Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-06T16:19:05.492Z Has data issue: false hasContentIssue false

GERMS OF CHARACTERS OF ADMISSIBLE REPRESENTATIONS OF p-ADIC GENERAL LINEAR GROUPS

Published online by Cambridge University Press:  21 July 2003

Fiona Murnaghan
Affiliation:
Department of Mathematics, University of Toronto, Toronto M5S 3G3, Canada (fiona@math.toronto.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G=GL_n(F)$, where $F$ is a $p$-adic field of characteristic zero and residual characteristic $p$. Assuming that $p>2n$, we compare germs of characters of irreducible admissible representations of $G$ with germs of characters of unipotent representations of direct products of general linear groups over finite extensions of $F$. We show that the character of an irreducible admissible representation has an $s$-asymptotic germ expansion, for some semisimple $s$ in the Lie algebra of $G$. Furthermore, this expansion matches with the $0$-asymptotic expansion (that is, the local character expansion) of the character of a unipotent representation of the centralizer of $s$ in $G$.

AMS 2000 Mathematics subject classification: Primary 22E50; 22E35

Type
Research Article
Copyright
2003 Cambridge University Press