Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-11T13:06:32.996Z Has data issue: false hasContentIssue false

HARBATER–MUMFORD COMPONENTS AND TOWERS OF MODULI SPACES

Published online by Cambridge University Press:  24 March 2006

Pierre Dèbes
Affiliation:
Université des Sciences et Technologies de Lille, Mathématiques, Laboratoire Paul Painlevé, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France (pierre.debes@univ-lille1.fr; emsalem@math.univ-lille1.fr)
Michel Emsalem
Affiliation:
Université des Sciences et Technologies de Lille, Mathématiques, Laboratoire Paul Painlevé, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France (pierre.debes@univ-lille1.fr; emsalem@math.univ-lille1.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method of choice for realizing finite groups as regular Galois groups over $\mathbb{Q}(T)$ is to find $\mathbb{Q}$-rational points on Hurwitz moduli spaces of covers. In another direction, the use of the so-called patching techniques has led to the realization of all finite groups over $\mathbb{Q}_p(T)$. Our main result shows that, under some conditions, these $p$-adic realizations lie on some special irreducible components of Hurwitz spaces (the so-called Harbater–Mumford components), thus connecting the two main branches of the area. As an application, we construct, for every projective system $(G_n)_{n\geq0}$ of finite groups, a tower of corresponding Hurwitz spaces $(\mathcal{H}_{G_n})_{n\geq0}$, geometrically irreducible and defined over some cyclotomic extension of $\mathbb{Q}$, which admits projective systems of $\mathbb{Q}_p^{\mathrm{ur}}$-rational points for all primes $p$ not dividing the orders $|G_n|$ ($n\geq0$).

Type
Research Article
Copyright
2006 Cambridge University Press