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Abstract A method of choice for realizing finite groups as regular Galois groups over Q(T ) is to find Q-
rational points on Hurwitz moduli spaces of covers. In another direction, the use of the so-called patching
techniques has led to the realization of all finite groups over Qp(T ). Our main result shows that, under
some conditions, these p-adic realizations lie on some special irreducible components of Hurwitz spaces
(the so-called Harbater–Mumford components), thus connecting the two main branches of the area. As an
application, we construct, for every projective system (Gn)n�0 of finite groups, a tower of corresponding
Hurwitz spaces (HGn )n�0, geometrically irreducible and defined over some cyclotomic extension of Q,
which admits projective systems of Qur

p -rational points for all primes p not dividing the orders |Gn|
(n � 0).
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Introduction

Let (Gn)n�0 be a projective system of finite groups, given with surjective morphisms
sn : Gn →→ Gn−1 (n > 0). In [DeDes2] was investigated the problem, given a field k,
of realizing the projective system (Gn)n by a regular tower K0 ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂
· · · of extensions Kn/k(T ): that is, Gal(Kn/k(T )) � Gn, compatibly with the sn and
Kn/k is regular (n � 0). Constructions of such towers were notably performed in the
case that k is a henselian field containing all roots of 1 of order prime to the residue
characteristic p � 0 of k, under the only assumption that each group Gn is of order
prime to p, i.e. is a p′-group (n � 0). As an application, the free profinite group F̂ω with
countably many generators can be regularly realized as the Galois group of an extension
of Qab((x))(T ); and similarly, its prime-to-p quotient F̂

(p′)
ω over Qur

p (T ) (see [DeDes2]
for more examples).

Using moduli spaces of covers, these problems and results interpret as those of existence
of projective systems of k-rational points on certain towers (Hn)n�0 of algebraic varieties
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(given with maps Hn+1 → Hn). However, the varieties Hn of [DeDes2]—some Hurwitz
spaces—are reducible in general. Our motivation in the current paper was to obtain a
similar result but with the Hn independent of p, geometrically irreducible and defined
over Q or some controlled cyclotomic extension of Q (n � 0).

The key is to use the Harbater–Mumford (HM) components of Hurwitz spaces, which
have been introduced by Fried [Fr1]. Their definition, of topological nature, is recalled
in § 1. We prove the following fact, which is a main ingredient of our final construction:
the p-adic covers constructed by Harbater’s patching methods [Ha] or by its rigid vari-
ants [Li,Po1] lie on HM-components (under some assumptions). How we pass from p-adic
to complex objects, is of course a crucial point. A main idea, already present in [Fr1], is
that HM-components can be characterized by the way the covers they carry degenerate;
our Theorem 1.4 is a precise form of this. A consequence is that HM-components are
permuted by Gal(Q̄/Q), which was proved in [Fr1] under some conditions. We use Wew-
ers’s compactification of Hurwitz spaces [We1,We2] to handle degeneration of covers.
The key part of our approach (how components can be recovered from their boundary)
consists in some deformation argument. We offer two versions. One (from C to C{{t}}) is
based on a general ‘comparison theorem’ (proved in [Em2]) expressing the fundamental
group of a semi-stable curve in terms of those of the components of the special fibre. The
second one is ad hoc and purely topological (over C).

Our original goal is reached in the final section. To any system (Gn)n�0 can be attached
a tower (Hn)n�0 of algebraic varieties Hn, geometrically irreducible and defined over
some controlled cyclotomic extension of Q, and which has the following properties (see
Theorem 4.1 for a full statement):

• each Hn is a component of some moduli space of Galois covers of group Gn (n � 0),

• there exist projective systems of Qur
p -points, for every p, such that all Gn are

p′-groups,

• there exist projective systems of Qab((x))-points,

• there exist projective systems of R-points.

The paper is organized as follows. Section 1 presents the main results. Section 2 pro-
vides the main tools. Section 3 gives the proofs of the main results. Section 4 is devoted
to the motivating application: we show the above result, improving on [DeDes2].

Throughout the paper we assume that a copy of the complex number field C has been
fixed, along with an embedding Q̄ ↪→ C of the field of algebraic numbers.

1. Main results

1.1. HM-components of Hurwitz spaces

For every integer r � 2, denote as usual the configuration space for finite subsets of P1 of
cardinality r by Ur. It is a scheme over Z. Given a subset t ∈ Ur(C), define a topological
bouquet for P1\t to be an r-tuple Γ = (Γ1, . . . , Γr) of homotopy classes of paths γ1, . . . , γr

based at some point t0 /∈ t of the form γi = ϑiδiϑ
−1
i where, for i, j = 1, . . . , r,
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(i) δi clockwise bounds a disc ∆i containing a unique point ti ∈ t,

(ii) ϑi starts at t0 and ends at some point on δi,

(iii) excluding their beginning and end points, the paths γi and γj never meet if i �= j,

(iv) the first intersection points of γ1, . . . , γr with a small circle centred at t0 are clock-
wise ordered according to their subscript numbering.

Following Fried [Fr2] we call the γi sample loops around the ti. It follows from these
conditions that Γ1, . . . , Γr generate the topological fundamental group πtop

1 (P1(C) \ t, t0)
with the unique relation Γ1 · · ·Γr = 1 [Fr2, Chapter 4, Theorem 1.8].

Given t ∈ Ur(C) and a topological bouquet Γ for P1 \ t, the map sending every complex
branched cover f : X → P1

C with branch point set t to the r-tuple whose entries are the
monodromy permutations of f−1(t0) associated with Γ1, . . . , Γs will be denoted by BCDΓ

(where BCD stands for ‘branch cycle description’). We recall the notion of Harbater–
Mumford type for covers of P1, which was introduced by Fried [Fr1].

Definition 1.1. A cover f with branch point set t is said to be of Harbater–Mumford
type (an HM-cover for short) if r = 2s is even and there exists a topological bouquet Γ

for P1 \ t such that BCDΓ (f) is of the form (g1, g
−1
1 , . . . , gs, g

−1
s ).

Fried was interested in the connected components of HM-covers in the associated
Hurwitz spaces. Generally speaking, Hurwitz spaces are moduli spaces of covers of P1

with fixed monodromy group G and with a fixed number r � 3 of branch points. The
basic notation for it is Hr,G and a point representing a cover f , or more exactly its
equivalence class, is denoted by [f ].

There are two variants of Hurwitz spaces, depending on whether one is interested in

mere covers, in which case the covers are not necessarily Galois and G is the mon-
odromy group, given as a subgroup of the symmetric group Sd (with d the degree of
the covers) and isomorphisms between two covers f : X → P1 and g : Y → P1 are
isomorphisms χ : X → Y of algebraic curves such that g ◦ χ = f ; or

G-covers, in which case the covers are Galois covers given with an isomorphism between
their automorphism group and the group G and isomorphisms between two G-covers
are those isomorphisms between the associated mere covers which in addition are
compatible with the action of G.

For simplicity, we will not distinguish the notation in these different situations, which,
unless otherwise specified, are both covered in this paper.

At this beginning stage, covers are considered over the complex field C. The cor-
responding moduli space is then a complex smooth quasi-projective variety, which we
denote by H∞

r,G. We will freely use the Hurwitz space theory in this context (we refer
to [Fr2,Vo] and see also [De,Em1]).

Due to smoothness of H∞
r,G, its connected components are also its irreducible compo-

nents (below, we just say components). Given an (unordered) r-tuple C = (C1, . . . , Cr)
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of conjugacy classes of G, we let H∞
r,G(C) be the union of those components of H∞

r,G

whose points correspond to covers with inertia canonical invariant C: recall that this
invariant is the collection (Ct)t of conjugacy classes Ct of distinguished generators of
inertia groups∗ above t as t ranges over the branch points of the cover.

For each τ ∈ Aut(C), the conjugate space H∞
r,G(C)τ is still a Hurwitz space, which

only depends on the restriction τ |Qab ∈ Gal(Qab/Q); namely it is H∞
r,G(Cχ(τ)) (where χ is

the cyclotomic character and Cχ(τ) = (Cχ(τ)
1 , . . . , C

χ(τ)
r )). Thus the (generally reducible)

varieties H∞
r,G and H∞

r,G(C) can be defined over Q and Qab, respectively, in the sense that
their (geometric) components are permuted transitively by Gal(Q̄/Q) and Gal(Q̄/Qab),
respectively. Furthermore, the Hurwitz space H∞

r,G(C) is itself defined over Q if C is a
rational union of conjugacy classes of G, i.e. if for every integer m prime to |G|, there
exists σ ∈ Sr such that Cm

i = Cσ(i), i = 1, . . . , r. More generally, given a field k ⊂ Qab,
we say that C is a k-rational union of conjugacy classes of G if the same property holds
for all integers m ≡ χ(τ) modulo |G| with τ ∈ Gal(Qab/k). Under this condition, the
Hurwitz space H∞

r,G(C) is defined over k. For example, the field generated by all roots
of unity of order |G| is a rationality field for C.

We denote by Ψr : H∞
r,G → Ur ⊗Z C the étale cover mapping each point [f ] ∈ H∞

r,G(C)
to the branch point set t ∈ Ur(C) of the isomorphism class of the cover f . For any choice
of a topological bouquet Γ for P1 \ {t} (with base point t0 /∈ t), the map BCDΓ provides
a one-to-one correspondence between the fibre Ψ−1

r (t) and the set

ni(C)• =

⎧⎪⎨
⎪⎩(g1, . . . , gr) ∈ Gr

∣∣∣∣∣∣∣
g1 · · · gr = 1

〈g1, . . . , gr〉 = G

gi ∈ Cσ(i), i = 1, . . . , r for some σ ∈ Sr

⎫⎪⎬
⎪⎭

/
∼,

where, by ‘/∼’, we mean that the tuples (g1, . . . , gr) are regarded up to componentwise
conjugation by elements of G for G-covers, and, by elements of the normalizer NorSd

(G)
for mere covers (in which case ni(C)• is usually denoted by ni(C)in or ni(C)ab, respec-
tively).

There is a classical outer action of the Hurwitz braid group πtop
1 (Ur, t) on πtop

1 (P1(C) \
t, t0), which induces an action on the fibre Ψ−1

r (t), and on ni(C)• via maps BCDΓ . This
induced action on Ψ−1

r (t) is the monodromy action corresponding to the topological cover
Ψr : H∞

r,G(C) → Ur(C). It can be explicitly determined as follows. The fundamental group
π1(Ur, t) has generators Q1, . . . , Qr−1 whose action on Ψ−1

r (t), when computed relative
to some suitable topological bouquet Γ , corresponds to the following action on ni(C)•:

(g1, . . . , gr)
Qi−−→ (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gr), i = 1, . . . , r − 1.

Components of H∞
r,G(C) correspond to orbits of the Hurwitz braid group action. More

precisely, fix t0 ∈ Ur(C) and a topological bouquet Γ 0 for P1 \ t0. Then, via BCDΓ 0
,

each component X ⊂ H∞
r,G(C) corresponds to some orbit O ⊂ ni(C)•, and we have the

following.
∗ We assume throughout the paper that we have fixed a coherent system (ζn)n>0 of roots of unity;

the distinguished generator of some inertia group I, say of order e, is the generator that corresponds to
ζe in the natural isomorphism between I and the group µe of eth roots of 1.

https://doi.org/10.1017/S1474748006000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000053


Harbater–Mumford components and towers of moduli spaces 355

(∗) X is the set of those points [f ] which have this property: for any g ∈ O, there exists
a topological bouquet Γ for P1 \ t, where t = Ψr([f ]) such that the branch cycle
description BCDΓ (f) of the cover f is g; and O is then the set of all BCDΓ (g)
with [g] ∈ X ∩ Ψ−1

r (t).

(∗∗) Given any t ∈ Ur(C) and any topological bouquet Γ for P1 \t, the orbit O is exactly
the set of all branch cycle descriptions BCDΓ (f) with [f ] ∈ X ∩ Ψ−1

r (t).

Assertion (∗) is part of general theory of topological covers; (∗∗) uses in addition
the fact that the Hurwitz braid group acts transitively on topological bouquets up to
conjugation.∗

Suppose r = 2s and C consists of s pairs (Ci, C
−1
i ), i = 1, . . . , s. Let HM(C) be the

set of all r-tuples in ni(C)• of the form g = (g1, g
−1
1 , . . . , gs, g

−1
s ). These tuples are called

Harbater–Mumford (HM) representatives of ni(C)• in [Fr1].

Definition 1.2. An HM-component of the Hurwitz space H∞
r,G(C) is the component of

some HM-cover. Equivalently, it is a component that corresponds to the orbit of some
HM-representative under the action of the Hurwitz braid group.

All points in an HM-component correspond to HM-covers but in general there may
be several HM-components. However, Fried proved the following [Fr1, Theorem 3.21].
He defines first the notions of g-complete and HM-g-complete tuples C. A tuple C is
g-complete if it satisfies the following: ‘gi ∈ Ci, i = 1, . . . , r ⇒ 〈g1, . . . , gr〉 = G’. A tuple
C with the shape (C1, C

−1
1 , . . . , Cs, C

−1
s ) is HM-g-complete if it has this property: if any

pair Ci, C−1
i is removed then what remains is g-complete. He then proves that if C is

HM-g-complete, then all HM-representatives are in the same orbit of the Hurwitz braid
group. Consequently, there is then a unique HM-component. Furthermore, if Z(G) = {1}
and if C is a rational union of conjugacy classes, then this HM-component is defined
over Q. We will reestablish this fact, as a consequence of Theorem 1.4, without assuming
Z(G) = {1} (Corollary 1.5).

1.2. The Wewers compactification

Fix a finite group G and an integer r � 3. In his thesis [We1], which is our main ref-
erence for this subsection, Wewers gives a more general construction of Hurwitz spaces,
which leads to a definition of Hr,G and of some compactification H̄r,G as schemes over
Spec(Z[1/|G|]) (see also [We2]). For each prime p not dividing |G|, we denote the corre-
sponding fibres above p by Hp

r,G and H̄p
r,G. This includes the case of the prime at infinity

for which one recovers the space H∞
r,G of § 1.1.

∗ In fact, the Hurwitz braid action comes from the natural outer action of the mapping class group
M0,r of the r-marked sphere (a canonical quotient of πtop

1 (Ur, t) by its centre) on πtop
1 (P1(C) \ t, t0).

Given a topological bouquet Γ 0, M0,r has the following description [MclHar]:

M0,r � Aut�(πtop
1 (P1(C) \ t, t0))/ Inn(πtop

1 (P1(C) \ t, t0)),

where Aut�(πtop
1 (P1(C) \ t, t0)) is the subgroup of Aut(πtop

1 (P1(C) \ t, t0)) of those automorphisms ϕ for
which there exists σ ∈ Sr such that ϕ(Γi) is conjugate to Γσ(i), i = 1, . . . , r, and Inn(πtop

1 (P1(C) \ t, t0))
denotes the group of inner automorphisms of πtop

1 (P1(C) \ t, t0).
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There is good reduction of Hr,G at those primes p � | |G|: the fibre Hp
r,G is a (reducible)

smooth variety defined over F̄p and its components correspond to those of H∞
r,G through

the reduction process. Furthermore, each Hp
r,G is a moduli space, for covers of P1 with r

branch points and monodromy group G, over algebraically closed fields of characteristic p.
Consider next the compactification H̄r,G. Locally H̄r,G is the quotient of a smooth

variety by a finite group and two distinct components of Hr,G have disjoint bound-
aries in H̄r,G; so components in H̄r,G are closures of components in Hr,G. The natural
étale morphism Ψr : Hr,G → Ur extends to a ramified cover H̄r,G → Ūr. Points on the
boundary Ūr \ Ur represent stable marked curves of genus 0 with a root, i.e. trees of
curves of genus 0 with a distinguished component T0, the root, equipped with an isomor-
phism P1 � T0 and at least three marked points (including the double points) on any
component but the root. Typical examples are the combs defined below. Points on the
boundary H̄r,G \ Hr,G represent admissible covers of stable marked curves B of genus 0
with root (see [We1,We2]). A key notion in this paper will be that of an HM-admissible
cover.

Definition 1.3. Given an algebraically closed field κ, a comb over κ is a κ-stable curve
of genus 0 marked by r = 2s points consisting of a genus 0 root T0 attached to s

other genus 0 curves T1, . . . , Ts, called the end components, each of them marked by two
points. An HM-admissible cover is an admissible cover of a comb that is unramified at
the singular points (which are the intersection points of T1, . . . , Ts with T0).

We summarize some properties of admissible covers we will use in the rest of this paper.
Let O be a henselian discrete valuation ring, k its quotient field and κ its residue field.
Let P̃ be a O-curve of genus 0 marked by r sections x̃1, . . . , x̃r with smooth generic fibre
and an r-marked stable special fibre P̄ .

(1) Given an admissible cover X̄ → P̄ tamely ramified at the marked points and pos-
sibly at the singular points, there are deformations X̃ → P̃ to covers of P̃ ramified
along the sections x̃1, . . . , x̃r.

(2) In the case where the special fibre P̄ is a comb, and X̄ → P̄ is an HM-admissible
cover, the deformation is unique.

(3) In the other direction, if X → Pη is a p′-cover of the generic fibre ramified at the
marked points, after a possible finite extension of k, it extends uniquely to a cover
X̃ → P̃O ramified along the sections x̃1, . . . , x̃r, with special fibre an admissible
cover of the special fibre P̄ of P̃O ramified at x̄1, . . . , x̄r and possibly at the singular
points of P̄ .

1.3. Characterization of HM-components

Fix an even integer r = 2s, a finite group G and an r-tuple C = (C1, C
−1
1 , . . . , Cs, C

−1
s )

of conjugacy classes of G. The following statement is one goal of this paper—it will be
established in § 3.
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Theorem 1.4. The HM-components of H∞
r,G(C) are those components whose induced

component in H̄r,G contains points representing HM-admissible covers over some alge-
braically closed field (possibly of positive characteristic).

As a first consequence of Theorem 1.4, we obtain the following corollary.

Corollary 1.5. Each τ ∈ Gal(Q̄/Q) maps the HM-components of H∞
r,G(C) on those of

H∞
r,G(C)τ . In particular, given a field k ⊂ Qab, if C is a k-rational union of conjugacy

classes of G, then action of Gal(k̄/k) permutes the HM-components of H∞
r,G(C). If, in

addition, there is a unique HM-component H ⊂ H∞
r,G(C), it is defined over k.

Proof. Let H be some HM-component of H∞
r,G(C). Denote its closure in H̄r,G by H̄.

From the direct part of Theorem 1.4 the boundary of H̄ contains a point representing
an HM-admissible cover f defined over some algebraically closed field κ, which, as the
proof will show, may be assumed to be of characteristic 0.

As recalled in § 1.2, the cover f extends to some cover f̃ of P1
κ((x)) over the field κ((x))

of Laurent series with coefficients in κ. The representative point [f̃ ] still lies in H̄.
Let τ ∈ Gal(Q̄/Q). Then Hτ is a component of the Hurwitz space H∞

r,G(C)τ ; fur-
thermore, Hτ = H̄τ . Extend τ to a Q-automorphism of κ((x)) fixing x. Then we have
[f̃ τ ] = [f̃ ]τ ∈ H̄τ and the reduction of f̃ τ modulo the maximal ideal of κ[[x]] is fτ , which
is an HM-admissible cover. Conclude from Theorem 1.4 that Hτ is an HM-component of
H∞

r,G(C)τ .
The rest of Corollary 1.5 is straightforward. �

Remark 1.6. Classically constructing a Hurwitz space Hr,G(C) for a given group G

with some component defined over Q can alternatively be done as follows: choose for C

a rational union of conjugacy classes of G of the form C = (C1, C
−1
1 , . . . , Cs, C

−1
s ) and

use patching methods to construct a Galois cover over Q((t)) with group G and inertia
canonical invariant C; the component of the representative point in Hr,G(C) is then
defined over Q((t)) ∩ Q̄ = Q. Furthermore, this component has p-adic points for each
prime p (including p = ∞) (e.g. [DeDes1, § 4.2]).

There is however some advantage in working with the somewhat more intrinsic (when
unique) HM-components of Corollary 1.5. In the final section, given a projective system
(Gn)n�0 of finite groups, we will construct a tower of such components carrying, for each
prime p not dividing the orders |Gn|, projective systems of rational points over some
appropriate p-adic field. The alternate argument recalled above also provides towers of
components but it is unclear to us that projective systems of points over p-adic fields
that can be constructed all belong to the same tower when p varies.

2. Tools

2.1. Comparison theorem of fundamental groups

A main tool in the proof of Theorem 1.4 is a comparison theorem between the funda-
mental groups of the generic fibre and of the components of the special fibre of a stable
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358 P. Dèbes and M. Emsalem

marked curve. We only state the topological version. The general version and the proof
are given in [Em2] (see also [Sa]).

The situation is as follows. We are given a stable marked curve Z over the ring C{{ε}}
of convergent power series with coefficients in C. We only consider here the special case
where Z is of genus 0 and its special fibre is a comb. We denote its root by T0, its end
components by T1, . . . , Ts, the intersection point of T0 with Ti by āi and the marked points
on Ti by x̄i, ȳi, i = 1, . . . , s. We also denote by {x1, y1, . . . , xs, ys} the marked points
on the generic fibre Zη, which extend to sections {x̃1, ỹ1, . . . , x̃s, ỹs} on Z specializing in
{x̄1, ȳ1, . . . , x̄s, ȳs}.

Choose a base point ξ̄i in Ti \ {x̄i, ȳi, āi} and a base point ξi in the geometric generic
fibre Zη̄ \ {x1, y1, . . . , xs, ys} which specializes in ξ̄i, i = 1, . . . , s. The natural restriction
functors from the category of covers of the geometric generic fibre Zη̄ to the category of
covers of Ti induce morphisms of fundamental groups∗

θ̃i : πtop
1 (Ti \ {x̄i, ȳi, āi}, ξ̄i) → πtop

1 (Zη̄ \ {x1, y1, . . . , xs, ys}, ξi) (i = 1, . . . , s),

θ̃0 : πtop
1 (T0 \ {ā1, . . . , ās}, ξ̄0) → πtop

1 (Zη̄ \ {x1, y1, . . . , xs, ys}, ξ0).

The base points ξ0, ξ1, . . . , ξs in the right-hand side terms can be changed to a common
base point ξ ∈ Zη̄ \ {x1, y1, . . . , xs, ys} but then the morphisms, which we denote by
θ0, θ1, . . . , θs (i.e. we remove the tilde), are only defined up to conjugation depending on
the choice of a path δi from ξ to ξi, i = 1, . . . , s. Clearly, the images of sample loops based
at ξ̄i by θ̃i (respectively, θi) are sample loops based at ξi (respectively, ξ), i = 0, 1, . . . , s.

Theorem 2.1. There exist

• a topological bouquet Γ (0) = {Γ
(0)
1 , . . . , Γ

(0)
s } for T0 \ {ā1, . . . , ās} based at ξ̄0,

• a topological bouquet Γ (i) = {Γ
(i)
0 , Γ

(i)
1 , Γ

(i)
2 } for Ti \ {āi, x̄i, ȳi} based at ξ̄i, i =

1, . . . , s, and

• elements σi ∈ πtop
1 (Zη̄ \ {x1, y1, . . . , xs, ys}, ξ), i = 1, . . . , s,

such that πtop
1 (Zη̄ \ {x1, y1, . . . , xs, ys}, ξ) is generated by the elements

• θ0(Γ
(0)
1 ), . . . , θ0(Γ

(0)
s ) and

• θi(Γ
(i)
0 ), θi(Γ

(i)
1 ), θi(Γ

(i)
2 ), i = 1, . . . , s,

∗ For r > 0 small enough the fibre of Z → Spec C{{ε}} over {0 < |ε| < r} is an analytic variety and
the topological fundamental group πtop

1 (Zan
ε \ {xε

1, yε
1, . . . , xε

s, yε
s}) is constant for ε real in ]0, r[. This

fundamental group is by definition the topological fundamental group of the geometric generic fibre, and
is denoted by πtop

1 (Zη̄ \ {x1, y1, . . . , xs, ys}).
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with the only relations θ0(Γ
(0)
i ) · θi(Γ

(i)
0 )σi = 1, i = 1, . . . , s. Moreover, the σi can be

chosen in such a way that

θ1(Γ
(1)
1 )σ1 , θ1(Γ

(1)
2 )σ1 , . . . , θs(Γ

(s)
1 )σs , θs(Γ

(s)
2 )σs

form a topological bouquet for Zη̄ \ {x1, y1, . . . , xs, ys}.∗

2.2. HM-covers degenerating to HM-admissible covers

The general construction below, which shows some HM-covers degenerate to HM-
admissible covers (over C), will be used in the proof of Theorem 1.4.

Let S2 ⊂ R3 be the unit sphere (identified with P1(C)) and let t = {x1, y1, . . . , xs, ys} ⊂
S2 be a subset of r = 2s distinct points. Suppose we are also given s open discs U1, . . . , Us

such that Ūi ∩ Ūj = ∅ and xi, yi ∈ Ui, and pick a point ai on the line segment [xi, yi]
(i, j = 1, . . . , s and i �= j).

Consider the continuous deformation tθ = {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s} parametrized by θ ∈

[0, 1] of the marking t = t0 given by

xθ
i = (1 − θ)xi + θai,

yθ
i = (1 − θ)yi + θai,

}
i = 1, . . . , s.

This deformation induces a continuous path between the representing points on the
moduli space Ūr. In Wewers’s modular compactification of Ur, the limit point (for θ =
1) represents a comb. This comb is obtained by blowing up the deformation space tθ

(θ ∈ [0, 1]) at each double point x1
i = y1

i , i = 1, . . . , s (see Figure 1 for a topological
representation of this process). Denote the resulting comb by C, which is the union of the
sphere S2 with s ‘small’ spheres Σ1, . . . , Σs, pairwise disjoint, attached to S2 at the points
a1, . . . , as, respectively, and marked by two distinct points (distinct from a1, . . . , as).

For each i = 1, . . . , s, let γi,1, γi,2 be closed paths based at ai, revolving around the
segment line [xi, ai] and [ai, yi]; for each θ ∈ [0, 1[, their homotopy classes Γi,1, Γi,2

freely generate πtop
1 (Ui \ {xθ

i , y
θ
i }, ai). Fix a point a0 ∈ S2 \

⋃
1�i�s Ūi and a set of paths

δ1, . . . , δs, pairwise disjoint and connecting a0 to a1, . . . , as, respectively, in such a way
that, setting γ̃i,j = δiγi,jδ

−1
i (i = 1, . . . , s, j = 1, 2), the corresponding homotopy classes

Γ̃1,1, Γ̃1,2, . . . , Γ̃s,1, Γ̃s,2 constitute a topological bouquet Γ̃ for each base space S2 \ tθ

based at a0 (θ ∈ [0, 1[).†
∗ In order to get this last conclusion from Theorem 4.3 of [Em2], note that for i = 1, . . . , s, one

can always choose a path δi from ξ to ξi in such a way that δ1, . . . , δs do not intersect and that their
intersection with a small circle around ξ are clockwise ordered according to their subscript numbering.
Then the two loops representing θi(Γ

(i)
1 )σi , θi(Γ

(i)
2 )σi can be separated into two sample loops ω

(i)
1 , ω

(i)
2

around xi and yi, i = 1, . . . , r, in such a way that ω
(1)
1 , ω

(1)
2 , . . . , ω

(s)
1 , ω

(s)
2 satisfy all conditions (i)–(iv)

from § 1.1 and so that their homotopy classes

θ1(Γ (1)
1 )σ1 , θ1(Γ (1)

2 )σ1 , . . . , θs(Γ
(s)
1 )σs , θs(Γ

(s)
2 )σs

form a topological bouquet.
† As in the preceding footnote, the paths γ̃1,1, γ̃1,2, . . . , γ̃s,1, γ̃s,2 themselves do not satisfy condi-

tions (i)–(iv) of § 1.1 but they are homotopic to paths which do.
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Next let d � 1 be an integer and let G ⊂ Sd be a subgroup of Sd given with a
generating system {g1, . . . , gs}. For every θ ∈ [0, 1[, let φθ : πtop

1 (S2 \tθ, a0) → G ⊂ Sd be
the epimorphism mapping Γ̃i,1 to gi and Γ̃i,2 to g−1

i , i = 1, . . . , s. Denote the associated
C-cover by fθ and the corresponding representing point on H∞

r,G by hθ. By construction,
the covers fθ are those obtained from f0 by the deformation tθ (θ ∈ [0, 1[). The first part
of the lemma below also follows by construction.

Lemma 2.2. The covers fθ are HM-covers (θ ∈ [0, 1[). Furthermore, the collection of
points hθ = [fθ] converges in H̄r,G(C) as θ → 1 and the limit point h1 corresponds to the
isomorphism class of an HM-admissible cover f1 of the comb C with cyclic restriction of
inertia canonical invariant {gi, g

−1
i } ⊂ Sd above each sphere Σi, i = 1, . . . , s.

Proof. For the second part, let (θn)n>0 be a sequence of elements in [0, 1[ such that
θn → 1 and (hθn

)n>0 converges in H̄r,G(C) as n → ∞. Due to the continuity of
H̄r,G(C) → Ūr(C), the limit point h1 corresponds to the isomorphism class of a cover
f1 of the comb C.

Set

B′ = S2 \
s⋃

i=1

Ūi and βi = δ̌iuiδ̌
−1
i ,

where δ̌i is the part of δi from a0 to the first intersection point, say bi, with the disc Ui and
ui is the loop based at bi that clockwise bounds the disc Ui, i = 1, . . . , s; the homotopy
classes [β1], . . . , [βs] generate πtop

1 (B′, a0) with the single relation [β1] · · · [βs] = 1. For
every θ ∈ [0, 1], denote by φ′

θ the representation πtop
1 (B′, a0) → Sd associated with the

restriction f ′
θ to B′ of the cover fθ (θ ∈ [0, 1]).

For θ ∈ [0, 1[, φ′
θ is the restriction of φθ to πtop

1 (B′, a0). As in πtop
1 (S2 \ tθ, a0) we have

[βi] = [γ̃i,1][γ̃i,2], the definition of φθ yields φθ([βi]) = 1, i = 1, . . . , s, for all θ ∈ [0, 1[. It
follows that φ′

θ([βi]) = 1 in πtop
1 (B′, a0), i = 1, . . . , s, and so, φ′

θ = 1, for all θ ∈ [0, 1[.
Now the assumption limn→∞ hθn = h1 implies that φ′

1 = φ′
θn

= 1 (for all n > 0). There-
fore, the restriction of f1 to S2 \ t1 is unramified at the points a1, . . . , as: f1 restricts to a
trivial cover above the root S2 of the comb. This also shows that the restriction of f1 to
each sphere Σi (each end component) is unramified at ai, hence is a cyclic cover branched
at two points, i = 1, . . . , s. More precisely, this cover is determined by the monodromy
action along the paths γi,1 and γi,2 (based at ai) viewed on the comb C; as f1 is trivial
above the root S2, it is the same as the monodromy action along the paths γ̃i,1 and γ̃i,2

(based at a0); by construction it is given by gi and g−1
i , i = 1, . . . , s. �

Addendum to Lemma 2.2. In the proof of Lemma 3.2, we will have to use that

the construction above can be achieved with the extra constraint that the comb C and the
HM-admissible cover f1 are prescribed in advance.

That is, the following will be given: the comb C given as a root sphere Σ0 attached to
s spheres Σ1, . . . , Σs at given points a1, . . . , as, respectively, the group G ⊂ Sd, and, for
i = 1, . . . , s, the (not necessarily transitive) representation πtop

1 (Σi \ {2 pts}, ai) → Sd

corresponding to the restriction of f1 to Σi, where {1, . . . , d} is the fibre of some fixed
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Figure 1. The deformation process.

https://doi.org/10.1017/S1474748006000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000053
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point a0 ∈ Σ0 in the cover f1 (the fibres of a1, . . . , as can also be identified to {1, . . . , d}
as the restriction of the cover to Σ0 is trivial). This last part of the data readily provides
an r-tuple (g1, g

−1
1 , . . . , gs, g

−1
s ): take for gi, g−1

i the images of two standard generators of
πtop

1 (Σi \ {2 pts}, ai), i = 1, . . . , s. From this, one easily forms an r-tuple t, a deformation
tθ and a cover f0 as above such that the corresponding specialization of f0 for θ = 1 is
the prescribed cover f1.

2.3. Construction of HM-covers from patching methods

This paragraph is aimed at reinterpreting the notion of HM-covers in the rigid view-
point and will be used in § 4 to show that the rigid covers that are used in [DeDes2] can
be constructed to be HM-covers. In § 4.3, we will provide an alternate formal approach
to the result of [DeDes2], which does not use this subsection.

Fix an even integer r = 2s and a discrete valuation ring O, assumed to be complete,
with fraction field k and algebraically closed residue field κ of characteristic p � 0.
Let t = {x1, y1, . . . , xs, ys} ∈ Ur(k) with t ⊂ P1(k). Assume further that, modulo the
maximal ideal P of O,

xi and yi are in the same coset, i = 1, . . . , r, and
x1, . . . , xs lie in pairwise distinct cosets.

(For points a, b in k identified with P1(k)\{∞}, being in the same coset modulo P more
explicitly means that either |a| � 1, |b| � 1 and |a − b| < 1, or, |a| > 1 and |b| > 1.)

Classically P1
k marked by the r-points x1, y1, . . . , xs, ys has a unique stable model

P̃t over O such that the points x1, y1, . . . , xs, ys extends to sections x̃1, ỹ1, . . . , x̃s, ỹs

specializing at distinct points x̄1, ȳ1, . . . , x̄s, ȳs of the special fibre. The special fibre P̄t is
a comb over κ with root T0 attached to s end components T1, . . . , Ts. Denote its singular
points by ā1, . . . , ās. The model P̃t induces an O-model of the rigid analytic space Pt,rig,
which is the maximal spectrum of the generic fibre of the formal completion of P̃t along
the special fibre (e.g. [Ga]).

For each i = 1, . . . , r, pick a point ωi such that |xi − ωi| = |yi − ωi| = |xi − yi| = ri

and denote by Di the open disc of centre ωi and radius 1 and by ∂Di the subset of Di

of all points x such that 1 > |x − ωi| > ri. Points x verifying |x − ωi| = ri specialize on
Ti; those for which |x − ωj | = 1 for all j = 1, . . . , s, specialize on T0; and points of ∂Di

specialize at āi, i = 1, . . . , s.
Fix a finite group G of prime-to-p order and an r-tuple C = (C1, C

−1
1 , . . . , Cs, C

−1
s )

of conjugacy classes of G. Suppose given a k-cover f : X → P1
k of group G, with branch

point set t and inertia canonical invariant C. After some finite extension of k, the cover
f : X → P1

k uniquely extends to a cover f̃ : X̃ → P̃t (§ 1.2).
Denote also by fi, i = 1, . . . , s, the restricted rigid cover f above the disc Di.

Proposition 2.3. The following conditions are equivalent.
(i) Each restricted cover fi is trivial above ∂Di, i = 1, . . . , s.

(ii) Each restricted cover fi extends to a cover gi : Yi → P1
rig with only two branch

points∗ (xi and yi), i = 1, . . . , s.
∗ gi is then necessarily a cyclic cover of P1 by a curve Yi of genus 0.
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(iii) The special fibre f̄ of f̃ is unramified at the singular points ā1, . . . , ās of the comb
P̄t, that is, f̄ is an HM-admissible cover.

Proof. Fix some index i ∈ {1, . . . , s}.

(i) ⇒ (iii). The restriction f̄i of the admissible cover f̄ to Ti can be viewed as the reduction
modulo an uniformizing parameter of fi. The restriction of fi to ∂Di is supposed to be
trivial, and the fibre of āi in the restriction of f̃ to Ti corresponds to the fibre of ∂Di in
fi. This shows that this restriction is unramified at āi.

(iii) ⇒ (ii). We suppose the restriction f̄i of f̄ to Ti is unramified at āi. So f̄i extends to
a cover of P1

O unramified outside two points xi, yi. The generic fibre of this cover induces
a rigid analytic cover gi : Yi → P1

rig unramified outside {xi, yi}, whose restriction to Di

can be identified to fi.

(ii) ⇒ (i). Suppose that fi extends to a cover gi : Yi → P1
rig unramified outside {xi, yi}.

The restriction of gi to any disc containing neither xi nor yi is trivial. Then the restriction
of fi to any closed annulus contained in ∂Di is trivial. So the same is true for the
restriction of fi to ∂Di. �

Assume further that k is of characteristic 0. Let Q(t) ⊂ k be the subfield gener-
ated by the branch point set t = {x1, y1, . . . , xs, ys} of the cover f and Q(t) ⊂ k̄ be its
algebraic closure inside k̄. It classically follows (from Riemann’s existence theorem or
Grothendieck’s specialization theorem) that f ⊗k k̄ has a model f̃

Q(t) over Q(t). Next
fix an embedding i : Q(t) ↪→ C. Via this embedding, the cover f̃

Q(t) induces a C-cover
f i : Xi → P1

C of group G, with branch point set ti and with inertia canonical invariant
Cχ(i). Denote the corresponding complex point in H∞

r,G(Cχ(i)) by [f ]i. It is the image via
i of the k-point [f ] ∈ H∞

r,G(C). As a consequence of Corollary 1.5 we obtain the following
corollary.

Corollary 2.4. If the cover f satisfies the equivalent conditions of Proposition 2.3, then
the point [f ]i lies in an HM-component of H∞

r,G(Cχ(i)).

3. Proof of Theorem 1.4

3.1. Direct part

Fix s open discs U1, . . . , Us in P1(C), pairwise disjoint, and pick distinct points xi, yi in
Ui, i = 1, . . . , s. Set t = {x1, y1, . . . , xs, ys} and fix a topological bouquet Γ for P1 \ t

as in § 2.2. From assertion (∗∗) of § 1.1, if H is any HM-component of H∞
r,G(C), there

exists an isomorphism class of cover [f0] ∈ H with branch point set t and with branch
cycle description relative to Γ of the form (g1, g

−1
1 , . . . , gs, g

−1
s ). The construction given

in § 2.2 can be used to show that H has HM-admissible covers in its boundary.
Alternatively, Theorem 2.1 can be used to prove this direct part.
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3.2. Converse

Suppose given a component H of H∞
r,G(C) whose boundary H̄ in H̄r,G contains a point

representing an HM-admissible cover ϕ defined over some algebraically closed field κ. We
will describe ‘a path in the closure H̄’ from the point representing ϕ to a complex point
representing an HM-cover. If κ is of characteristic 0, the first stage can be skipped.

3.2.1. First stage

Suppose the field κ is of characteristic p > 0. Let k be a henselian field of characteristic
0 and of residue field κ. Call O the ring of integers of k.

Lemma 3.1. The κ-cover ϕ lifts to a k̄-HM-admissible cover f̄ of a comb with s end
components T̄1, . . . , T̄s, each of them being a copy of P1

k̄
, and satisfying the following:

• the restricted cover f̄ above T̄i is a (not necessarily connected) cyclic cover branched
at two points and unramified at the intersection of T̄i and the root T̄0; its inertia
canonical invariant is {gi, g

−1
i } for some gi ∈ Ci, i = 1, . . . , s;

• the restricted cover f̄ above the root T̄0 is trivial;

• g1, . . . , gr generate the group G; and

• the point [f̄ ] lies on H̄.

Proof. The base space of the cover ϕ is a comb τ defined over κ, which consists in a
root τ0 � P1

κ with s marked distinct points α1, . . . , αs, and s end components τ1, . . . , τs

attached to the root at α1, . . . , αs, respectively, each of them marked by two points.
Choose a deformation τ̃0 of the marked curve τ0 over O: P1

O marked by α̃1, . . . , α̃s. At
each section α̃i of τ̃0 attach a copy τ̃i of P1

O marked by two points (i = 1, . . . , s). Denote
the resulting space over O by τ̃ .

The restriction of ϕ to each component of τi is a cyclic cover branched at two points, i =
1, . . . , s. For every given integer d � 1, there is, up to isomorphism, a unique connected
cyclic cover of P1 of degree d branched at two points. Thus each component of ϕ|τi has a
unique deformation to a O-cover of τ̃i branched at two sections. The trivial cover given
by the restriction of ϕ to τ0 obviously extends to a trivial O-cover of τ̃0. The patching
data above αi between the restrictions of ϕ to τ0 and τi uniquely extend to patching
data over O (i = 1, . . . , s). This follows from the fact that the points of the fibre of α̃i

are defined over O. As a result we obtain a cover ϕ̃ of τ̃ . Denote its geometric generic
fibre by f̄ ; it is a k̄-HM-admissible cover. From Wewers’s work, the representative point
is on H̄r,G. As it reduces to [ϕ] modulo the maximal ideal of O, it has to be on H̄. The
rest of Lemma 3.1 readily follows. �

3.2.2. Second stage

If κ is of characteristic p > 0, retain the notation of § 3.2.1. If κ is of characteristic
0, set k = κ and f̄ = ϕ. In both cases, f̄ is an HM-admissible cover of a comb over k.
In fact f̄ can be defined over the algebraic closure k̄0 ⊂ k̄ of the field of definition k0 of
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the branch points. Its representing point [f̄ ] on the moduli space H̄r,G is a k̄0-point on
H̄. This in particular provides an embedding F ↪→ k̄0 of the field of definition F of the
generic fibre of H̄ into k̄0; F is a number field contained in C. Extend the inclusion F ⊂ C

to an embedding ι : k̄0 ↪→ C. The C-cover f̄ ι obtained via this embedding corresponds
to a complex point in H̄.

By construction, f̄ ι is a complex HM-admissible cover of a comb T : it is trivial above
the root T0 � P1

C, has s end components T1, . . . , Ts isomorphic to P1
C, and each of the

restrictions of f̄ ι to some connected component above Ti is a C-cyclic cover of group
with inertia canonical invariant {gi, g

−1
i } for some gi ∈ Ci and with group 〈gi〉 ⊂ G,

i = 1, . . . , s. Furthermore, the elements g1, . . . , gs generate the group G.

Lemma 3.2. The C-cover f̄ ι is in the topological closure of some HM-component of the
Hurwitz space H∞

r,G(C).

Theorem 1.4 will then follow immediately. Indeed the representing points of the covers
ϕ and f̄ ι are in the same component H̄ of Hr,G(C); hence they are in the boundary of
the same component H of H∞

r,G(C), which from Lemma 3.2 is an HM-component.
We give two proofs of Lemma 3.2. The first one uses § 2.1 and the second uses § 2.2.

First proof. The complex comb T can be deformed over the ring C{{t}} of Taylor
series of positive radius of convergence to a stable curve P̃t of genus 0 with 2s sections
x̃1, ỹ1, . . . , x̃s, ỹs and whose generic fibre is a P1 marked by t = {x1, y1, . . . , xs, ys}. Using
§ 1.2 again, extend the HM-admissible cover f̄ ι to a C{{t}}-cover f̃ with generic fibre a
smooth cover of P1 branched at x1, y1, . . . , xs, ys. As all the varieties we consider are of
finite type over C{{t}}, there exists a real number ρ > 0 such that f̃ induces an analytic
family of covers f̃θ (0 < θ � ρ) of P1 defined over C ramified at 2s points xθ

1, y
θ
1 , . . . , xθ

s, y
θ
s

(the specializations of x̃1, ỹ1, . . . , x̃s, ỹs at t = θ).
We now apply Theorem 2.1. The topological fundamental group of the fibre at θ of

P̃t, which we denote below by (P1)θ, is constant. With the notation of Theorem 2.1, we
have homotopy classes

θ1(Γ
(1)
1 )σ1 , θ1(Γ

(1)
2 )σ1 , . . . , θs(Γ

(s)
1 )σs , θs(Γ

(s)
2 )σs

which constitute a topological bouquet of (P1)θ \ {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s}.

As the cover f̄ ι is unramified at each point āi, i = 1, . . . , s (f̄ ι is HM-admissible), the
branch cycle description of the cover f̃θ with respect to this topological bouquet is of the
form gh1

1 , (g−1
1 )h1 , . . . , ghs

s , (g−1
s )hs . The cover f̃θ is the unique deformation of f̄ ι along

the path {xθ
1, y

θ
1 , . . . , xθ

s, y
θ
s} (θ ∈ ]0, 1[) and hence is a connected cover of monodromy

group G. Thus the cover f̃θ is a complex HM-cover corresponding to some point in
H∞

r,G(C), which proves Lemma 3.2. �

Second proof. Section 2.2 explains how to construct a family of HM-covers degenerating
to a complex HM-admissible cover f1. From the addendum to Lemma 2.2, there is no
restriction on the degenerate cover f1; we can take it to be f̄ ι. The HM-covers fθ (0 <

θ < 1) provided by the construction have then 2s branch points, their group is the group
G generated by g1, . . . , gs and the inertia canonical invariant is the tuple C consisting of
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the s pairs of conjugacy classes Ci, C−1
i of gi and g−1

i , i = 1, . . . , s. This shows indeed
that f̄ ι is in the topological closure of some HM-component of H∞

r,G(C). �

4. Application to Hurwitz towers

This section is devoted to our application to inverse Galois theory; the previous sections
are used in the special context of G-covers.

4.1. Statement of the main result

Theorem 4.1. Suppose given a projective system G = (Gn)n�0 of finite groups with
surjective morphisms sn : Gn →→ Gn−1 (n > 0). Consider the field generated over Q by all
roots of unity of order |Gn| (n � 0) and denote its maximal real subfield by Q(µG)c. Then
one can construct a projective system (a tower) (Hn)n�0 of varieties Hn, geometrically
irreducible, with algebraic morphisms ψn : Hn → Hn−1, defined over Q(µG)c and with
the following properties.

(i) For each n � 0, the variety Hn is the unique HM-component of some Hurwitz
space H∞

rn,Gn
(Cn) (for some integer rn > 0 and some rn-tuple of conjugacy classes

of Gn).

(ii) As a consequence of (i), recall that if k is any field containing Q(µG)c, existence of
k-rational points on Hn implies the group Gn can be realized as the automorphism
group of a k̄-G-cover of P1 of field of moduli k.

(iii) If k is a henselian field of characteristic 0, of residue characteristic either p = 0 or
p > 0 not dividing any of the orders |Gn| (n � 0), and containing all roots of 1 of
prime-to-p order, there exist projective systems of k-points on the tower (Hn)n�0.
For example, there exist projective systems of Qab((x))-rational points and there
exist projective systems of Qur

p -rational points, for each prime p such that all Gn

(n � 0) are of prime-to-p order.∗ Furthermore, there also exist projective systems
of real points.

(iv) In (iii), the projective systems of rational points have the extra property that at
each level n � 0, the point lies in the no-obstruction locus of Hn, that is, where
the field of moduli is a field of definition. Consequently, the projective systems of
k-rational points in question in (iii) correspond to projective systems of k-G-covers
Xn → P1, or, equivalently, to towers of k-regular extensions Kn/k(T ), realizing the
system (Gn)n�0.

Remarks 4.2.

(a) In general, Hurwitz spaces are coarse moduli spaces and so k-rationality of their
points [f ] only corresponds to f being of field of moduli k but not necessarily defined

∗ The fields Qab((x)) and Qur
p can even be replaced by the smaller henselian subfields Qab((x))alg and

(Qur
p )alg of all elements algebraic over Q(x) and Q, respectively.
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over k. We do have conclusions about fields of definition. So some information is
lost in stating the results in terms of rational points on moduli spaces as in (iii).
Assertion (iv) compensates for this loss. We could have instead stated the result
in terms of stacks rather than moduli spaces. However in this refined version, the
stack-theoretic Hn counterpart of Hn would not be an algebraic variety anymore.

(b) Recall that presence of roots of 1 in the base field k in (iii) is not just a technical
assumption due to the method employed. The result would be false otherwise: for
example, the group Zp = lim←− Z/pnZ is not a regular Galois group over Q
(T ) [Se].

4.2. Proof of Theorem 4.1

The first stage consists in constructing a sequence (rn)n�0 of integers rn � 3 and a
sequence (Cn)n�0 of rn-tuples Cn of conjugacy classes of Gn with the following prop-
erty: if k is a henselian field as in (iii) or if k = R, then there exists a projective system
(fn)n�0 of G-covers fn defined over k with group Gn, with rn branch points and with
inertia canonical invariant Cn. Such a construction is the main result of [DeDes2] (see
Theorem 4.1 therein). Over henselian fields it was performed using rigid patching tech-
niques; formal techniques can be used alternatively; we explain how in § 4.3.

This construction thus yields a tower (H∞
rn,Gn

(Cn))n�0 satisfying the desired assertions
(iii) and (iv) of Theorem 4.1 (with H∞

rn,Gn
(Cn) replacing Hn). However, the varieties

H∞
rn,Gn

(Cn) are not geometrically irreducible as the Hn are claimed to be in Theorem 4.1.
In order to get the full statement of Theorem 4.1, we will use Theorem 1.4 to show that
the realizing covers fn can be taken to be HM-covers.

In the formal setting, we refer to Theorem 4.4 for this point. In the rigid setting this
can be justified as follows. The first stage of the method of [DeDes2] is to construct, at
each level n � 0, some cover fn as required, defined over the completion of k; this uses the
Serre–Liu–Pop rigid patching method (see [Se, § 8.4.4], [Li] and [Po1]). By construction,
this fn satisfies condition (i) from Proposition 2.3 and the following condition on the
branch point set t = {x1, y1, . . . , xs, ys} ⊂ P1(k):

|xi − yi| < |xi − xj | |p|1/(p−1), j �= i, i = 1, . . . , s (with |p|1/(p−1) = 1 if p = 0). (4.1)

If one picks the points x1, y1, . . . , xs, ys ∈ P1(k) satisfying both conditions (∗) from § 2.3
and (4.1) above (e.g. |xi| = 1, |xi − xj | = 1 and |xi − yi| < |p|1/(p−1) (i, j ∈ {1, . . . , s},
i �= j)), then the construction leads to a cover fn satisfying the conclusions of Proposi-
tion 2.3, that is, thanks to Theorem 1.4, to an HM-cover. Follow then [DeDes2] (§ 3.1
and Theorem 3.4) to show that there exists a projective system of such HM-covers, and
that their field of definition can be descended to k (from its completion) as the branch
points are in P1(k).

Finally, as explained in [DeDes2], the sequences (rn)n�0 and (Cn)n�0 can be initially
chosen in such a way that Cn is HM-g-complete and so there is a single HM-component on
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H∞
Gn,rn

(Cn), and it is defined over Q(µG)c (n � 0).∗ Define Hn to be this HM-component
(n � 0). The projective system (Hn)n�0 fulfils all conclusions of Theorem 4.1. �

Remark 4.3. The tower (Hn)n�0 constructed above can more precisely be defined over
any field k ⊂ Qab over which Cn is k-rational for all n � 0. In many interesting cases, it
is possible to construct tuples Cn as above with the extra property that they are all Q-
rational: that is the case for example if G = lim←−Gn is generated by finitely many elements
of finite order, and in particular in the situation of modular towers (see § 4.4). However,
this is not possible in general. Indeed assume that elements of finite order together with
elements with trivial image in G0 do not generate the group G = lim←−Gn (think of G = Zp)
and suppose given a projective system (Cn)n�0 as above. Then one may assume that
Cn,1 is of order νn (n � 0) with νn → ∞ and C0,1 �= {1}. For each n � 0, Q-rationality
of Cn implies it must contain φ(νn) distinct prime-to-νn powers Cµ

n,1 of Cn,1 (where φ

is the Euler function). Now these classes map to non-trivial classes of G0 to provide as
many entries in C0 (with possible repetitions): a contradiction as φ(νn) tends to ∞.

4.3. Formal approach

We give here the alternate proof of Theorem 4.1 of [DeDes2] using formal geometry,
thus providing a complete formal approach to Theorem 4.1.

Theorem 4.4. Let (sn : Gn →→ Gn−1)n>0 be a projective system of finite groups. There
exists a sequence of even integers rn = 2qn (n � 0) and for each n � 0 an rn-tuple Cn

of conjugacy classes Cn1, C
−1
n1 , . . . , Cnqn

, C−1
nqn

in Gn for which the following holds.
For any henselian field k of residue characteristic p � 0 not dividing any of the orders

of Gn and containing all roots of 1 of prime-to-p order, there exists a projective system
(fn)n�0 of HM-Galois covers of P1 defined over k and with Galois groups (Gn)n�0.

Proof. Choose a non-decreasing sequence (qn)n�0 of positive integers and for each n � 0
a generating system g(n) = (g(n)

1 , . . . , g
(n)
qn ) of Gn such that

sn+1(g
(n+1)
j ) =

{
g
(n)
j j = 1, . . . , qn,

1 for all j > qn.

We denote by Cnj the conjugacy class in Gn of g
(n)
j (j = 1, . . . , qn, n � 0).

On the other hand, one can construct an infinite set of points {x1, y1, x2, y2, . . . } of
P1(k) and a projective system (T (n))n�0 of stable marked curves T (n) over the valuation
ring O of k, whose generic fibre is P1 marked by the set tn = {x1, y1, . . . , xqn , yqn} and
the special fibre is a comb with roots T

(n)
0 and end components T

(n)
j (j = 1, . . . , qn),

xj , yj specializing on T
(n)
j , 1 � j � qn, with morphisms tn+1 : T (n+1) → T (n) (n � 0)

∗ We point out that there is a mistake in the second part of statement (a) of Theorem 4.1 of [DeDes2],
which can be rectified as follows: the field of definition of the component H∞

n in question is not Q as
asserted but is equal to the field of definition of the whole Hurwitz space HGn,rn (Cn) (it is Q if it is
assumed further that Cn is a rational union of conjugacy classes).

https://doi.org/10.1017/S1474748006000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000053


Harbater–Mumford components and towers of moduli spaces 369

inducing the identity map Id on the generic fibre and inducing the following map on the
special fibre:

Id : T
(n+1)
0 → T

(n)
0 ,

Id : T
(n+1)
j → T

(n)
j , j = 1, . . . , qn,

T
(n+1)
j → āj , for all j > qn,

where āj denotes the intersection point of T
(n+1)
j with T

(n+1)
0 .

For every n � 0 the restriction functors from the generic fibre to the components of
the special fibre induce morphisms of fundamental groups

θ
(n)
j : π1(T

(n)
j \ {āj , x̄j , ȳj}) → π1(T

(n)
η̄ \ tn)

(defined up to conjugation), and similarly with j = 0, making the following diagrams
commutative (up to conjugation):

π1(T
(n+1)
j \ {āj , x̄j , ȳj}) ��

��

π1(T
(n+1)
η̄ \ tn+1)

ψn

��
π1(T

(n)
j \ {āj , x̄j , ȳj}) �� π1(T

(n)
η̄ \ tn)

(similarly with j = 0).
Given t ∈ Ur, we call product-one distinguished generating system for the algebraic

fundamental group π1(P1 \ t) every generating system (Γ1, . . . , Γr) of π1(P1 \ t) such
that Γ1 . . . Γr = 1 and Γi is an inertia distinguished generator at some point ti ∈ t,
i = 1, . . . , r.

For every n � 0, the algebraic comparison theorem from [Em2] provides a product-one
distinguished generating system (Gn,1

1 , Gn,1
2 , . . . , Gn,qn

1 , Gn,qn

2 ) for π1(T
(n)
η̄ \ tn) with

Gn,j
1 = θ

(n)
j (Γ j

1 )τn
j ,

Gn,j
2 = θ

(n)
j (Γ j

2 )τn
j ,

where Γ j
1 (respectively, Γ j

2 ) is the generator attached to x̄j (respectively, to ȳj) in a
product-one distinguished generating system for π1(T

(n)
j \{āj , x̄j , ȳj}), and τn

j ∈ π1(T
(n)
η̄ \

tn), j = 1, . . . , qn. For each n � 0 there exist elements ωn ∈ π1(T
(n)
η̄ \ tn) such that

ψn(Gn+1,j
1 ) = (Gn,j

1 )ωn , j = 1, . . . , qn,

ψn(Gn+1,j
2 ) = (Gn,j

2 )ωn , j = 1, . . . , qn,

ψn(Gn+1,j
i ) = 1, for all j > qn, i = 1, 2.

Consider an integer n � 0. Starting from the (non-connected) cyclic covers of the end
components corresponding to the morphisms π1(T

(n)
j \ {āj , x̄j , ȳj}) → Gn mapping Γ j

1
to g

(n)
1 and Γ j

2 to (g(n)
1 )−1, j = 1, . . . , qn, and from a trivial cover of the root T

(n)
0 , build

https://doi.org/10.1017/S1474748006000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000053
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an HM-admissible cover of the special fibre of T (n). The generic fibre of a deformation
of this HM-admissible cover gives a p′-cover fn : Zn → T

(n)
η̄ of the geometric generic

fibre T
(n)
η of group Gn branched at the rn = 2qn marked points, corresponding to a

morphism π1(T
(n)
η̄ \ tn) → Gn mapping Gn,j

1 to some conjugate h
(n)
j of g

(n)
j and Gn,j

2 to
(h(n)

j )−1, j = 1, . . . , qn. From Theorem 1.4 the representing point [fn] belongs to some
HM-component of the Hurwitz space H∞

rn,Gn
(Cn). Moreover, one can require that this

cover, which is defined over k, has a totally rational fibre (i.e. consisting of k-rational
points) over some fixed k-rational point of the basis; this follows for instance from the
fact that the special fibre of the cover is trivial over the root, and so has many totally
κ-rational fibres, which extend to totally k-rational fibres. A consequence of this property
is that two such covers which are isomorphic over k̄ already are over k.

Let Sn be the set of k-isomorphism classes of such HM-covers of T
(n)
η (n � 0). It is

a non-empty finite set. Moreover, if Zn+1 → T
(n+1)
η is a representative of an element of

Sn+1, the cover Zn+1/ Ker(sn) → T
(n+1)
η is unramified at the 2qn+1 −2qn marked points

which specialize on T
(n)
j , qn < j � qn+1, and it induces a Gn-cover Zn+1/ Ker(sn) → T

(n)
η

ramified at the 2qn points from tn. The isomorphism class of this cover belongs to Sn.
We have constructed a map from Sn+1 to Sn (n � 0), and the projective limit of the

non-empty finite sets Sn is non-empty. An element of this projective limit is a coherent
system of HM-covers of groups (Gn)n�0. �

4.4. Application to modular towers

Suppose given a finite group G and a prime number � dividing |G| and assume G has a
set of generators of order ρ prime to �. Denote the �-universal Frattini cover of G by 
G̃;
it is naturally the inverse limit of some projective system (n


 G̃ → G)n�0 of finite Frattini
covers (of groups) (see [BaFr,Fr1]). A typical example is this: G is the dihedral group D


of order 2�, ρ = 2 and the projective system (n

 G̃)n�0 is the sequence of dihedral groups

(D
n+1)n�0, which converges to D
∞ = Z
 ×s Z/2. Suppose now given a henselian field
k of characteristic 0; it is not assumed here that k contains roots of 1. Then the general
construction of [DeDes2] applies to yield a realization of 
G̃ by a tower of regular Galois
extensions of k(T ); furthermore, the inertia canonical invariant Cn of the realizing cover
at level n consists of a fixed number, say r, of conjugacy classes of order ρ (n � 0). Again
this can be interpreted as the existence of a projective system of k-rational points on
a certain tower of Hurwitz spaces, namely the tower (H∞

r,n� G̃
(Cn))n�0. This tower is a

modular tower, as constructed by Fried [Fr1,BaFr]. As before, the results of this paper
show the covers used to realize all finite levels n


 G̃ (n � 0) can be taken to be of Harbater–
Mumford type. If in addition, C0 is HM-g-complete and is a rational union of conjugacy
classes of G, then so are all Cn—a consequence of the Frattini property of n


 G̃ → G—and
so each space H∞

r,n� G̃
(Cn) has a unique HM-component, defined over Q (n � 0). Conclude

as before that the projective system of k-rational points mentioned above can be found on
a tower of algebraic varieties, geometrically irreducible and defined over Q; furthermore,
these varieties are here all of the same dimension, namely r.
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