra of central harmonic elements
Z(	∞(Ĝ)) ∩ H∞(Ĝ, µ). Since the Markov operator Pµ preserves the centre Z(	∞(Ĝ)), the
commutative von Neumann algebra Z(	∞(Ĝ)) ∩ H∞(Ĝ, µ) with state ε̂, is exactly the
Poisson boundary for the random walk on Irred(G) with transition probabilities p(x, y)
and n-step transition probabilities pn(x, y) given by

pxp(x, y) = pxPµ(py), pxpn(x, y) = pxPn
µ (py). (2.1)

Note that pn(e, y) = µ∗n(y) = ψ∗n
µ (py).

So, the action αG is ergodic if and only if there are no non-trivial central harmonic
elements. This occurs if the fusion algebra of G is commutative. Much more can be said
in that case. We record the following results for future use.

Proposition 2.6. Suppose that the fusion algebra of G is commutative (i.e. for every
x, y, z ∈ Irred(G), mult(y ⊗ z, x) = mult(z ⊗ y, x)), and let µ be a generating probability
measure on Irred(G).

• (See Corollary 3.5 in [9] and Corollary 3.2 in [11].) There are no non-trivial central
harmonic elements, i.e.

Z(	∞(Ĝ)) ∩ H∞(Ĝ, µ) = C1.

• (See Proposition 1.1 in [11].) The Poisson boundary does not depend on the choice
of generating measure:

H∞(Ĝ, µ) = {a ∈ 	∞(Ĝ) | Px(a) = a for all x ∈ Irred(G)}.

• (See Corollary 3.5 in [11].) Using the notation of Definition 1.20, we have

mult(x, αG) � sup{mult(ȳ ⊗ y, x) | y ∈ Irred(G)},

for all x ∈ Irred(G).

The Poisson boundary of ̂SUq(2)

Let G = SUq(2) for −1 < q < 0 or 0 < q < 1. In [10], Izumi identified the Poisson
boundary of Ĝ with the Podleś sphere. Since this result is needed in our identification of
the Poisson boundary of the dual of Ao(F ), we briefly recall it here. We also refer to [11]
for an easier approach to the computation of the Poisson boundary of the dual of SUq(2).

We first record the following general result.

Proposition 2.7 (Lemma 3.8 in [10]). Let G be a compact quantum group. Defining

Φ : L∞(G) → 	∞(Ĝ) : Φ(a) = (id⊗h)(V∗(1 ⊗ a)V),

the image of Φ is contained in H∞(Ĝ, µ) for any probability measure µ on Irred(G).
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For the rest of this section, fix q ∈ ]−1, 1[ , q �= 0, and set G = SUq(2) (see [19]). Recall
that C(SUq(2)) is generated by the coefficients of the unitary operator

U =

(
α −qγ∗

γ α∗

)

and that ∆ is defined such that U is a unitary representation of SUq(2), called the
fundamental representation.

Consider the natural homomorphism

πS1 : C(SUq(2)) → C(S1) : πS1(α) = z and πS1(γ) = 0.

So, ∆S1πS1 = (πS1 ⊗ πS1)∆, and we can consider πS1 as an embedding of the circle S1

into SUq(2).
Define

C(S1\ SUq(2)) := {a ∈ SUq(2) | (πS1 ⊗ 1)∆(a) = 1 ⊗ a}.

This homogeneous space is just the fixed point algebra of the action

∆S1 := (πS1 ⊗ id)∆ : C(SUq(2)) → C(S1) ⊗ C(SUq(2))

and is called the Podleś sphere [15]. The weak closure of C(S1\ SUq(2)) inside
L∞(SUq(2)) is denoted by L∞(S1\ SUq(2)).

Observe that the restriction of the comultiplication yields a right action βG of G =
SUq(2) on L∞(S1\G). Moreover, the restriction of the adjoint action

β
Ĝ

: L∞(G) → 	∞(Ĝ) ⊗ L∞(G) : β
Ĝ
(a) = V∗(1 ⊗ a)V

yields a left action of Ĝ on C(S1\G).

Theorem 2.8 (Theorem 5.10 in [10]). Let G = SUq(2) (q �= ±1) and let µ be a
generating probability measure on Irred(G). The restriction of the completely positive
map Φ (see Proposition 2.7) to L∞(S1\G) is a ∗-isomorphism Φ0 between the Podleś
sphere and the Poisson boundary of Ĝ.

The ∗-isomorphism Φ0 intertwines the actions βG, β
Ĝ

on L∞(S1\G) with the actions
αG, α

Ĝ
on H∞(Ĝ, µ) defined in Definition 2.5. Finally, Φ0 intertwines the restriction of

the Haar state with the harmonic state ε̂.

3. The Martin boundary of a discrete quantum group

The Martin boundary and the Martin compactification of a discrete quantum group have
been defined by Neshveyev and Tuset in [14]. Fix a discrete quantum group Ĝ and a
probability measure µ on Irred(G). We have an associated Markov operator Pµ and a
classical random walk on Irred(G) with n-step transition probabilities given by (2.1).

Definition 3.1. The probability measure µ on Irred(G) is said to be transient if∑∞
n=0 pn(x, y) < ∞ for all x, y ∈ Irred(G).
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We suppose throughout that µ is a generating measure and that µ is transient.
Denote by cc(Ĝ) ⊂ c0(Ĝ) the algebraic direct sum of the algebras B(Hx). We define,

for a ∈ cc(Ĝ),

Gµ(a) =
∞∑

n=0

Pn
µ (a).

Observe that Gµ(a) makes sense in the multiplier algebra of cc(Ĝ), i.e. Gµ(a)px ∈ B(Hx)
makes sense for every x ∈ Irred(G) because µ is transient. Moreover, Gµ(pε) is strictly
positive and central. This allows us to define the Martin kernel as follows.

Whenever µ is a measure on Irred(G), we use the notation µ̄ to denote the measure
given by µ̄(x) = µ(x̄).

Definition 3.2 (Definitions 3.1 and 3.2 in [14]). Define

Kµ : cc(Ĝ) → 	∞(Ĝ) : Kµ(a) = Gµ(a)Gµ(pε)−1.

Define the Martin compactification Ãµ as the C∗-subalgebra of 	∞(Ĝ) generated by
Kµ̄(cc(Ĝ)) and c0(Ĝ). Define the Martin boundary Aµ as the quotient Ãµ/c0(Ĝ).

By Theorem 3.5 in [14], the adjoint action αG and the comultiplication ∆̂ define, by
restriction and passage to the quotient, the following actions on the Martin boundary:

γG : Aµ → Aµ ⊗ C(G) and γ
Ĝ

: Aµ → M(c0(Ĝ) ⊗ Aµ). (3.1)

4. Monoidal equivalence

A crucial tool in the computation of the Poisson boundary for Ĝ when G = Ao(F ) is the
monoidal equivalence of Ao(F ) and SUq(2) for the appropriate value of q. This notion
was introduced in [6] and is reviewed in this section.

Definition 4.1 (Definition 3.1 in [6]). Two compact quantum groups G1 =
(C(G1), ∆) and G2 = (C(G2), ∆2) are said to be monoidally equivalent if there exists
a bijection ϕ : Irred(G1) → Irred(G2) satisfying ϕ(ε) = ε, together with linear isomor-
phisms

ϕ : Mor(x1 ⊗ · · · ⊗ xr, y1 ⊗ · · · ⊗ yk) → Mor(ϕ(x1) ⊗ · · · ⊗ ϕ(xr), ϕ(y1) ⊗ · · · ⊗ ϕ(yk))

satisfying the following conditions:

ϕ(1) = 1, ϕ(S ⊗ T ) = ϕ(S) ⊗ ϕ(T ),

ϕ(S∗) = ϕ(S)∗, ϕ(ST ) = ϕ(S)ϕ(T ),

whenever the formulae make sense. In the first formula, we consider 1 ∈ Mor(x, x) =
Mor(x⊗ε, x) = Mor(ε⊗x, x). Such a collection of maps ϕ is called a monoidal equivalence
between G1 and G2.
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By Theorem 3.9 and Proposition 3.13 of [6], we have the following.

Theorem 4.2. Let ϕ be a monoidal equivalence between compact quantum groups G1

and G2.

• There exist a unique unital ∗-algebra B equipped with a faithful state ω and unitary
elements Xx ∈ B(Hx, Hϕ(x)) ⊗ B for all x ∈ Ĝ1, satisfying

• Xy
13X

z
23(S ⊗ 1) = (ϕ(S) ⊗ 1)Xx for all S ∈ Mor(y ⊗ z, x),

• the matrix coefficients of the Xx form a linear basis of B,
• (id⊗ω)(Xx) = 0 if x �= ε.

• There exist unique commuting ergodic actions δ1 : B → B ⊗ C(G1) and δ2 : B →
C(G2) ⊗ B satisfying

(id⊗ δ1)(Xx) = Xx
12U

x
13 and (id⊗ δ2)(Xx) = U

ϕ(x)
12 Xx

13

for all x ∈ Irred(G1).

• The state ω is invariant under δ1 and δ2. Denoting by Br the C∗-algebra generated
by B in the GNS-representation associated with ω and denoting by Bu the universal
enveloping C∗-algebra of B, the actions δ1, δ2 admit unique extensions to actions
on Br and Bu.

Note that in the case G = G1 = G2 and ϕ the identity map, we have B = C(G) and
Xx = Ux for every x ∈ Irred(G). The following unitary operator generalizes (1.3):

X :=
⊕

x∈Irred(G)

Xx, where X ∈
∏

x∈Irred(G)

(B(Hx, Hϕ(x)) ⊗ B). (4.1)

Proposition 4.3. The invariant state ω is a KMS state on Br and Bu and its modular
group is determined by

(id⊗ σω
t )(Xx) = (Qit

ϕ(x) ⊗ 1)Xx(Qit
x ⊗ 1) (4.2)

for every x ∈ Irred(G1).

Remark 4.4. Define Bx := 〈(ωξ,η ⊗ id)(Xx) | ξ ∈ Hϕ(x), η ∈ Hx〉. Then, as a vector
space,

B =
⊕

x∈Irred(G)

Bx.

Moreover, the Bx are exactly the spectral subspaces of δ1 and δ2, while B is exactly the
dense ∗-algebra given by Definition 1.20.

The orthogonality relations (1.2) generalize and take the following form:

(id⊗ ω)(Xx(ξ1η
∗
1 ⊗ 1)(Xy)∗) =

δx,y1
dimq(x)

〈η1, Qxξ1〉,

(id⊗ ω)((Xx)∗(ξ2η
∗
2 ⊗ 1)Xy) =

δx,y1
dimq(x)

〈η2, Q
−1
ϕ(x)ξ2〉,

(4.3)

for ξ1 ∈ Hx, η1 ∈ Hy, ξ2 ∈ Hϕ(x) and η2 ∈ Hϕ(y).
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We turn to the case where G1 = Ao(F1) and G2 = Ao(F2), which will be needed in
this article.

Theorem 4.5 (Theorems 5.3 and 5.4 in [6]). Let F1 ∈ Mn1(C) and F2 ∈ Mn2(C)
such that F1F̄1 = ±1 and F2F̄2 = ±1.

• The compact quantum groups Ao(F1) and Ao(F2) are monoidally equivalent if and
only if F1F̄1 and F2F̄2 have the same sign and Tr(F ∗

1 F1) = Tr(F ∗
2 F2).

• Assume that Ao(F1) and Ao(F2) are monoidally equivalent. Denote by Ao(F1, F2)
the universal unital C∗-algebra generated by the coefficients of

Y ∈ Mn2,n1(C)⊗Ao(F1, F2) with relations Y unitary and Y = (F2⊗1)Ȳ (F−1
1 ⊗1).

Then, Ao(F1, F2) �= 0 and there exists a unique pair of commuting universal ergodic
actions, δ1 of Ao(F1) and δ2 of Ao(F2), such that

(id⊗ δ1)(Y ) = Y12(U1)13 and (id⊗ δ2)(Y ) = (U2)12Y13.

Here, Ui denotes the fundamental representation of Ao(Fi).

• (Ao(F1, F2), δ1, δ2) is isomorphic with the C∗-algebra Bu and the actions thereon
given by Theorem 4.2

5. Poisson boundary of the dual of Ao(F )

Fix n � 2 and a matrix F ∈ GL(n, C) satisfying FF̄ = ±1. Set G = Ao(F ) which remains
fixed throughout this section. We assume that G �= SU±1(2). We identify the Poisson
boundary H∞(Ĝ, µ) for a generating measure µ on Irred(G).

Take the unique q ∈ ]−1, 1[ such that FF̄ = − sgn q and Tr(F ∗F ) = |q + 1/q|. By
Theorem 4.5, G is monoidally equivalent with SUq(2) = Ao(Fq), where Fq is given
by (1.4).

Definition 5.1. We define the C∗-algebra B := Ao(F, Fq) and denote by βG : B →
B ⊗ C(G) the ergodic action of G with invariant state ω, given by Theorem 4.5. So, B

is generated by the entries of a unitary 2 × n matrix Y satisfying Y = FqȲ F−1. Define
the action ρ of S1 on B such that

ρz(Y ) =

(
z 0
0 z̄

)
Y

and set
S1\B := {x ∈ B | ρz(x) = x for all z ∈ S1}.

The von Neumann algebra generated by B in the GNS-construction for ω is denoted
by B := (B, ω)′′. By Remark 1.21 (and the co-amenability of SUq(2)), the state ω is a
faithful KMS state on B and we regard B as a dense subalgebra of B.
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The generalized Izumi operator is defined as

Φ : B → 	∞(Ĝ) : Φ(a) = (id⊗ω)(X∗(1 ⊗ a)X), (5.1)

where X is given by (4.1).

Note that, by Theorem 4.5, the quantum group SUq(2) admits a (left) ergodic action
on B. The action (ρz)z∈S1 is nothing else than the restriction of that ergodic action to
the closed subgroup S1 of SUq(2). In this way, S1\B is a higher-dimensional counterpart
of the Podleś sphere.

Apart from the ergodic action βG of G on B, we also have the analogue of the adjoint
action, defined as

β
Ĝ

: B → 	∞(Ĝ) ⊗ B : β
Ĝ
(x) = X∗(1 ⊗ x)X, (5.2)

where again X is given by (4.1). It can be checked easily that βG and β
Ĝ

leave globally
invariant S1\B, yielding actions on S1\B that we still denote by βG, β

Ĝ
.

The following is the main result of the paper. Its proof takes the rest of the section.

Theorem 5.2. Let G = Ao(F ) and let q be as above. Let µ be a generating measure on
Irred(G). The restriction of the generalized Izumi operator given by (5.1) yields a ∗-iso-
morphism Φ : S1\B → H∞(Ĝ, µ). This ∗-isomorphism intertwines the actions βG, β

Ĝ
(see

Definition 5.1 and formula (5.2)) with the actions αG, α
Ĝ

defined in Definition 2.5.

Remark 5.3. In order to get a better understanding of the C∗-algebra B and the
different actions on it, one should look at the case F = Fq. Then, B = C(SUq(2)) and
S1\B is exactly the Podleś sphere. Also, the generalized Izumi operator (5.1) coincides
with the Izumi operator of Proposition 2.7. Nevertheless, our proof of Theorem 5.2 does
not provide an alternative way of identifying the Poisson boundary for the dual of SUq(2),
because Theorem 2.8, of Izumi, is an ingredient of our proof.

The proof of Theorem 5.2 is given at the end of the section, as a combination of several
preliminary results.

• We take a closer look at the generalized Izumi operator Φ given by (5.1) and prove
the equivariance of Φ with respect to the actions βG, β

Ĝ
and αG, α

Ĝ
.

• By definition, the generalized Izumi operator Φ is a normal unital completely posi-
tive map and we prove that Φ is multiplicative on S1\B. The proof uses a technique
of [11], which allows us to reduce to the case of G = SUq(2), where we can apply
Theorem 2.8. As it is the case for the other computations of Poisson boundaries of
quantum groups in the literature, this is the most subtle part of the proof.

• Once the multiplicativity of Φ on S1\B is proved, the general results gathered in
Proposition 2.6 allow us to conclude.
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Notation and equivariance formulae

Notation 5.4. All objects related to G̃ = SUq(2) are denoted with tildes, while the
corresponding objects related to G = Ao(F ) are denoted without tildes. Fix a monoidal
equivalence ϕ : G → G̃. We identify Irred(G) = Irred(G̃) = N and we make once and
for all a choice of isometric intertwiners Ṽ (x ⊗ y, z) ∈ Mor(x ⊗ y, z) for G̃ = SUq(2). We
take V (x ⊗ y, z) such that ϕ(V (x ⊗ y, z)) = Ṽ (x ⊗ y, z).

Whenever z ∈ x ⊗ y, we set px⊗y
z = V (x ⊗ y, z)V (x ⊗ y, z)∗ and we define p̃x⊗y

z

analogously. For any x ∈ N, we have irreducible representations Ux of G on Hx and
Ũx of G̃ on H̃x. Finally, recall from Notation 1.14, the special states ψx on B(Hx) (and
hence, ψ̃x on B(H̃x)).

Proposition 5.5. Let Φ be as in (5.1) and let µ be a probability measure on Irred(G).
Then, Φ(a) ∈ H∞(Ĝ, µ) for all a ∈ B.

Proof. Let a ∈ B. Then, for x, y ∈ Irred(G), we know that

(px ⊗ py)∆̂(Φ(a)) =
∑

z∈x⊗y

V (x ⊗ y, z)(Φ(a)pz)V (x ⊗ y, z)∗.

So

(px ⊗ py)∆̂(Φ(a))

=
∑

z∈x⊗y

(id⊗ id⊗ω)((V (x ⊗ y, z) ⊗ 1)(Xz)∗(1 ⊗ a)Xz(V (x ⊗ y, z)∗ ⊗ 1))

=
∑

z∈x⊗y

(id⊗ id⊗ω)((Xy
23)

∗(Xx
13)

∗(p̃x⊗y
z ⊗ a)Xx

13X
y
23)

= (id⊗ id⊗ω)((Xy
23)

∗(Xx
13)

∗(1 ⊗ 1 ⊗ a)Xx
13X

y
23), (5.3)

where (5.3) is valid because (V (x ⊗ y, z) ⊗ 1)(Xz)∗ = (Xy)∗
23(X

x)∗
13(Ṽ (x ⊗ y, z) ⊗ 1).

Then, we get that

px(id⊗ ψy)∆̂(Φ(a)) = (id⊗ψy ⊗ ω)((Xy
23)

∗(Xx
13)

∗(1 ⊗ 1 ⊗ a)Xx
13X

y
23)

= (id⊗ω)((Xx)∗(1 ⊗ a)Xx) = Φ(a)px.

The equality follows from the fact that (ψy ⊗ ω)((Xy)∗(1 ⊗ b)Xy) = ω(b) for b ∈ B̃.
Indeed, the KMS-property of the state ω (see (4.2)) gives

(ψy ⊗ω)((Xy)∗(1⊗b)Xy) = (ψ̃y ⊗ω)((Q̃−2
y ⊗1)Xy(Xy)∗(1⊗b)) = (ϕ̃y ⊗ω)(1⊗b) = ω(b).

This completes the proof. �

Proposition 5.6. The generalized Izumi operator Φ defined by (5.1) intertwines the
actions βG, β

Ĝ
(see Definition 5.1 and formula (5.2)) with the actions αG, α

Ĝ
defined in

Definition 2.5.
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Proof. Intertwining of αG and βG follows from

(Φ ⊗ id)βG(a)

= (id⊗ω ⊗ id)(X∗
12(1 ⊗ βG(a))X12) = (id⊗ω ⊗ id)(V13(id⊗βG)(X∗(1 ⊗ a)X)V∗

13)

= V((id⊗ω ⊗ id)(id⊗βG)(X∗(1 ⊗ a)X))V∗ = V((id⊗ω)(X∗(1 ⊗ a)X) ⊗ 1)V∗

= αG(Φ(a)).

On the other hand, intertwining of α
Ĝ

and β
Ĝ

is a consequence of

α
Ĝ
(a)V (y ⊗ z, x)

= ∆̂(Φ(a))V (y ⊗ z, x) = V (y ⊗ z, x)Φ(a)px = V (y ⊗ z, x)(id⊗ω)((Xx)∗(1 ⊗ a)Xx)

= (id⊗ id⊗ω)((Xz)∗
23(X

y)∗
13(1 ⊗ 1 ⊗ a)Xy

13X
z
23)V (y ⊗ z, x)

= (id⊗Φ)(X∗(1 ⊗ a)X)V (y ⊗ z, x) = (id⊗Φ)β
Ĝ
(a)V (y ⊗ z, x)

for every x, y, z ∈ Irred(G). �

Multiplicativity of the generalized Izumi operator

Fix a generating probability measure µ on Irred(G). We prove that the generalized
Izumi operator Φ given by (5.1) is multiplicative on S1\B, using a strategy from [11].

For every y ∈ Irred(G), we define

Φy : B → B(Hy) : Φy(a) := Φ(a)py = (id⊗ω)((Xy)∗(1 ⊗ a)Xy).

Lemma 5.7. For the scalar products on B and B(Hy) given respectively by ω and ψy,
the linear map Φy has an adjoint mapping Φ∗

y : B(Hy) → B given by

Φ∗
y(b) = (ϕ̃y ⊗ id)(Xy(b ⊗ 1)(Xy)∗).

So ω(aΦ∗
y(b)) = ψy(Φy(a)b) for a ∈ B and b ∈ B(Hy).

Proof. Again, we use the KMS-property of ω. From this it follows that

ψy(Φy(a)b) = ψy((id⊗ω)((Xy)∗(1 ⊗ a)Xyb)) = (ψy ⊗ ω)((Xy)∗(1 ⊗ a)Xy(b ⊗ 1))

= (ϕ̃y ⊗ ω)((1 ⊗ a)Xy(b ⊗ 1)(Xy)∗) = ω(a(ϕ̃y ⊗ id)(Xy(b ⊗ 1)(Xy)∗))

= ω(aΦ∗
y(b)).

�

Remark 5.8. We already know that (Φy ⊗ id)βG = αG ◦ Φy. From the definition of
the adjoint Φ∗

y it follows that (Φ∗
y ⊗ id)αG = βG ◦ Φ∗

y. This follows also from the next
calculation:

(Φ∗
y ⊗ id)αG(a)

= (ϕ̃y ⊗ id⊗ id)(Xy
12(αG(a))13(X

y
12)

∗) = (ϕ̃y ⊗ id⊗ id)(Xy
12V13(a ⊗ 1 ⊗ 1)V ∗

13(X
y
12)

∗)

= (ϕ̃y ⊗ id⊗ id)((id⊗βG)(Xy(a ⊗ 1)(Xy)∗)) = βG((ϕ̃y ⊗ id)(Xy(a ⊗ 1)(Xy)∗))

= βG(Φ∗
y(a)).

https://doi.org/10.1017/S1474748008000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000017


408 S. Vaes and N. Vander Vennet

Lemma 5.9. Let µ be a generating probability measure on Irred(G). Define

Py = Φ∗
yΦy : B → B and Pµ =

∑
y

µ(y)Py.

The sequence (Pµ∗n)n converges pointwise ∗-strongly to a completely positive unital map
P∞ : B → B. Moreover, if a ∈ B, the following are equivalent.

• The element a belongs to the multiplicative domain of the completely positive
unital map Φ.

• We have P∞(a) = a.

Proof. We first make the following claim.

Claim. For every a ∈ B, the sequence Pµ∗n(a) converges ∗-strongly. Denoting its limit
as P∞(a), we have

ε̂(Φ(b) · Φ(a)) = ω(bP∞(a)) for all a, b ∈ B.

We prove the claim below and argue already how the lemma follows from it. If a ∈ B

belongs to the multiplicative domain of Φ, we have Φ(b) · Φ(a) = Φ(ba) for all b ∈ B.
The formula in the claim yields ω(ba) = ε̂(Φ(ba)) = ω(bP∞(a)) for all b ∈ B. Hence,
P∞(a) = a. Conversely, if P∞(a) = a, we find that ε̂(Φ(a)∗ · Φ(a)) = ε̂(Φ(a∗a)). Since
Φ(a)∗ · Φ(a) � Φ(a∗a) and since ε̂ is faithful on H∞(Ĝ, µ), it follows that Φ(a)∗ · Φ(a) =
Φ(a∗a). This implies that a belongs to the multiplicative domain of Φ.

It remains to prove the claim. For all a, b ∈ B, we have

ε̂(Φ(b) · Φ(a)) = ε̂
(

lim
n→∞

Pµ∗n(Φ(b)Φ(a))
)

= lim
n→∞

ψµ∗n(Φ(b)Φ(a))

= lim
n→∞

∑
x

µ∗n(x)ψx(Φx(b)Φx(a)) = lim
n→∞

ω(bPµ∗n(a)).

It follows that Pµ∗n(a) is weakly convergent, say to P∞(a) ∈ B. Since all the Pµ∗n and
P∞ commute with the ergodic action βG of G on B and preserve the state ω, these
completely positive operators preserve the (finite-dimensional) spectral subspaces of βG

and it follows that Pµ∗n(a) → P∞(a) ∗-strongly. This proves the claim and ends the proof
of the lemma. �

With respect to the ergodic action βG, the von Neumann algebra B has a natural
dense ∗-subalgebra given as the linear span of the spectral subspaces Bx, x ∈ Irred(G).
Since Py commutes with βG, it follows that Py maps Bx into Bx. We study more closely
this operator on the finite-dimensional vector space Bx.

Denote as follows the restriction of the operator Φy to the spectral subspace Bx:

Φx
y : Bx → B(Hy) : Φx

y(a) = Φ(a)py.
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We use the following unitary identifications that are consequences of Notation 1.14 and
formula (4.3):

vy : (B(Hy), ψy) → Hy ⊗ Hy : A �→ 1√
dimq(y)

(A ⊗ 1)ty,

φx : (Bx, ω) → Hx ⊗ (H̃x)¯ : (ωµ̃,ρ ⊗ id)(Xx) �→ 1√
dimq(x)

ρ ⊗ Q̃
−1/2
x µ̃,

(5.4)

with ρ ∈ Hx and µ̃ ∈ H̃x.

Lemma 5.10. For every x, y ∈ Irred(G), we have

vy ◦ Φx
y ◦ φ∗

x = V (y ⊗ y, x)(1 ⊗ ξx
y

∗
),

where the vector ξx
y ∈ H̃x is defined as

ξx
y =

1√
dimq(x) dimq(y)

Ṽ (y ⊗ y, x)∗(Q̃−2
y ⊗ 1)t̃y.

Proof. Take a ∈ B(Hy) and b ∈ Bx. By Lemma 5.7, we have

ψy(a∗Φx
y(b)) = ω((ϕ̃y ⊗ id)(Xy(a ⊗ 1)(Xy)∗)∗b).

Further calculation gives

(ϕ̃y ⊗ id)(Xy(a ⊗ 1)(Xy)∗)

= (ψ̃y ⊗ id)((Q̃−2
y ⊗ 1)Xy(a ⊗ 1)(Xy)∗)

=
1

dimq(y)
(t̃∗y ⊗ 1)(Q̃−2

y ⊗ 1 ⊗ 1)Xy
13(a ⊗ 1 ⊗ 1)(Xy

13)
∗(t̃y ⊗ 1)

=
1√

dimq(y)
(t̃∗y ⊗ 1)(Q̃−2

y ⊗ 1 ⊗ 1)Xy
13X

y
23(vy(a) ⊗ 1).

We know that

Xy
13X

y
23 =

∑
z∈y⊗y

(Ṽ (y ⊗ y, z) ⊗ 1)Xz(V (y ⊗ y, z)∗ ⊗ 1). (5.5)

So, ψy(a∗Φx
y(b)) = ω(D∗b) where

D =
1√

dimq(y)
(t̃∗y(Q̃−2

y ⊗ 1)Ṽ (y ⊗ y, x) ⊗ 1)Xx(V (y ⊗ y, x)∗vy(a) ⊗ 1).

Here, only the term z = x in the sum (5.5) remained because of the orthogonality re-
lations (4.3) and the assumption b ∈ Bx.

Using the commutation relations (Q̃−1/2
y ⊗ Q̃

−1/2
y )Ṽ (y ⊗ y, x) = Ṽ (y ⊗ y, x)Q̃−1/2

x and
(Q̃−1/2

y ⊗ Q̃
−1/2
y )t̃y = t̃y and the formula ω(D∗b) = 〈φx(D), φx(b)〉, we arrive at

ψy(a∗Φx
y(b)) = 〈V (y ⊗ y, x)∗vy(a) ⊗ ξx

y , φx(b)〉,

where ξx
y is given in the statement of the lemma. This proves the lemma. �
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We finally prove the multiplicativity of the operator Φ on S1\B.

Lemma 5.11. The elements of S1\B belong to the multiplicative domain of the gener-
alized Izumi operator Φ introduced in (5.1).

Proof. Since the action βG on B commutes with the action ρ of S1 on B, it suffices
to show that every element of Bx that is invariant under ρ belongs to the multiplicative
domain of Φ.

Observe that for z = |q|it, we have φxρz = (1 ⊗ (Q̃−it)¯)φx. Combining Lemmas 5.9
and 5.10, the multiplicativity of Φ on S1\B is then equivalent with the statement

lim
n→∞

∑
y

µ∗n(y)ξx
y 〈ξx

y , η〉 → η for all η ∈ H̃S1

x ,

where we denote by H̃S1

x the subspace of vectors η ∈ H̃x satisfying Qxη = η.
This last statement concerns only SUq(2) and hence holds because of Theorem 2.8. �

Proof of Theorem 5.2. By Proposition 5.5 and Lemma 5.11, we have the normal unital
∗-homomorphism

Φ : S1\B → H∞(Ĝ, µ).

Because ω is faithful, the map Φ is injective and by Proposition 5.6, Φ intertwines the
actions βG, β

Ĝ
on S1\B with the actions αG, α

Ĝ
on H∞(Ĝ, µ). So, it remains to prove

the surjectivity of Φ.
From Proposition 2.6, we know that αG is an ergodic action of G on H∞(Ĝ, µ) and

that mult(x, αG) = 0 for x odd, mult(x, αG) � 1 for x even. On the other hand, the
multiplicity of x in the restriction of βG to S1\B is exactly 1 for x even. Indeed, as we
have seen in the proof of Lemma 5.11, vx maps the S1-invariant elements of Bx onto
Hx ⊗ (H̃S1

x )¯ and H̃S1

x is one dimensional for x even. Indeed, the eigenvalues of Q̃x are
qx, qx−2, . . . , q2−x, q−x, all of multiplicity 1 on the Hilbert space H̃x of dimension x + 1.
Injectivity and equivariance of Φ finish the proof. �

6. The Martin boundary of the dual of Ao(F )

We prove an identification theorem for the Martin boundary of the dual of Ao(F ).
As above, fix G = Ao(F ) with G �= SU±1(2). Take q, the C∗-algebra B and the actions

βG and β
Ĝ

as in Definition 5.1 and formula (5.2). The C∗-algebra B admits the natural
action (ρz)z∈S1 of S1 and the subalgebra of S1-invariant elements was denoted by S1\B.

Recall from (3.1) that the Martin boundary Aµ is naturally equipped with actions γG

and γ
Ĝ
.

Theorem 6.1. Let µ be a generating measure on Irred(G) that is transient and has
finite first moment: ∑

x∈N

xµ(x) < ∞.
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The composition of the generalized Izumi operator given in (5.1) and the quotient map

π : 	∞(Ĝ) → 	∞(Ĝ)
c0(Ĝ)

defines a ∗-isomorphism
π ◦ Φ : S1\B → Aµ

of S1\B onto the Martin boundary Aµ. This ∗-isomorphism intertwines the actions βG,
β

Ĝ
on S1\B with the actions γG, γ

Ĝ
on Aµ.

Proof. Combining Theorems 5.6 and 5.8 in [16], Aµ admits a state ω∞ such that the
map

T : Aµ → H∞(Ĝ, µ) : T (a) = (id⊗ω∞)γ
Ĝ
(a)

is a ∗-homomorphism with dense range. Moreover, by formula (5.3) in [16], the composi-
tion π◦T is the identity map. Since T intertwines the action γG on Aµ with the action αG

on H∞(Ĝ, µ), it follows that T is a ∗-isomorphism of Aµ onto the C∗-algebra D defined
as the closed linear span of the spectral subspaces of the action αG of G on H∞(Ĝ, µ).
Moreover, the quotient map π provides the inverse of this ∗-isomorphism.

By Theorem 5.2, the restriction of the generalized Izumi operator yields the ∗-iso-
morphism Φ : S1\B → D. Composing π and Φ, we are done. �
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