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Abstract Let G = GLn(F), where F is a p-adic field of characteristic zero and residual characteristic p.
Assuming that p > 2n, we compare germs of characters of irreducible admissible representations of G
with germs of characters of unipotent representations of direct products of general linear groups over
finite extensions of F'. We show that the character of an irreducible admissible representation has an
s-asymptotic germ expansion, for some semisimple s in the Lie algebra of G. Furthermore, this expansion
matches with the 0-asymptotic expansion (that is, the local character expansion) of the character of a
unipotent representation of the centralizer of s in G.

Keywords: character; admissible representation; Fourier transform; orbital integral; Hecke algebra

AMS 2000 Mathematics subject classification: Primary 22E50; 22E35

1. Introduction

Let F be a p-adic field of characteristic zero and residual characteristic p. Let
G = GL,(F), where n is an integer such that n > 2. Suppose that 7 belongs to the
set £(G) of irreducible admissible representations of G. Let go+ (respectively, greg) be
the set of topologically nilpotent (respectively, regular) elements in the Lie algebra g of G.
If © is the character of m, we will refer to the function X — O, (1+X), X € go+ N gregs
as the germ of 9.

If s € g is semisimple, let £2¢(s) be the set of G-orbits in g whose closures contain s. If
O € 2¢(s), let fip be the function representing the Fourier transform of the distribution
given by integration over O with respect to a G-invariant measure on O. We will say
that the germ of O, is s-asymptotic (on V) if there exist constants co (), one for each
O € 2¢(s), and an open neighbourhood V C gg+ of zero in g, such that

O-(1+X)= ) comio(X), X €gugnV.
OEQG(S)

If the germ of O, is s-asymptotic on some V), the expression on the right will be referred
to as an s-asymptotic expansion of the germ of @, (on V). If the Fourier transforms i,
O € 2¢(s), remain linearly independent upon restriction to any open neighbourhood of
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zero intersected with gres (for example, this is the case whenever s belongs to an elliptic
Cartan subgroup of g; see Corollary 11.11), then the coefficients co(w), O € 25(s), are
unique and we refer to the above as the s-asymptotic expansion of the germ of ©.

It is known [11,13] that the germ of @, is 0-asymptotic on some open neighbourhood
of zero. Recall that the depth p(m) of 7, as defined in [29,30] (see §4), is a non-negative
rational number. Waldspurger [42] and DeBacker [9] have shown, in the case p(7) € Z
and the case p(m) arbitrary, respectively, that if p is sufficiently large, then the germ of
O is 0-asymptotic on the set g,,)+ defined in [8,9] (refer to §11 of this paper for the
definition of g,(xy+).

If p > 2n, given m € £(G), we prove (see Theorem 14.5) that there exists a semisimple
sy in g and an irreducible unipotent representation wg of the centralizer H of s, in
G such that the germ of @ is sy-asymptotic on g, (respectively, go+) if p(7) > 0
(respectively, if p(m) = 0) and some s, -asymptotic expansion of the germ of @, matches
the 0-asymptotic expansion of the germ of @, in the following sense. Given Oy € 2(0),
let co,, () be the coefficient of fip,, in the 0-asymptotic expansion of the germ of O, .
The map On — G- (sx+On) is a bijection from 2 (0) to 2¢(sx). If measures on orbits
in 27 (0) and 2¢(sx) are chosen to be compatible (as described in §12), then there exists
an sp-asymptotic expansion of the germ of O, for which the coefficients cq. (s, +0,)(T)
of the Fourier transforms fig.(s, +o0,) satisfy

CG-(sﬂ-i-OH)(ﬂ-) = ACOH (TrH)7 OH € QH(O)v

where A is a constant depending on normalizations of Haar measures on G and H.

In an earlier version of this paper, Theorem 14.5 was proved subject to validity of
a hypothesis concerning linear independence of the restrictions of the nilpotent orbital
integrals to the space spanned by the characteristic functions of certain lattices in g. The
hypothesis has not been proven in general, though is has been verified in some cases (see
Proposition 11.6). Here, in order to avoid assuming the hypothesis, we apply a special
case of a result of [22] concerning s-asymptotic expansions of germs of characters and
unrefined minimal K-types (see Theorem 11.8).

In [17], Howe and Moy showed that if p > n, there exist certain representations of
parahoric subgroups of G, called refined minimal K-types, having the property that every
7w € £(G) contains a refined minimal K-type. In addition, the Hecke algebra attached to
a refined minimal K-type is naturally isomorphic to the Iwahori Hecke algebra of the cen-
tralizer G” of some semisimple element in g. Suppose that 7 is a refined minimal K-type
that is contained in some discrete series representation, or, equivalently, G” ~ GL,(L),
where L is an extension of F' and a[L : F| = n. Then, as we show in Theorem 13.2, the
character y, of 7 satisfies a Kirillov-type character formula. This can be described as
follows. The refined minimal K-type 7 is a representation of some parahoric subgroup
B, with corresponding parahoric subalgebra b. Suppose that v is a non-trivial character
of F', h is an integer such that n < h < p and ¢,(X) = Z?;OI X1/il, X € g. There exists
a semisimple element s, j, such that L = F(s;), and the function x, o ¢, coincides with
the Ad B-orbit of the linear functional ¥(tr(s,.,-)) on the set of X € b such that X" is
sufficiently small.
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In one of the main results of this paper (Theorem 14.1), we show that if 7 € £(G)
contains a refined minimal K-type 7 of the above form, then the s, of Theorem 14.5 may
be taken equal to s, (for any h such that n < h < p) and H = G”. Furthermore, 7y is
the unipotent representation of G corresponding to 7 via the Hecke algebra isomorphism
of Howe and Moy. Also, the constant A above is equal to vg(B) lvgr (BN G")(dim7),
where vg(B) and vgr (BN G") are the measures of B and B N G” relative to Haar
measures on G and G”, respectively. If 7 is essentially square integrable, a formula for
the value of each of the coefficients co(7), O € 2¢(sx), is given in Theorem 14.4.

A partial analogue of Theorem 14.1 was proved for supercuspidal representations of
GL,(F) (in the case p > n) in [33]. There we derived a Kirillov-type character formula for
the inducing data for 7, and, via methods different from those used in this paper, proved
that the germ of @, is s;-asymptotic on some unspecified open neighbourhood of zero,
where s, is a regular elliptic element appearing in the Kirillov-type character formula.
The relation between the results of this paper and those of [33] is discussed in more
detail in §14. Recently, Adler and DeBacker [2] have extended the main result of [33]
and shown that the s;-asymptotic expansion of O holds on g, )+ if p(m) > 0, and on
go+ if p(7) = 0. Their methods are refinements of the methods used in [33], do not involve
Hecke algebra isomorphisms and do not apply to non-supercuspidal representations.

The irreducible complex characters of a finite general linear group have Jordan decom-
positions, expressed in terms of particular semisimple characters of the group and unipo-
tent characters of centralizers of semisimple elements. Our results, particularly Theo-
rem 14.1, suggest that when p is large, the Hecke algebra isomorphisms of Howe and
Moy (attached to refined minimal K-types) realize some kind of Jordan decomposition
for characters of irreducible admissible representations of p-adic general linear groups.

In [39] and [7], formal degrees of discrete series representations of GL,, (F) have been
computed using properties of Hecke algebra isomorphisms. Up to sign and division by
the formal degree of the Steinberg representation, the formal degree of a discrete series
representation is the term corresponding to the trivial orbit in the 0-asymptotic expansion
of the germ of the character. The results of this paper are the first in which entire germs
of characters of irreducible admissible representations are compared via Hecke algebra
isomorphisms.

In [32,34], analogues of the results of [33] (and hence of Theorem 14.1) were proved for
many supercuspidal representations of classical groups (for p sufficiently large). However,
as discussed in § 4 of [32] and § 11 of [34], there exist supercuspidal representations having
the property that the germ of the character cannot be s-asymptotic for any semisimple
element s whose centralizer in the group is compact modulo the centre of the group. Hence
if the results of this paper have analogues for characters of admissible representations
of other reductive groups, either those analogues have a different form (perhaps in some
cases involving germs of stable sums of characters, as results of [34] suggest), or they only
have analogues for some admissible representations. Preliminary investigations, using the
Hecke algebra isomorphisms of [26,27], show that for some discrete series representations
of GSp4(F), analogues of Theorem 14.1 do hold. In the future, we will investigate the
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possibility of using the Hecke algebra isomorphisms constructed by Kim [19-21] to obtain
results similar to Theorems 14.1 and 14.5 for classical groups.

The homogeneity results of Waldspurger and DeBacker concerning germs of characters
require that the residual characteristic of F' be sufficiently large. If these results could
be extended to small p, then possibly the methods of this paper could be adapted to use
the types and Hecke algebra isomorphisms of Bushnell and Kutzko [4] to study germs of
characters of admissible representations of GL,,(F) when p < n.

A special case of Theorem 14.1 was announced in [35]. In another paper [36], some
of the results of this paper are used to compute the coefficients in the 0-asymptotic
expansions of germs of characters of certain discrete series representations of GL,, (F)
(when p > 2n).

We now discuss the contents of the paper. Most of our notation is defined as we need
it, but § 2 contains a summary of some notation that appears throughout the paper. Let
or be the ring of integers in F. In §3, we list basic facts about filtrations of parahoric
subgroups of G and parahoric op-subalgebras of g associated to periodic lattice flags
in F™.

Section 4 starts with a review of the definition of the minimal K-types defined by
Howe and Moy [16] (these we refer to as standard minimal K-types) and a discussion
of their relation to the unrefined minimal K-types of Moy and Prasad. Next we recall
the definition of depth p(7) for 7 € £(G), and indicate how p(7) can be detected from
properties of any standard minimal K-type contained in 7. There are two sorts of stan-
dard minimal K-types, called pure and separated by Howe and Moy. It is straightforward
to show that if 7 € £(G) is not properly parabolically induced, then 7 contains a pure
minimal K-type.

Much of this paper is devoted to proving results (see §12) about germs of characters
of representations that contain pure minimal K-types. If 7 € £(G) happens to contain
a refined minimal K-type that occurs in some discrete series representation, then, as
seen in [17], this refined minimal K-type is defined inductively via a finite sequence of
pure minimal K-types for general linear groups over extensions of F. This allows us
to argue by induction on depth, using the results of §12 in the main induction step,
to obtain Theorem 14.1. For arbitrary m € £(G), we show (see Proposition 17.3) that
7 is parabolically induced from an irreducible admissible representation my; of a Levi
subgroup M, where m); is a tensor product of irreducible admissible representations
(of general linear groups), each of which contains a pure minimal K-type. Theorem 14.5
is then proved by induction on depth, using both the results of § 12 and Proposition 17.3.

Sections 5-10 and 12 are concerned with questions related to pure minimal K-types
and the representations m € £(G) that contain a pure minimal K-type. Suppose that 7
is such a representation. Then 7 contains a particular sort of pure minimal K-type (see
Lemma 6.1). Attached to that pure minimal K-type there is an extension E/F, along
with an s € E that generates E/F. Let G’ be the centralizer s in G. As discussed in § 3,
there is a family of parahoric subgroups of G having the property that the corresponding
filtrations intersect G’ in filtrations of parahoric subgroups of G’ attached to lattice flags
in B, n/ = n/[E : F]. Some more properties of these parahoric filtrations, relative to
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G’ and its Lie algebra g’, and the element s, are given in § 5. One of the key results here,
Proposition 5.6, due to Waldspurger [41], is a descent property for orbital integrals. It
can be stated roughly as follows. Suppose that Z € g’ is such that s~'Z is topologically
nilpotent. If B belongs to the above family of parahoric subgroups and ¢ is the smallest
non-negative integer such that the G-orbit Og(s) intersects b_;, then the integral of the
characteristic function of b_; over the orbit Og(s + Z) is equal to a non-zero multiple
of the integral of the characteristic function of b_; N g’ over the orbit Og/ (s + Z). Here,
b_; is the (—%)th power of the pronilpotent radical of the parahoric op-subalgebra b of g
that corresponds to B. If B is a parahoric subgroup that is not conjugate to a parahoric
in the above family, there is a uniquely determined non-negative integer ¢ depending on
s and B (but that is not defined the same way as for parahorics that belong to the above
family), and Og(s + Z) does not intersect b_;.

Howe and Moy [15,17] showed that the above-mentioned pure minimal K-type gives
rise to an isomorphism of Hecke algebras, which we call n, via which 7 corresponds to
a representation 7’ € £(G’). Let V; and V., be the spaces of m and 7', respectively.
Given a parahoric subgroup B, let ¢ be the non-negative integer discussed above. Tl}e
aim of §§6-8 and 10 is to express dim(V2™*") as an explicit multiple of dim(Vf”mG )
whenever B belongs to the above family of parahoric subgroups, and to show that if
B is not conjugate to one of those subgroups, then V2" = {0}. See Propositions 8.6
and 10.8 for precise statements in the cases p(7) > 0 and p(r) = 0, respectively.

The case p(7) > 0 is dealt with in §§ 6-8. In § 6, we define a set of pure minimal K-types
(depending on the element s and on the set of nilpotent G’-orbits in g’). There is a natural
bijection between this set of K-types and a set of pure minimal K-types of G'. If x is one
of these K-types, and X’ is the corresponding K-type of G’, Proposition 8.4 expresses
the multiplicity m, (7) of x in 7 as an explicit multiple of the multiplicity m,(7’) of
X' in #’. If B is a parahoric subgroup of G and i is as above, dim(VﬂB”l) is a linear
combination of the multiplicities m, () for x ranging over the given set of pure minimal
K-types. A similar statement holds for dim(VTfi) and the multiplicities m,/(7’), when B’
is a parahoric subgroup of G’. This allows us to deduce Proposition 8.6 (see above) from
Proposition 8.4. The Hecke algebra isomorphism 7 matches certain isotypic subspaces in
V: and V., in a very simple way. These subspaces, and the resulting relations between
multiplicities, are described in §7. In order to prove Proposition 8.4, it is necessary to
relate the isotypic subspaces occurring in §7 and the x-isotypic subspaces of V;. and the
x’-isotypic subspaces of V. This is done in the first part of §8.

In the proofs of Theorems 14.1 and 14.5, the induction step may involve a Hecke
algebra isomorphism 7 that is slightly different from 7. In order to be able to apply the
results of § 12 (which relate the germs of ©, and ©,) in later sections, we need to know
that the representation 7’ € £(G’) corresponding to 7 via 7 is equivalent to 7’. This is
proved in §9.

In § 10, we consider the case where p(m) = 0 (and 7 contains a pure minimal K-type).
In this case, E/F is unramified and the Hecke algebra isomorphism 7 gives rise to an
isomorphism 7y between a Hecke algebra of G = GL,(F,) and one of G’ = GLy (Fya),
d = [E : F]. Here, q is the cardinality of the residue class field of F. In order to prove
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Proposition 10.8 (see above), it is necessary to compare the dimensions of certain isotypic
subspaces of V. and V. using n9. These particular isotypic subspaces can be viewed as
representations of G and G’, respectively, and one step in this process involves relating
1o and the twisted induction map Rg, of [23], which takes virtual representations of G’
to virtual representations of G. Having done this, it is a simple matter to compare the
dimensions of the relevant isotypic subspaces using properties of RY,. At the end of the
section, we derive a Kirillov-type character formula for the character of a pure minimal
K-type contained in .

Section 11 contains statements of homogeneity properties of orbital integrals and germs
of characters (due to Waldspurger [42] and DeBacker [9]), as well as a particular case
of a result from [22]. These results will be applied in later sections. We also prove some
results concerning the behaviour of (the functions representing) Fourier transforms of
orbital integrals, on neighbourhoods of zero in g.

In §12, Propositions 5.6, 8.4 and 10.8, homogeneity results for orbital integrals and
germs of characters, and, if E/F is partly ramified, the hypothesis of § 11, are applied to
derive relations between the germs of @, and ©,.

Section 13 is devoted to proving Theorem 13.2, which gives a Kirillov-type character
formula for the character of a refined minimal K-type that is contained in a discrete
series representation.

Complete statements of the main theorems appear in §14. In addition to the results
mentioned previously, we give a relation between the wavefront set of a representation
m € £(G), which is one of the ones considered in Theorem 14.1 and the wavefront set of the
corresponding unipotent representation of G”. With the exception of Theorem 14.1 (1)
(which is Theorem 13.2), proofs of the results stated in § 14 appear in §§15-17.

2. Notation and conventions

Let F be a p-adic field of characteristic zero with ring of integers 0 = op and maximal
ideal p = pp in op. Let p and ¢ be the characteristic and cardinality, respectively, of the
residue class field op/pp. If m is a positive integer, Fp,m denotes the finite field of order
p™. Let @ = wr be a uniformizer. Normalize the absolute value |- | = |- | by |@| = ¢~ .
If E/F is a finite extension of E, we denote the corresponding objects relative to E by
0r, PE, P, 45 and wg.

We will define much of our notation for G = GL,,(F). The obvious analogues of this
notation will be used without comment for groups of the form [[, ., GLy, (E;), where
n; > 1 and F;/F is a tamely ramified extension of finite degree, 1 < i < r.

Let g be the Lie algebra of G and let C°(g) be the space of complex-valued locally
constant compactly supported functions on g. If £ is a lattice in g, C.(g/L) denotes the
subspace of functions in C$°(g) that are invariant under translation by £. The sets of
semisimple elements, nilpotent elements and regular (semisimple) elements in g will be
denoted by gss, gnil and greg, respectively.

The notation vy (S) will be used for the volume of a subset S of a space X (relative
to a specific measure on X'). If ¥ = G or g, the measure is assumed to be Haar measure.
Haar measure on a compact group K will be normalized so that vk (K) = 1.
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Fix a character ¢ of F' such that v is trivial on p and non-trivial on o. Throughout the
paper, ¥ will be the character of F' used in the definition of K-types and in the Fourier
transform on the Lie algebra. Haar measure on g will be normalized to be self-dual with
respect to Fourier transform, so f(X) = f(=X) for all f € C=(g) and X € g. If E/F
is a tamely ramified finite extension of F'; K-types on GL;(E), h > 1, and the Fourier
transform on gl (E) will be taken relative to the character ¢g = v o trg,/p of £ (note
that g is trivial on pp and non-trivial on o).

Given a representation 7w of G, V. denotes the space of 7. If K is a compact open
subgroup of G, VX denotes the subspace of (K )-invariant vectors in Vj. If x is a non-
trivial finite-dimensional representation of K, VTSK’F") denotes the k-isotypic subspace of
V, (viewed as a K-space). The notation £(G) will be used for the set of (equivalence
classes of) irreducible admissible representations of G. The character of 7, viewed either
as a distribution or as a locally integrable function on G, will be denoted by ©.

If X € g, Og(X) denotes the G-orbit of X and Cg(X) denotes the centralizer of X
inG.IfSCg G-S={Adg(X)|ge€ G, X eS}. Given s € g, let £25(s) denote the
set of G-orbits O such that s belongs to the closure of O. Note that 25(0) is the set of
nilpotent orbits.

If X € gand O = Og(X), po denotes the distribution on C2°(g) given by integration
over the orbit O, relative to a G-invariant measure on O (see § 12 for comments on nor-
malizations of measures). As shown in [11], the Fourier transform fio of the distribution
1o is represented by a locally integrable function, also denoted jip, on g.

Given a positive integer h, denote the set of partitions of h by P(h). Each « € P(h) is
a finite sequence @ = (ay,. .., a;) of positive integers a; such that 21@@ o; = h. When
referring to a without mentioning the «;, we will use the notation r(«) for r. The set
PO(h) of ordered partitions of h consists of those o € P(h) such that oy > -+ > a.

If n; is a positive integer and a9} € P(n;), 1 < j < m, let

oMU Ua™ = (@) 70[%(1)), B _’agn)?”.,aff(’jj(,n))) €P(nr+ -+ 1),

Let i be a positive integer and o € P(h). Define ia and o € P(ih) by

ia = (iay,...,ia,) and o' =aU---Uq.
i times
If ¢ and j are positive integers, set u;(¢') =[] ;;(¢" = 1). If @ = (eu,...,q0) €

P(h), set ua(q') = [Li<icr ten (¢")-

Let h be a positive integer and let Fy be either a finite extension of F' or a finite field.
Given a = (aq,...,a,) € PO(h), for 1 < i < aq, let ¢; be the number of j € {1,...,r}
such that a; > 4. Fix a nilpotent element Y,, in gl (Fp) in Jordan canonical form, with
blocks of sizes &;, 1 <i < ay. Then a <> Oy = Ogy, (r,)(Ya) defines a bijection between
PO(h) and the set of nilpotent G Ly, (Fp)-orbits in gl (Fp). Given o and 8 € P°(h), we
write o < 8 whenever Y'_, a; < Zizirll(e’r(ﬁ)) B; for 1 < £ < r(a). This corresponds to

the partial order on the set of nilpotent orbits O, o € P°(h), given by inclusion in
closure, since a < 3 if and only if O, D Og.
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Finally, if ¢t € R, |¢] and [¢] are used to denote the greatest integer less than or equal
to t and the smallest integer greater than or equal to ¢, respectively.
3. Lattice flags and filtrations of parahoric subgroups and subalgebras

A lattice L in F™ is a free o-submodule of rank n. A periodic lattice flag £ in F", of
period r, is a sequence £ = {L; | i € Z} of lattices L; C F™ such that L;11 € L; and
Lir, =wlL;, i € Z. We can define an associated filtration of g = gl,,(F) by

bi:bg)i:{XEg|XL@CL@+Z'V€€Z}, i € 7.
The o-subalgebra b = by is a hereditary order in g and by is the nilradical of b. We have
bi = (bl)i7 (> 17 bi+7‘€ = webia E,Z € Z.

Define
by ={X eg|tr(XY)epVY €b,}.

Then b} = b;_;. Given a parahoric o-subalgebra of g, there exists a periodic lattice flag
£ such that b = bg, and the ith power of the nilradical of b equals bg ;, 7 > 1.

The group B = b* is a parahoric subgroup of G. Define a filtration of B by compact
open normal subgroups of B as follows:

By =B, B,=1+0b;, >1.
For 0 < i <n— 1, define L$* C F™ by

LY=000d - - ®odpdpd---Dp.

n—i times i times

Set Ls, = w'Li" for 0<i<n—1and (€ Z. Given a = (ov,...,a,) € P(n), define
a lattice flag £ = {L | i € Z} by
Ly =Ly, Le=L3 .., 1<i<r—1,
oy =w L 0<i<r—1, (eZ
Set
boi =bgay, €7, B, = Bgag, 1©20.

The hereditary order b, can be described as follows:

0la, (0) Moy xay(0) oo M,y xa, (0)
Moy xa, (P) 8la, (0) coo Mayxa,(0)
Mo, 50, (P) Mo, xay(P) .- 9la, (0)

Here, if S C F, M;y1(S) denotes the set of j x k matrices with entries in S. The nilradical
bo,1 of by consists of matrices having the block form as above, except with gl,, (0)
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replaced by gla, (p), 1 < k < r. Given a hereditary order b C g and associated filtration
b;, there exists an o € P(n) such that Ad g(b;) = b, ¢ € Z, for some g € G. In fact, if
g € G, then g€ = {gL; | i € Z} is a periodic lattice flag in F™ and bye = Adg~!(bg).

From the above descriptions of b, and by, ;, it is easy to see that, if o« = (a1,..., ;) €
P(n), then
Ba/Ban >~ [[ GLa(0/p) = [] GLa,(Fy)
1<igr 1<igr
[Bayr,1 2 Ba1] = [bayn,1,ba,1] = H g (= D/2
1<igr (3.1)

[Ba : By 1] = ua(q),

[Ba,i : Bait1] = H g, iz L
1<i<r

Here, u,(g) is as defined as in §2.

Suppose that d is a positive divisor of n. Let E/F be a tamely ramified extension of
degree d. Set f = f(E/F), e =e(E/F)and n’ = n/d. Fix a prime element wg € pg such
that wwy' is a root of unity of order prime to p. Let G’ = GL,/(E) and g’ = gl (E).

Choose a basis of E over F' in such a way that the corresponding F-linear isomorphism
¢p : E ~ F? has the property &p(ph) = Lgf)e, 1 € Z. That is, &g maps the lattice flag
{p% | i € Z} to the lattice flag £/)°. Then the filtration b(fye,; of gla(F) has the property
that E N by ; = ply, i@ € Z. (Here, E is embedded in glq(F) via the above-mentioned
basis of FE over F'). Define an F-linear isomorphism ¢ : E" ~ 7 by

(a1, aw) = (e(1), ... Ep(Tnr), = €E, 1<isn.
Given a periodic lattice flag £ = {L} | i € Z} in E™, define a lattice flag £(£) in F™ by
§(2) ={&(Ly) | i e z}.

If we write a matrix X € g in the form X = (X;;)i<i j<n’, Where X;; € glg(F), we can
view g’ as a subalgebra of g as follows. Given X’ = (X};), X;; € E, we identify each X,
with its image in glg(F') via the above embedding of E in glg(F). Similarly, G’ will be
viewed as a subgroup of G. Given £, let bg and Bg/ be the parahoric o g-subalgebra of g’
and parahoric subgroup of G’ corresponding to £'. Relative to the above identifications,
if £=¢(£') and £’ has period r, we have

besNg =bey, i€, BeiNG =Be;, >0, wgbei =beiqr  (3.2)

Note that it follows from the last equality and w%w}l € oy, that £ = £(£') has period er-.
Given a € P(n’), define a periodic lattice flag £'* = {L/® | i € Z} in E™ in a manner
analogous to that of £°, 3 € P(n). Set

’ . ’ .
bcx,i = bglaﬂ‘, 1 €7, Ba,i = Bg/cxﬂ', 12 0.
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Let LI-E’Std C E™, i € Z, be the analogue of L*d. There exists a permutation matrix
w € G such that (L) = w1 L34 for every i € Z. It follows that {(£/%) = w™1£U/®)"
for any v € PO(n’). Thus bg(gray = Ad w(b(sq)). The explicit form of w is given in (4.12)
of [17] (their m and a are equal to our e and f, respectively).

4. Standard minimal K-types and depth

A K-type is a pair (K, k) consisting of a compact open subgroup of G and an irreducible
representation k of K. When there is no need to specify the subgroup K, we denote the
K-type by k. An admissible representation 7 is said to contain the K-type (K, ) if x is
a constituent of the restriction of 7 to the subgroup K.

This section begins with a recollection of the definitions of and some basic properties
of certain families of K-types attached to filtrations of parahoric subgroups associated
to periodic lattice flags. Following that, we recall some properties of the depth of a
representation m € £(G) and show how the depth is determined by any one of the above
K-types contained in 7. Finally, we give the definition of pure and separated minimal
K-types (in the sense of [17]) and show that any = € £(G) that does not contain a pure
minimal K-type is properly parabolically induced.

For GL,(F), the notion of minimal K-type was first defined by Moy [28]. Let B = b*
be a parahoric subgroup associated to a periodic lattice flag £ = {L; | i € Z}, with asso-
ciated filtration B; as described in § 3. The structure of B;/B;+1 and the representations
of B; that are trivial in B;41 can be described as follows.

(i) Set o = dimp,(Li/Liy1), 1 <4 <7, where 7 is the period of L. If i = 0, then
Bo/By~ [] GLa,(Fy).
1<igr

Hence an irreducible representation of B which is trivial on Bj is the inflation of
an irreducible representation of the finite reductive group [[;¢;<, GLaq, (Fq).

(ii) Ifé > 0, then B;/B;1 is abelian and the map X — 1+ X from b; to B; factors to an
isomorphism between b;/b; 1 and B;/B;1. Via this map, the group of characters
of B;/Bj;1 is realized as the cosets b_;/b_;;1. As in §2, let ¢ be a character of
F with conductor p. The coset = =X +b_;11, X € b_;, is identified with the
character

x=(y) =(tr(X(y - 1)), ye B
We will often use the notation yx for the character x=.

A coset & = X 4+ b_;41 in b_; is said to be non-degenerate if = does not contain any
nilpotent elements. A standard minimal K -type is a pair (B;, k), where & is an irreducible
representation of B; that is trivial on B;;; and such that the following hold.

(i) If ¢ = 0,  is the inflation of a cuspidal representation of B/B;.

(ii) If i > 0, kK = x= for some non-degenerate coset = =X +b_; 11 of b_; 47 in b_;.
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We remark that in [28] Moy calls the above representations minimal K-types. We refer
to them as standard minimal K-types in order to distinguish them from other sorts of
minimal K-types (see below).

Two standard minimal K-types (B;, k) and (B}, ') are said to be associates if one of
the following holds.

(i) ¢ =4 =0, B/B; ~ B’'/Bf, and « and k' are inflations of equivalent cuspidal
representations.

(i) ¢ > 0,7 >0and ENAIG(E") # 0.

Theorem 4.1. [cf. [3,16]] Let m € £(G). Then we have the following.
(1) m contains a standard minimal K-type.
(2) Any two standard minimal K-types contained in m are associates.

In [29,30], Moy and Prasad defined families of K-types, called unrefined minimal K-
types, for connected reductive p-adic groups. If  belongs to the Bruhat—Tits building
B(G) of G, then G5 ¢,t > 0, and g, 4, t € R, denote the filtration subgroups of G, and op-
subalgebras of g, respectively, defined by Moy and Prasad [29,30]. Set g, ¢+ = U <, 8z,s
and, ift > 0, set Gy 4+ = U,; Ga,s- If g = gl (F), the Moy-Prasad filtrations g, ¢, t € R,
include the filtrations of g associated to periodic lattice flags. Suppose that £ C F™ is a
periodic lattice flag, b; = bg;, i € Z, and B = bg. Then there exists « € B(G) (which,
for our purposes, need not be specified) such that G, = B and the filtrations g, ; and b;
are the same in the sense that

Ozt = b and g+ = by, tER

As Gz,t =14 g, for t > 0, it follows that B; = Gw,(i/r) and By = Gm,(i/r)+-

It follows from the definition of the depth p(m) of a representation = € £(G) [29, 30]
that p(m) is the smallest non-negative rational number such that the set of G, ,()+-fixed
vectors in the space of 7 is non-zero for some x € B(G). If y € B(G) and the subspace
Ve 0t of Gy, p(x)+-fixed vectors in the space V; of 7 is non-zero, then the representation
of Gy ,(x) given by the action of G, ,x) on Vr v2(MT contains an unrefined minimal
K-type. Although p(m) is defined in terms of the Moy—Prasad filtrations, it is actually
determined by any standard minimal K-type contained in 7, as the following result
shows.

Lemma 4.2. Let G = GL,(F) and let (B;, k) be a standard minimal K-type.
(1) (Bj, k) is an unrefined minimal K-type.

(2) Letr be the period of the lattice chain £ to which the filtration {B; } ;>0 is attached.
If 7 € £(G) contains (B;, k), then p(m) =i/r.

Proof. If i = 0, then the above cuspidality condition on k is the same as that of Moy
and Prasad [30, p. 105].
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If i > 0, we can use the trace map to identify the coset = that corresponds to k with a
coset =*
non-degeneracy condition on =* given in [30, p. 104]. Hence (1) holds.

For (2), it follows from results of [29,30] that if 7 contains an unrefined minimal K-
type (Gy,t,7), then p(m) = t. In view of (1) and the fact that B; = G (i), it follows
that p(m) =i/r. O

in the F-dual g* of g. The non-degeneracy condition on = is equivalent to the

When considering a standard minimal K-type (B;, k), the lattice £ can be chosen so
that ¢ and the period r of £ are relatively prime [17, p. 391]. From now on, we assume
that ¢ and r are relatively prime. The cases of pure and separated minimal K-types (see
below for the definitions) are treated differently.

Suppose that ¢ = 0. Then there exist irreducible cuspidal representations 7; of
GLa;(Fy), 1 < j < 7, such that « is the inflation of ®1¢j<,7i to B. As in [17], we
say that (Bo, k) is a pure minimal K-type if a; = a; and 7; ~ 75 for all j and k.
Otherwise, (By, k) is a separated minimal K-type.

Suppose that i > 0. Let X € =. Then @w'X" € w'b_;, = b and so for each j, w'X"
induces an Fg-linear map on L;/L;4q =~ Fg’. As this map is independent of the choice
of X € =, we denote it by Tz ;. Let f;(t) be the characteristic polynomial of Tz ;. As
discussed in [17, § 2], there are two possibilities.

(i) There exists j such that f;(t) is the product of two relatively prime polynomials of
positive degree in FF,[t]. In this case, (B;, k) is a separated minimal K-type.

(ii) Each f;(t) is a power of an irreducible polynomial in Fg[t]. In this case, (B;, k) is
a pure minimal K-type.

In much of this paper, we will study characters of representations m € £(G) that
contain pure minimal K-types. Recall that if 7 arises via parabolic induction from a
my € E(M), where M is the Levi component of a parabolic subgroup of G, van Dijk [38]
gives a formula expressing the character of m in terms of the character of my;. Hence
the proposition below shows that if 7 does not contain a pure minimal K-type, then
the study of the character of 7 reduces to the study of the character of an irreducible
admissible representation of a proper Levi subgroup of G. As a standard minimal K-
type must be pure or separated, any such representation m must contain a separated
minimal K-type. If © contains a pure minimal K-type, it may be the case that m does
not arise via parabolic induction (from a proper Levi subgroup); for example, if 7 is a
discrete series representation. Given a proper parabolic subgroup P of G, we will use
the notation Ind$ to denote normalized parabolic induction (that is, induction taking
unitary representations of the Levi component of P to unitary representations of G). A
refinement of the following result will be proved in §17.

Proposition 4.3. Suppose that 7 € £(G) and 7w does not contain a pure minimal K-
type. Then there exists a proper parabolic subgroup P = MN of G and a wp; € E(M)
such that T = Indg M -
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Before proving the proposition, we show that certain representations must contain a
pure minimal K-type. Recall [43] that the support of a representation = € £(G) is defined
as follows. There exists a parabolic subgroup P = M N of G and an irreducible super-
cuspidal representation 7 of the Levi component M of P such that 7 is a subquotient of
Ind$ 7. There exists a partition o = (vq, . .., ;) € P(n) such that M ~ [licicr GLai(F)
and irreducible supercuspidal representations 7; of GL,, (F') such that 7 ~ ®1<;<,7;. The
set {71,...,7} (taken in any order) is the support of .

Lemma 4.4. Suppose that there exists d | n and an irreducible supercuspidal represen-
tation T of GL4(F) such that the support of w is a subset of {|det(:)|’r | ¢ € Z}. Then 7
contains a pure minimal K-type.

Proof. By assumption, there exist integers b;, 1 < j < n/d, such that 7 is an irreducible
subquotient of Indg(@)lgjgn/ﬂdet() |i7), where the Levi component M of P is the direct
product of n/d copies of GL4(F). Without loss of generality, we can assume that P
contains an upper triangular Borel subgroup.

By Theorem 5.1 of [17], the supercuspidal representation 7 contains a pure minimal
K-type (B;, k), where B = by for some periodic lattice chain £ C F?. After conjugating
by an element of GL4(F), if necessary, we can assume (see [17, §4]) that bg = b(,,)a/m
for some divisor m of d. Let K (respectively, K*) be the direct product of n/d copies
of B; (respectively, B;y1) and let £("/? be the n/d-fold tensor product of x with itself.
Then (K, x(™/¥) is an unrefined minimal K-type contained in ®1;j<n,aldet(-)|% .

Suppose that i = 0. Then B,,yn/m /B(pmyn/m 1 ~ K/K*, k(D lifts to a represen-
tation of B,,yn/m and (B(m)n/m,/i(”/d)) is a pure minimal K-type of depth zero. By
Theorem 5.2 (2) of [30], m contains (B(m)n/m,n(”/d)).

Suppose that i > 0. Let IV be the unipotent radical of P, and let N~ be the unipotent
radical of the parabolic subgroup opposite to P. There exists a permutation matrix w € G
such that, for any positive integer /£,

wB(m)n/rn,yéwil = (U}B(m)n/m’ew71 N Nf)(wB( /mjw*l n M)(wB(m)n/m)@wfl n N),

m)n
WB(pyn/m pigw ™ N M = K and wB(,yn/m (nijay1w MM = KT, so £"/? extends
to a character of wB(m)n/m’m/dw_l, which is trivial on wB(m)n/m’m-/dw_l NN and
wB(m)n,/m’m-/dw_l NN, and is a pure minimal K-type. By Theorem 4.5 of [30], this
pure minimal K-type is contained in 7. O

Proof of Proposition 4.3. By assumption, the support of 7 cannot be of the form
given in Lemma 4.4. Results of [43] imply that 7 has the desired form. O

5. Conjugacy and filtrations of parahoric subalgebras

Here we summarize some results that will be used later in the paper for comparing
unrefined minimal K-types and germs of characters.

Let E/F be a tamely ramified extension of degree d, where d is a positive divisor of
n. Asin §3, set n' = n/d, e = e(E/F), f = f(E/F), g’ = glp/(E) and G’ = GL,,/(E).
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Choose a prime element wg in E, and embed E in glg(F) and g’ in g as in §3. Fix
a positive integer j such that e and j are relatively prime. Let s € E be such that
sepy —pEJH and the image of w%s"‘ in op/pE generates op/pr over op/pr. Note
that E = F(s). Viewing F as the centre of g’, we consider s as an element in g whose
centralizer is g'.

Given a periodic lattice flag £ in E™ | let £(L£') be the periodic lattice flag in F™ defined
in § 3. Notation for parahoric subalgebras and subgroups corresponding to periodic lattice
flags will be as in § 3.

Lemma 5.1 (cf. [17]). Fix a positive divisor u of n’. Let £ = §(£'(“)n//u) and b = bg.
Set blt = b; Ng't, i € Z, where g'* is the orthogonal complement of g’ in g, relative to
the trace map. Then the following hold.

(1) b; = b, @ bit.
(2) B;=B/(1+b1),i>1.
(3) ads:bf-/blr, — bt J/u/bﬁh n7j/u 1S an isomorphism

Remarks 5.2. Parts (1) and (3) are Lemma 4.4 (u = 1) and Lemma 4.8 (u > 1) of [17].
For (2), note that B; =1+ b; = 1+ b} + b/t by (1). And (1 + b/ )[’/J' b, as bt is
stable under left multiplication by b’. Hence B; = (1 + b})(1 + b”‘) BI(1 +bt).

Lemma 5.3. Let £, b and b/- be as in Lemma 5.1. Suppose that Z € b’

Then the following hold. (e
(1) ad(s+ Z) : bl- /b4, — b/t g/u/bz+1 n'j/u 1S an isomorphism.
(2) Let v be a positive integer. Then
S+ Z+b_(uijro = Bu- (s+Z+b 000,)
Proof. Note that, as obj" C bj" and pbj= C b7, V = bj"/bj7, is a Fg-vector space.

Given X € b’ ./ =g 70/, the map Y — wy,[X,Y] from b”‘ to bt mduces a linear
transformation Tx : V' — V. It is easy to see that Ts and T are the semisimple and
nilpotent parts of Tz, respectively. By Lemma 5.1 (3), as left multiplication by wfg
induces a vector space isomorphism of b2 " j/u/bl+1 njju ONtO b”‘/bH_l, the map T
is an isomorphism. As T is the semisimple part of Tz, T4z is also an isomorphism.
Hence (1) holds.

Part (2) follows from (1) by a standard type of argument (see, for example, the proof
of Lemma 3.2 of [17]). O
Lemma 5.4. Let Z € b(l)n i)

(1) Let « € P(n). If Og(s + Z) Nba, | jr(a)/e) # 0, thena = (fF)° for some 3 € P(n').

(2) Let ,6 S P(n') IfAdg(S + Z) S 55(2’5),7]'7‘(['3)7 then g € Bg(s/ﬁ)G/.
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Proof. Let g € G. Set X = Adg(s+ Z). Note that s+ Z = s(1+s~'Z) and s~ lwy’ is

a root of unity in 0, so s~ twy’ € le)n, and s71Z7 € b’(l)n, ;- Hence 145717 ¢ BE1)TL/ L

and ’ _ ’
X¢ecAdg(s+2)°=Adg(s°(1+s57'2)%) ¢ g(w;JOEle)n/,l)gfl,

which implies det(ww), X¢) € 0*.
Suppose that e does not divide 7(a) and X € by _|jr(a)/e|- Let m = [jr(a)/e]. Then

W%Xe € w%‘ba,—me = hahjr(a)—me C ba,la

which, as det(bq,1) C pr, is a contradiction. Therefore, Og(s + Z) N by, —|jr(a)/e) =0
whenever e does not divide r(«).

Suppose that @ € P(n) and e divides r(«). Set r = r(«). Given Y € b,,,, m € Z,
the image of Y + b,,41 in b,,/b,,,1 is determined by an r-tuple (Yi,...,Y;), where
Y; € Homg, (L¢ /LY, LS 1., /L%,,,), 1 < i < r. For convenience, we will treat sub-
scripts on the «; and the Y; as integers modulo r. Let g and X be as above, and set
Y = X*°. Then

Y= Xi (e—1)(gr/e) © 0 Ximjrsey 0 Xiy 1 <i<r,

As X e b_jr/es w%Xe € w%b,jr = bg,0- SO W%XE is an element of b, o whose determi-
nant lies in 0*. Hence w%Xe € Ba 0. This implies that each Y; is an isomorphism. From
the above expression for Y, it follows that a; = Qi (jrje) =+ = Qi_(e—1)(jr/e)- USINg
the fact that e and j are relatively prime, we have a; = Qii(r/e) =+ = Qiy(e—1)(r/e)>
which is equivalent to v = (a1,...,0,/.) € P(n/e) and a = ~°.

Suppose that o = ¢ for some v € P(n/e). Let g € G. Suppose that Adg(s+ Z) €

b ) Because

e, —jer(
det(wl, Adg(s + Z)) € det(wggw];ja;iBEl)n,g_l) Co* and @Whbe, jer(y) = bae 0,
we have wij Adg(s + Z) € Bye. By definition, s is F/F-cuspidal in the sense of [41,
§VL.2]. Also, 1 +s1Z € b’l s and wy’ Bye is G-conjugate to the subgroup denoted

ng/ I,e ¢ in [41]. Hence the statement of the lemma for o = ¢ is equivalent to that of
Lemma VI.3 of [41]. O

The following is a restatement of Lemma 8 of [14].

Lemma 5.5 (cf. [14]). Let Z1,7Z5 € bzl)"' ) Then Ad g(s+ Z1) = s+ Zy implies
geq.

Given parahoric subalgebras b C g and b’ C ¢/, and an integer 4, let [b;] and [b}]
be the characteristic functions of b; and b}, respectively. The following proposition is a
consequence of Lemmas 5.4 and 5.5. Let

/
Z € b(1)n',7(n/j)+1-

By Lemma 5.5, we have Cg(s + Z) = Cq/(Z). Fix left Haar measures on G, G’ and

Cq/(Z). These determine a G-invariant measure on Og(s + Z) ~ G/Cq/(Z) and a G'-
invariant measure on Og/(Z) ~ G’ /Cq/(Z).
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Proposition 5.6. Let Z € w,’ b'(l)n, ¥

as above. Then the following hold.

Let the measures on Og(s+ Z) and O¢/(Z) be

(1) Ifa € P(n), pog(s+2)([ba,—jr(@)/e)]) = 0 unless a = (f3)¢ for some 3 € P(n’).
(2) If B € P(n'),

Hoa(s+2) ([0, —jr)]) = V6 (Bm)ver (Bluy) ™ un (@) (a)

X “(fﬁ)e(Q)Uﬁ(qf)_luocl(Z)([b,/@ﬁjr(g)])-

Proof. Part (1) is immediate from Lemma 5.4 (1). For (2), assume that o = (f3)°
for some B € P(n'). Let dg* denote the G-invariant measure on G/G’ determined by
the chosen Haar measures on G and on G’. Let da’* denote the G’-invariant measure
on G'/Cq/(Z) determined by the Haar measures on G’ and on Cg/(Z). As b(yg)e is
G-conjugate to bg(gs), we may replace b(ygye jr(g) With be(es) _jr(3). Then

oates2) (et sro) = [ [ o ) (Ad(ga')(s + 2))do' dg'
G/G" JG' [Cqi(Z)

Let g € G and 2’ € G’. Suppose that Ad(gz')(s + Z) € be(es) _jr(p)- By Lemma 5.4,
g2’ € Be(g5)G'. Let g = kg', k € Be(gsy, g € G'. Then, since both wy’ and Begrs)
normalize bf(g/[j)7i, 7 S Z,

S + Ad(gll'/)(Z) = Ad(g’x')(s —+ Z) S Ad kil(bg(g/ﬁ)v_jr(ﬁ)) = b&(ﬂ/ﬁ),—jr(ﬁ)'

Since s € bj; _;, 5, and Ad(g'z’)(Z) € ¢, it follows that Ad(g'z")(Z) € bj; ;5. There-
fore, we may rewrite the above integral as

1o (s+2)([becers),—jr(p))

= UG/G’(BE(E/ﬁ)G/) / [b'@_JT(ﬂ)](Adx/(Z)) d’l}/*
G'/Ce (2)
= (B e (B [ ) (Ada(2)) do”
G/ /Car(2)

= v6(Bw))ver (B(y) ™ [Beny : Bigpye] ™ [Blur : Bj)

x/ 0 ](Ada'(2)) da’™.
G /G (2) B,—ir(B3)
To finish the proof, note that (3.1) can be used to evaluate the above group indices. O

6. Pure minimal K-types of positive depth

Let E,d,n', g, G, etc., be as in §3. We will use the notation of §3 concerning periodic
lattice flags, parahoric subgroups and subalgebras and the associated filtrations.

Given 7 € £(G) such that p(7) > 0 and 7 contains a pure minimal K-type, there is
a finite family of pure minimal K-types whose multiplicities in 7 determine the germ
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of the character @, of w. This will follow from results of §§8 and 12. In this section,
after defining some notation, we recall a result of Howe and Moy which says that any
7w as above must contain a particular kind of pure minimal K-type. Then we describe
the above-mentioned family of pure minimal K-types, and give the decomposition of a
particular subspace of the space of 7 in terms of these K-types.

Let £1 = ¢/M" and £2 = /) be the periodic lattice flags in E™ attached to the
partitions (1) and (n’), respectively. Let £! = £(£1) and £2 = £(£2) be the associated
periodic lattice flags in F™. Attached to £" and £, h = 1,2, we have parahoric subgroups
in G’ and G and parahoric subalgebras in g’ and g, respectively. Set

Qi =bgr;, vi=bg,;, 1€Z,
Qi =DBg1;, R;=DBg2;, i>0,

If ¢ = 0 in any of the above filtrations, we may suppress the subscript; for example, we
may write t for tg. The intersection of any of the above with g’ will be denoted by the
same notation with a prime added. By (3.2),

G=0aN0g =bjy, T=tng =b,; @l =0dim, @EY=rtip1, (€L

Fix a positive integer j that is relatively prime to e = ¢(E/F'). Let s € E be defined
as at the beginning of §5. Note that

S+ donjt1 C @y (0f + 1) C w5’ Q,

so the coset consists of invertible matrices and thus does not contain any nilpotent
elements. Hence the character x, of @Q,; defined by

Xs(2) = ¢(tr(s(z — 1)), 2 € Quj

is an standard minimal K-type. It is easy to see that the K-type is pure (see §4).
Recall from §4 that we are denoting the depth of a representation = € £(G) by p(r).

Lemma 6.1 (cf. §4 of [17]). Suppose that = € £(G) is such that p(w) > 0 and 7
contains a pure minimal K-type. Then 7 contains (Qyj, xs) for some E, n/, j and s as
above.

Suppose that 7 € £(G) contains (Qn/j, Xs)-

Note that every og-lattice occurring in £2 occurs in £1. This implies that each op-
lattice occurring in £2 also occurs in £'. Hence q = bg1 C b2 =t and q; D v;. Together
with the above information regarding the effect of left multiplication by wg on q; and t;,
this implies

Rji1 C Quijt1 C Quj C R;.

Hence
A e R ()
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Let (7, R;) be the representation of R; given by the action of 7|g, on V,F94 | Recall
that, since the lattice flag £ has period 1, £2 has period e (see remarks following (3.2)).
As mentioned in §4, there exists an « € B(G) for which
Rj=Gojje 2 Gajjer = Ryt

By Lemma 4.2, since the period of the lattice flag £' is n’e and 7 contains (Qy;, Xs),
it follows that p(7) = (n’j)/(n’e) = j/e. On the other hand, since 7 contains the trivial
representation of Rj,1 = G (j/e)+, Theorem 5.2 of [30] implies that (m, R;) is a finite
direct sum of unrefined minimal K-types. Because the filtration v; is the standard one
coming from powers of the nilradical of t, these unrefined minimal K-types are standard
minimal K-types. If (xx, R;) is an standard minimal K-type, let m(x(m, R;), xx) denote
the multiplicity of (xx, R;) in x(m, R;).

Given a = (ay,...,q,) € P°(n'), let Y, be the upper triangular nilpotent matrix in
¢’ defined as in §2. It is well known that the set {Y, | a € P°(n’)} corresponds bijec-
tively to the set £25/(0) of nilpotent G’-orbits in g’. Since R'/R} ~ G L, (Fys), the set
{Ys | @ € P°(n)} also corresponds bijectively to the set of nilpotent R’/R}-orbits in
v/ /).

Lemma 6.2. Every irreducible component of k(m, R;) is of the form (Rj, X o4 k(erijYa))
for some k € R and some o € P°(n’). Furthermore,

m(k(m, R;j), X aq k(s+w;;jYa)) = m(k(m, R;), Xs+ijYQ) vk € R.

Proof. Let (R;, xx) be such that m(k(m, R;), xx) # 0. As 7 contains (Q,;, xs) and
(Rj,xx), by results of [3] and [15] (see Theorem 4.1(2)), there exists g € G such that

Adg(s+q-njr1) N (X +r_j41) # 0.

Choose Y € q_y 41 such that Adg(s +Y) € X 4+ t_;41. By Lemma 5.3 (2) (with v = 1),
there exist y € Q1 and Y € g_ ., such that s +Y = Ady(s +Y’). By Lemma 5.4 (2),
gy € RG'. Write gy = k¢’ with k € R and ¢’ € G'. We have

X € Ad k(S + Adg/(y/)) + T_jy1-
Because'wJéY’ € q;, we have (Ad g/ (@wLY’))™ — 0 as m — oco. Combining this with
Ad g (w}Y') € v/, we see that the image of Adg'(w}Y’) in ¢/t is nilpotent. Hence
there exists k' € R’ and o € P°(n’) such that

Adg' (V') € AdK ' w? Yo+t .

It follows that
X € Ad(kE')(s + w5 Ya) +t_j11.

The final statement of the lemma follows from the fact that R; is normal in R. O
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Corollary 6.3. We have

K(m, Rj) = @ m(ﬁ(ﬂij)aXS+ijya) @ XAd k(s+wg’Ya)
acPO(n’) keER/Cri(Ya)R1

Proof. Fix a € P°(n/). Let k € R be such that x, k(stwpYa) = X y,- Then

stowg?
Adk(s+ w5’ Ys) €s+ @y Yo+t 41
Note that, by definition, t is the parahoric b of Lemmas 5.1 and 5.3 in the case u = n,
and wg’Y, € wy’ b/(l)n/’1 =q",j41- By Lemma 5.3 (2),
Ry-(s+ ijYa +tl ) =s+ w};jya + T i1

Let k1 € Ry and Z € ¢ be such that

j+1
Ad(ET k) (s + w5 Ya) = s + wg' Yo + Z.
Now, since _ _

@ Yo @5 Yo+ Z €00 iy
we can apply Lemma 5.5 to conclude that k; 'k € G'. We have k; 'k € G'NR = R/, and
therefore k € Ry R’ = R'R;. We now have, setting k' = k; 'k,

Adk(s + @y’ Ya) € (AdK (s + @ Ya) +t_j11) N (s + @y’ Yo +t_j11),
which implies that 4 '
AdK (s+wp'Yo) €s+wy’ Yo+ 5,
Now k' commutes with s, and wg belongs to the centre of G’. Hence we have Adk'(Y,) €

Y. +t/1. That is, kK e Cr (YQ)RE It follows that & € R{Cg: (Ya)Rll = CR/(YQ)RL O

Suppose that 7’ € £(G’) contains the pure minimal K-type (Q;l,j, X%). The represen-
tation x (', R}) of R} on V,,”"" decomposes into a direct sum of pure minimal K-types
of the form (R, x’y), X €t_;. The following lemma and corollary, whose proofs are
similar to (but easier than) those of Lemma 6.2 and Corollary 6.3, describe those X that
appear and give the decomposition of x (7', R}).

Lemma 6.4. Each irreducible component of r(n’, R}) is of the form

/ /!
(Rﬁ Xstwy? Ad lcf(Ya))’
for some a € P°(n’) and some k' € R'. Furthermore,
m("{’(ﬂ/7 R;)7 X/S+W;JJY&) = m(K/(ﬂJ’ R;)’ XIS+WEJ Ad k/(Ya))7 k/ e R/'

Corollary 6.5. We have

w(m', Ry) = @ m(’i(wl>R3‘)7X;+ngya) @ Xst+Adk(wgYa)"
a€PO(n’) kER'/C i (Ya)R)
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7. Hecke algebra isomorphisms and matching of certain K-types

We continue to use notation from §6. Set
(=[3Wj+1), m=[3nj]+1 and qF =gq;,Ng"*, i€Z
Let

J:1+C|n’j+q2J',
Jy=1+dn;+a,.

It follows from Lemma 5.1 (2) that Q}J = Q¢ and Q),,J+ = Q- As q; N g’ = q, we have
JNG" = Q. Extend x5 to J;. by extending trivially across 1 + q’L. The representation
o of J is defined to be x, if J = J, that is, if £ = m. Otherwise, o is the unique irreducible

component of Indi+ Xs [17, §4]. Set H = H(G ) J,&) and H' = H(G' Q1155 X_5)-
Theorem 7.1 (cf. [15,17]). There is an isomorphism 1 : H' — H satisfying

supp(n(f’)) = Jsupp(f')J and supp(n(f’)) N G" = supp(f’)

for f' € H'. Furthermore, 1 is an L?-isometry for the natural L? structures on H and H'.

Remark 7.2. Howe and Moy state the theorem for H(G/J, o) and H(G'[Q;,.;, X5)-

n
The existence of an isomorphism between our H and H’ having the desired properties is
immediate upon noting that y_s = X and if x is replaced by x_ then the corresponding
representation of J is 4.

Howe and Moy [17, Theorem 4.6] also show that if 7 € £(G) contains (Qn/j, Xs)s
then 7 must contain (J, o). Therefore, via the Hecke algebra isomorphism 7, we obtain
a bijection between the set of 7 € £(G) that contain (Q,;, xs) and the set of 7’ € £(G")

that contain (Q;,/;, Xx5). When 7 and 7’ correspond via 7, we will write (g’l = n/*)(w)
. . .. ol n!i1Xs
We begin with some elementary results giving the decomposition of V"""’ as a Q-

n’jrXs

). Following
(Q;/]‘ 1X/3)

/

space, and a qualitative description of the Q,-spaces contained in VW(Q
that, in Lemma 7.7 and Corollary 7.8, we show how 7 matches @Q))-subspaces of V_

with @¢-subspaces of VTSJ’J)7 and compare the dimensions of the matching Qj- and Q-

spaces. Finally, Lemma 7.9 is a technical result that will be used in §8 to apply results

!/

of this section to obtain relations between the multiplicities m (s (n* (), R}), X, iy, )
5 Ya

and m(k(m, Rj), X, iy, ) for a€ PO(n') (defined as in §6).
2 Ya
Suppose that 7’ € £(G’) contains (Q;L,j,x's). Fix a linear character A, of G’ that
extends x%. Note that 7’ ® A ! contains the trivial representation of Q;l,j. As 20 > n'j,

the group of characters of Q,/Q;,/; >~ d;/4;,/; is isomorphic to q_,,,;,,/9",,, via

X449 41~ Xy, where Xx(y) =v(tr(X(y—1))), ye€Q
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Hence (A;'7') | Q) acting on v decomposes into a direct sum of characters of the

A
form (Q}, x’x), X € q_,,/;,,. This implies that 7' | @} acting on V(Q” 7Xe)

is a direct
sum of characters of the form (Qf, Asx’x), X € g’ ;. Consider the action of 7’ | @ on
V(Q" %) We have (k)V(Q“ X)) - V(QZ’ Xaa ’“(X>), k € Q). Number the Q-orbits
of Q)-types occurring in V(Q" X from 1 to t. To the ith such orbit, attach a (finite)
subset S; of q,,/;,1/q",,, having the property that the orbit coincides with the direct
sum P e, V(QZ’ %) We will often abuse notation and identify a coset X € 5; with

a representative of the coset in g’ 41

Lemma 7.3. With notation and assumptions as above,

(Q"/J X @ @ v QA SXx)

1<i<t XES;

Suppose that X € q_,7j+1. As 20 > n’j, we may define a character of ), by

xx(y) = d(tr(X(y - 1)), y e Qe

As A; | Q) extends (trivially across Ji) to QJ4, given Z € s+ q_pijt1, Xz =
Asxz—s | QpJs+ defines a character of Q}J;. Because Q; = Q}J, Q) normalizes J,
and o | @, NJ = Q;,,; is a multiple of x,

US|J:07 O—S|Q2:AS’1dimo‘

defines an irreducible representation of ).

Given X € q_p/ 41, let xx denote the character of Q¢ that corresponds to the coset
X +q_yt+1. Let os4x = xx05.
Lemma 7.4. Let 7 be an irreducible representation of Q; such that 7 | Qy; is a multiple

of Xs | @n’j. Then there exists X € q_,j1+1 such that T = o5y x.

Proof. Let 7 be as in the statement of the lemma. Let k € Q,J+ and y € Q. Set
X=k—1landY =y —1. Then k~'y~'ky € 1 + [X,Y] + qn/j+1, which implies

(k™ y ky) = xs (k'Y ky) Laim -
= Y(tr(s[X, Y])) Ldim -
= Y(tr([s, X]Y)) ldim~

= 1dim‘r7

since [s, XY € ([s,q;] + [5,am])Y =[5, 4m]Y C q—pn/jtmie = q1. Thus 7(k), k € Q)J4
commutes with 7(y) for all y € Qy, forcing 7(k) to be scalar by Schur’s Lemma. Thus
T | QyJ+ is a multiple of a character of Q;J+. Note that this, together with Q, = Q}J,
forces 7 | J to be irreducible.

Let w, be the character of Q}J; that is equal to A; on @, and x, on J,.. Since 7 | Q,;
is a multiple of xs, it follows from above that w; 7 | Q}J is a multiple of a character
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of QJ+ which is trivial on @, ;. Note that Q; D Q}J+ D Qnj D Q2¢. Thus there exists
X € q_p/j+1 such that w7 | Q) J4 is a multiple of xx.

As 7| J is irreducible, xx'7 | J is irreducible. Also, xx'7 | J;+ is a multiple of .
Hence x%'7 | J = o. Together with the fact that x3'7 | @) is a multiple of A, this
implies that )()_(17' = 0, (by definition of oy). O

Remarks 7.5.

(1) If X € q_p/j+1, 0s+x is the unique irreducible representation of ), whose restric-
tion to Q)@ is a multiple of wsx x.

(2) Lemma 7.4 gives the form of the Qy-spaces contained in V,SQ"/“XS).

It is easy to show the following.

Lemma 7.6. Let X € q_y,/j41. Then

W(k)V,ISQl’US+X) — Vﬂ(Q“UAd k(s+X>)7 ke Q.

For the rest of this section, assume that 7 € £(G) contains (Q/j, Xs)-
Lemma 7.7. Let X € q/—”/j"rl' Set

var (@) THAT I -x)(@)  if € Q)

/ _
Porx(7) = {0 ifreG - Q)

and

(z) = va(J) tosix(z) ifz € Qy,
AR I ifreG—0Q,

Then ¢,y € H', ps1x € H and (¢}, x) = Psix-

Proof. First, note that X € an,j+1 implies xx | J =1. As 6s4x = X_x0s, we have
Os+x | J = 0 | J = &. Hence it is immediate from the definitions of H' and H that
i x € H and o x € H.

Fix g € Q). Set J' = Q;l,j. Note that, as ¢ > 1 and Q) normalizes J" and J, J'gJ" = gJ’
and JgJ = gJ. As discussed in [16,17], there exists a unique f, € H’ that is supported
on gJ' and has the property that f;(gy) = var (J)) x4 (y) for all y € J'. As discussed
in [16, pp. 41-45], for g € @', in order to define the function f;, € A, which is equal
to n( f;), a so-called ‘oscillator’ representation of @’ is needed. However, the restriction
of the oscillator representation to @ is trivial, and Q) C @/, so, for g € Q}, f, has
a particularly simple form. In fact, f, is the unique function in % whose support lies
in gJ and that satisfies f,(gy) = va(J)"'a(y), y € J. (We have included the volumes
v (J') and ve(J) as we have not assumed that they are equal to 1.) Fix a set of coset
representatives {z,} for Q;/J" ~ Q/J. Then

) = (A )@ L, ) = ST ) ) o

u u
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As G454 x is the unique irreducible representation of @), whose restriction to Q,J+ is a
multiple of (Asxx) ~ A7 x_x, and 651 x | J = G, it follows that

Fsrx (@uy) = (A7 x-x)(2a)F (y) = va (J) (AT X-x) (@) fo, (), y € J.
By the above, this implies that n(¢}, x) = Ystx- |

Corollary 7.8. Let X € q__ Then

dim(V,(@7++x)) = (dim o) dim(V(@0X5))

Pr(?lof. Let ¢s4x and ¢’ x be as in Lemma 7.7. By definition of ¢ x, the operator on
(VTS ) ® W) corresponding to the element o, x of H is projection onto the subspace

(V7T(J,a) ® W)Qz ~ (Vw(Qe,USJrX) ® W)Q£7

where Qy is acting on W by Fs+x- And the operator on (V(/Q"/j’XS)

T
ing to the element ¢y of H' is projection onto the subspace

® (C)Q;/J' correspond-

(V(Q;/] aX;)

s

©C)% ~ (VM) g )@,

where Q) acts on C by A7'x" . By Lemma 7.7, as ¢, x = (¢}, x), the dimensions of
the images of the two projections are equal. |

Lemma 7.9. Let X € q_p/ ;41 be such that Y Qeosrx) # 0. There exist k € @,
i€{l,...,t}, and X; € S; such that the following hold.

(1) Adk(s+ X;) € s+ X +q_pq1+d4,41
(2) VRQuoex) = )y QT

(3) If ko € Q1 and Z € q_,;4, are such that VAP07 ) = q(ko)Vi97+2) | then
ko € kQ1Q¢ and Z € Ad 2(X;) +q_,,, for any z € Q) such that ko'k € 2Qy.
Proof. By Lemma 5.1 (4) (with w = 1, Z = 0 and v = 1), there exist k € @Q; and
Y € q’_n,jJrl such that s+ X = Adk(s+Y). AsY € q’_”,j_H, we have V,EQLASX/Y) # 0 by
Corollary 7.8 and V;,Q;”’ASX,Y) C Vﬁ(,Q:l/j’Xls). By Lemma 7.3, there exists i € {1,...,t}
and X; € S; such that Vﬂ(,QZ’ASX;/) = V,T(,%’ASX;('i). AsYe X, + qL€+1v it follows that

Xy = Xx,, 50 V7T(Qe,as+y) _ VW(QK,Uerxi). Hence V7T(Qe765+x) _ V;Qz,oAd k<s+xi>).
Since oad k(s+X;) = XAdk(s+X;)—s0s and o5y x = Xx0s, and these two representations

coincide, their characters must coincide. From the remarks following Lemma 7.4, this is
equivalent to

XAdk(s+X:)—s | Q1Qm = Xx | Q1Qm.
which, as Q}Q =1+ q) + gy, is equivalent to

Adk(s+X;) —s€ X +qopr1 + 95,41
Hence (1) and (2) both hold.
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For (3), suppose k, i, X;, Z and kg are as in the statement of the lemma. Then
V(Quosrz) = (L) V90T
Arguing as above (with Z playing the role of X), results in
Ad(ky k) (s + X;) € s+ Z +q_es1 + 9501

As g_rs1+ 92,01 Cdomyr and £+ m = n'j + 1, we may apply Lemma 5.3 (2), with
u =1 and v = ¥, to conclude that there exists z € Qg such that

Ad(z kg 'R) (s + Xi) €5+ Z+q" -

As Zeq ;4 and X;+49' .., Cd’,,;,, Lemma 5.5 implies 2~ 'k; 'k € G'. Since it
is also the case that = 'ky 'k € Q1, we have 27 'ky 'k € Q). Hence ko € kQ(Qy. Let
z =27k 'k. Then, as Adz~! preserves q_41 + q'%,. 1, it follows from above that

s+AdzHZ)=Adz " (s+2) €Qu- (s+ X)) + i1 + 501

Note that q, = q, ® q;* and s € q_,,; commutes with g’, so ads(qe) C q’j”n,jﬂ =
q"%ns1- And X; € q_pvj41 implies ad X;(q¢) C q—¢41. Thus

Qe (s+Xi) Cs+ X+ dorn + 075,41,
from which it follows that

s+AdzY(Z) €5+ Xi +qoir1 + 500

Because s + Adz7(Z), s + X; € ¢, and (g1 +9'5,41) Ng =q" ., this forces
s+Adz Y (Z)es+Xi+q 4. O

8. Comparison of multiplicities of K-types

Let notation be as in §§6, 7. Throughout this section we will assume that = € £(G)
contains the pure minimal K-type (Qn;, xs) and 7’ = n*(m) is the corresponding repre-
sentation of G’.

For convenience of notation, given o € P%(n’), set

ma(ﬂ') = m(l{(ﬂ', R]>7 Xs+w;:jya)7 ma(ﬂ'/) = m(l‘ﬂ?(ﬂ‘/, R;>7 X;+ngya)7
- 8.1
V _ V(Rj7X5+wE.7'ya) V/ _ V(Rj7XS+WE;jYa) ( )

Then mq () = dim(V,,) and mq(7’) = dim(V}). One of the main results of this section,
Proposition 8.4, gives the relation between m,, (7) and m,(7’). In Proposition 8.6, this is
translated into a form in which it will later be applied to compare the germs of ©, and
O, namely a result relating dimensions of subspaces of V. and V. that are invariant
under certain compact open subgroups contained in G ;/e)+ and G;.+, respectively.
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Because Rjy1 C Quj+1 C Quj C Rj and w,'Y, € q" ;11 it follows that

Vo C VA9 and y! c y e,

As shown in §7, the Hecke algebra isomorphism 7 matches Q)-types contained in

(@)

i with Q.-types contained in A Vﬂ(Q"'J"XS)

. In order to compare mg ()
and m(7'), we must express V,, and V/ in terms of Q,-types and Q)-types, respectively.
It is fairly easy to see that if j > 2, Q, C Ry, which implies that V,, and V| are @Q,-stable
and Qj-stable, respectively. However, if j = 1, this is not the case, so it is necessary
to work with the smallest (),-stable subspace of V,T(Q”/j Xe) that contains V,, and the

that contains V. Set

n!jrXs

smallest ()j-stable subspace of V,T(,Q

U=y, @V,
2€Q}/(Q}NRY)
U, = Z m(2)Va,
z€Qe/(QeNRy1)
S¢ =S8N (wg' Yo+t 0y +d ), 1<i<t,

W' — @ @ V(/QLXQH)

1<i<t XeSe

S ) @ @ v,

YyER1 /(R1NQy) 1<i<t Xesy

S
|

Lemma 8.1. Let o € P°(n’). Then

Wa= @ nly @ P Ve

yER1/(R1NQ1Qr) 1<i<t X esy

th — @ @ V7T(Qe,os+x)_

1<i<t Xese

Proof. Let

By definition, WY is a Q,-space. Suppose that k € R} and X € S¢ for some i. Then
Ady(X) — ijYa eX — ijYa + t/,j+17

which implies that W(k)V;QZ’U”X'i) C W0, Hence W0 is Ry N (Q}Q¢)-stable, as it is both
Q.- and R]-stable.

Suppose that y € Ry is such that W2 N w(y)W? # {0}. Then there are i, h € {1,...,t},
X; €S5;, and Z;, € Sy, such that

Vﬂ(Qz,@erj) = ( )V;Qe,oﬁzh).

Y

Applying Lemma 7.9 with X = X;, Z = Z;, k =1 and kg = y results in y € kQ|Q, =
Q' Q. Hence y € R1 N (Q1 Q). O
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Lemma 8.2. Let o € P°(n’). Then U, = W, and U/, = W/.

Proof. We will omit the proof of U/, = W/ as it is similar to, but easier than, that of
Uy, = W,.

Set Y = w}j,’Y,. Since V, is a sum of copies of (R;, Xs1v ), (Quosrx) A 17 #£ 0 if and
d%RJ Xs+v)|Q, = Ind%mQé Xs+y . By Frobenius
reciprocity, this will be the case if and only if xs+y|ijQ£ is a component of 05+X|ijQz.

only if (Q¢, 0s+x) is a component of (In

Note that 051 x|r;nq, is a multiple of x5t x|r;nq,- The characters x,1y and xs;x agree
on R; N Qg if and only if X —Y € v_;11 Nq_sq1. Hence, as a Q¢-space, U, is a sum of
those spaces ViQeoa+X) where X € q—n/j+1 issuch that X € Y +v_ 11 +q_g41.

Suppose that ¢ € {1,...,t}, X; € S¥ and y € R;y. Then, by definition of S, since
Ri-(s+Y)Cs+Y +rt_ji1,and t_j4q and q_g41 are Ry-stable,

Ady(s+X;) € Ady(s +Y 4+, +9 ) Cs+Y +r i1+ a1

It follows that 7(y) ﬂ(Qz’USJ’Xi) C U,, which, by definition of W, implies W, C U,,.

It remains to show that U, C W,. Let X € q_,/j41 be such that X — Y €
t_j+1 + g—¢41. In light of the above description of U, as a Q¢-space, it suffices to show
that VA9:7=+*) W, for all such X. By Lemma 7.9, there exists k € Q1, ¢ € {1,...,t},
and X; € S; such that

Adk(s+X;) € s+ X +qpp1 + a4, and Vi Q0o=+x) = (k) (Qeoatxs),

Adding an element of q_g1 to X will not affect o454 x, or the above inclusion and identity.
As X €Y +rv_j11+q_rq1, there is therefore no loss of generality in assuming that
X €Y +r_ji1. By Lemma 5.3(2), s+Y +v_j41 =Ry (s+Y +1_ ;). Thus there
exists z € Ry and Yy € v’ such that s + X = Adz(s +Y +Yp). This implies

V(Qeostx) — 7T(x) 7T(Qz705+y+y0).
By Lemma 7.9 (3), with ko = z, if 2 € Q] is such that 7'k € 2Q,, then
Y+Y€e AdZ(Xl) + qLe+1,

which, as Yy € ¢/, implies that Ad 2(X;) +q’,,, € Sf*. We have

V(Qeoorx) = p(z)m(a kQe) VLTI = )V QT 0)
Lemma 8.3. Let a € P°(n’).

(1) dim(Ua) = [Q¢ : Qe N R1)[Coy (Ya) : Cay (Ya) N R~ dim(V,).
(2) dim(Uy) = [QF : Q; N RY][Cq,(Ya) : Cqy(Ya) N Ry~ dim(V).
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Proof. For (1), recall that, as shown in the proof of Corollary 6.3, if kK € R and

XAdk(s4+myive) 4 Xoyo-iy,

agree on R, then k € Cr/(Y,)R:. Hence it follows from the definition of U, that

m =[Qr: Qe N (Cr (Yo)R1)] = [Qe : Cqy(Ya)(Qe N R1)].
The proof of (2) is similar. O

Proposition 8.4. Let a € P°(n’) and let my () and my(7') be as in (8.1). Then
ma () = [Q1: Ra] 1@ : R[Q1 : Q[QY : Q)™ (dima)ma(n')

= ¢/ (=012 (7).

Proof. It follows from Lemmas 8.2 and 8.3 that V, = {0} if and only if V, = {0}.
Furthermore, if V, # {0}, then

ma(m)  [Qe: R1N Q) dim(W,)

me (') Q) : RNyt dim(W))"

As [Ry: RN (Q1Qe)] = [R1: RiNQ[R] : RN Q,]~1, by Corollary 7.8, the definition
of W/, and Lemma 8.1,

dim(W,) = [Ry : R1 N Q[R} : R} N Q)] (dim o) dim(W),).
Combining this with the above gives

Mg ()
M (1)

=[R1:RiNQJQe: QN Ry R, : Ry NQ Q) : Q)N Ry(dim o),
which, together with

[Ri:RiNQQe: RiNQ ' =[Q1: R Q1 : Qul,

yields the first equality in the statement of the proposition.
Note that

Qi+ Qiga] = [y 2 bppre 1] = lols(0/p)|" = '™,

[Q; : Q2+1] = [hzl)n’ : bzl)"',l] = |0E/pE|n = qfn ;o121

WV

)

and

Q1+ Qu] = [Q0T : QT N Qu)] = (@ QT+ TN Q)
Hence, as dimo = [J: J N1 Qm]'/? and € +m = n'j + 1, we have
[Q1: QJ[Q}, Q) (dima) = ¢f (n=I(i=1/2

In view of this, after using (3.1) to evaluate the indices
[Q1: Ra] = [Bipywey : Biganyeal, Q1 Ryl = (B, 2 Bl ),

we obtain the second equality in the statement of the proposition. |
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Recall that () denotes the length of a partition 3.
Lemma 8.5. Let 3 € P(n') and v € P°(n’). If k € R, then

XAdk(s—i—ngYw) | BE(E’ﬁ),jT(ﬁ)-‘rl =1 = k S Bg(g/ﬂ){k' S R/ | Ad k/(Y’Y) S bb}

Proof. The restriction of the character to Be(gs) jr(g)+1 18 trivial if and only if

Ad k(s +wg’Y5) € (be(ers) jr(sy+1)" = be(es),—jr(s)-

As ijYnY €9",;41, Lemma 5.4 (2) implies that k € B¢(¢s)G'. By assumption, k € R.
Thus k € Be(gs)R'. Choose k' € R’ such that kk'~! € Bg(gs). Then

AdK (s +@g’Y,) = s+ wp’ AdK/(Y,) € beern) sy N8 = b (o)

and s €q_,,; = ngbzl)"/ - ngb'ﬁ. Hence AdK'(Y,) € bj. O

Proposition 8.6. Let a € P(n). Then dim(V; *U /%) is equal to

"((n—n")j—e+1)/2 By jr(a)41
fr'((n=n')j—e+1)/ V., )

q u(spye (q)up(q’) ™" dim(

if o = (fB)° for some 3 € P(n'), and zero otherwise.

Proof. Let o € P(n). Recall (see §4) that there exists  in the Bruhat-Tits building
B(G) such that g, ;+ = by |¢r(a))+1, t € R. Suppose that 7 has non-zero By, |jr(a)/e|+1-
fixed vectors. Then 7 has non-zero Gy (|jr(a)/e]/r(a))+-fixed vectors. It follows from the
definition of depth that p(7) < |[jr(a)/e|/r(«). By Lemma 4.2, p(7) = j/e, so

j_ Lir(e)/e]

e

< LA

r(a)

As j and e are relatively prime, the latter quantity is at most j/e, with equality if and
only if e divides r(«). Thus Yo lmeoselt o {0} whenever e does not divide 7(c).

Assume that e divides r(a) and 7 has non-zero B, jr(a)/e+1-fixed vectors. As p(m) =
j/e, by Theorem 5.2 (2) of [29], the action of By jr(a)/e 0D V2@ Gr@/o9%1 ontains a stan-
dard minimal K-type (Bj,(a)/e, Xx), Where X € b_jy(q)/e- Any two unrefined minimal
K-types contained in 7 are associates of each other (see Theorem 4.1 (2)). This means
that

G- (s+a-njr1) N (X + bo,—(jr(a)/e)+1) # 0
As X € b_j,(q)/e, this implies
G- (8 + an’j+1) n ba,—jr(a)/e 7é @7

By Lemma 5.4 (1), o = (f3)° for some 5 € P(n’).
To finish, assume that o = (f3)¢ for some § € P(n'). Note that |jr(a)/e] = jr(B5).
In the statement of the proposition, we can replace B(tge jr()+1 by Be(e) jr(g)+15 a8
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2/B),jr(B)+1

B
these two subgroups are G-conjugate. We know that Vj ¢ is equal to the space

of Be(gisy,jr(g)+1-fixed vectors in the space Vi of k(m, R;). Let v € P°(n/). Set
Ayp={ke R | AdKk(Y,) € bj}.

It is easy to see that Be(gsyA, g is right Cr/(Y,)Ri-invariant. Let u(y, ) be the car-
dinality of the image of A, g in R'/Cr (Yy)R]. Then the cardinality of the image of
Be(emyAyp in R/Cr(Yy) Ry is equal to [Be(eisy @ BRilu(y, B).

It now follows from Corollary 6.3 and Lemma 8.5 that

B, o1y in
dim(V; € 8, @+1) = [Bg(gs) : B’ﬁRl] Z m~(m)u(7, 5).
YEPO(n')
Similarly, Corollary 6.5 implies
dim (V") = 3 my(xu(y, ).
YEPO(n’)
After comparing the above two dimensions via Proposition 8.4, we obtain
dim(VﬂBs(g/ﬁ)’jer—l) = [Bg(,g/ﬂ) : BZ_}Rl]qf"/(n_”/)(j_l)/2 dim(VﬂBjjr(ﬁ)_ﬂ).
To complete the proof, note that
[Bg():/ﬁ) : BlﬁRl]
= [B&'(S/[j') : BlﬁBg(g/(n’))’l]
= [Be(ers) : Be(ernny 1) [Bh = Bl il ™!
= [B(fﬁ)ﬁ : B(l)",l][B/ﬁ N B21)71/71]71[B(1)w,,1 :B(fn’)e,l][B(l)n',l ZB(n/%l]il
= u(gp(Q)us(g’) g/ A2 by (3.1).

9. Varying Hecke algebra isomorphisms

In [17], Howe and Moy construct refined minimal K-types and the corresponding Hecke
algebra isomorphisms inductively. As a result, in some cases, the Hecke algebra iso-
morphism 7 of Theorem 7.1 must be replaced by a slightly different Hecke algebra iso-
morphism, which we call 7. Suppose that 7’ and 7’ € £(G’) correspond via 7 and 7,
respectively, to m € £(G). In § 12, the results of §8 will be applied to match the germs of
O, and O,. The same kinds of arguments cannot be used to match the germs of &, and
O, due to the fact that the analogues, relative to 7, of the results of § 8 may not involve
enough different K-types to determine the germs of the two characters. An essential step
in the proof of Theorem 14.1 requires matching of the germs of @, and ©;.. This can
be done using the results of § 12 as a consequence of Proposition 9.2, which says that 7’
and 7’ are equivalent.
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Let f, be a positive integer such that f divides f, and f, divides n/e. Let
@3 _ q/(fo/ )™ 1o the periodic lattice flag in E" attached to the partition (f,/f)™/¢/
of n/ (see §3). Let £3 be the periodic lattice flag in F™ defined by £3 = £(£/3), where
€ is as in §3. Attached to £ and £3, we have parahoric subgroups in G’ and G and
parahoric subalgebras in g’ and g. Set

g; =bes,;, 4 ="bes, €L,
Q; =Bgs,;, Qi=DBgs,;, i>1.

With these definitions, q; N g’ = q;, i € Z. Also, q is G-conjugate to by, yn/s,. Since £
has period n/ef,, by (3.2),

qu; = qg+n/efo and qul = qi+7z/efoa i€ Z.

Hence 4 '
§+-(njjes) 1 C w5 (0 + 1) Cwy'Q,
which implies that the coset consists of invertible matrices and therefore cannot con-
tain any nilpotent elements. Thus the character ys of Qn]- Jef, defined by xs(xz) =
Y(tr(s(z —1))), € Qpjjes, is a standard minimal K-type. The restriction x} of xs
to Q;Lj/efn is also a standard minimal K-type (of G’).
Set £, = [(3(nj/efo) +1)] and m, = [nj/2ef,] + 1 and

j:1+q’nj/efo+q;j, j+:1+q;j/efo+q;,t.

The character y, of an Jef, extends trivially across 1+ q’rfgo to give a character (also
denoted by ) of J.. Define the representation ¢ of J to be x, if J = j+ (that is, if
£, = m,). Otherwise, ¢ is the unique irreducible subrepresentation of Indj+ Xs-

Let H = H(G/J,6) and H' = H(G' Q) /0s s Xs)-

n,

Theorem 9.1 (cf. Theorem 4.9 of [17]). There exists an isomorphism 7 : H' — H
satisfying

supp(n(f')) = Jsupp(f')J and supp(i(f’)) N G’ = supp(f’)

for f' € H'. Furthermore, 7 is an L2-isometry for the natural L?-structures on H and H'.

We remark that Howe and Moy use the notation ¢n for the isomorphism 7, and their e
is our n/ef,. By Theorem 4.10 of [17], if 7 € £(G) contains (an/efo , Xs), then 7 contains
(J,6). Thus 7 gives rise to a bijection between the set of (equivalence classes of) 7 € £(G)
that contain (an/efo, Xs) and the set of (equivalence classes of) ' € £(G’) that contain
(@) /es,> Xs)- When 7 and 7’ correspond to each other via 7), we write 7’ = n*(n).

Recall (see §7) that £2 = ¢/MW" | £2=¢(&W" ) q; =bgz; i € Z, and Q; = Bez,
i > 0. Every og-lattice occurring in £'2 occurs in £/3. This implies that every op-lattice
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occurring in £2 occurs in £3. Hence ¢ C 4. And Q,v; =1+ w%q cl+ wjéc] = Qjn/ef, >
so any representation that contains (an/efo, Xs) also contains (Qn/j, xs)- Let n: H' — H
be the Hecke algebra isomorphism of Theorem 7.1.

Proposition 9.2. Suppose that © € £(G) contains (an/efo,xs). Let " = n*(n) and
7' =9*(w). Then ' ~ 7.
Proof. Let J' = @Q],; and J = .;j/efo..By above, J' C J'. .
Note that J' normalizes J, as J' C Q) C Q] and Q) normalizes J. Set Jy = J'J.
Let o be the representation of J defined in §7. Define an extension ot of o to Jp
by Gext(zy) = X4(2)o(y), © € J' and y € J. Next, set J = J.J. Howe and Moy treat
three separate cases. This is not really necessary, as we can always define J. In the
case where j is even, J is just J. In all cases (see the proof of Theorem 4.9 in [17]),
Ind‘j7 o~ Indg0 Oext. Hence

H o~ H(G) T, Ind] &) = H(G ) To, Oext)-

For the remainder of the proof we will identify H with the subalgebra H(G) To, Oext)
of H.

Given g in the support of H', let f; be the unique function in H’ such that f;(g) =1
and f, is supported on J'g.J’. Set

A =va ()N X)),

g€’/ I’

This looks slightly different from the formula of Howe and Moy because we are using
the Hecke algebras with the contragredient representations .~ !, &, etc., and because we
have not assumed that Haar measure on G’ is normalized so that J’ has volume one.
Since A’ is equal to v (J)"1x! on J’, and zero elsewhere, A’ is the identity element
of #'. Also,
HIZ{A/*f/*A/|f/EH/}.

Set A = n(A’). Let g € J'. Then n(f}) = va(J) tvg (J') fg, where f, € H is such that
f9(9) = laim and fy is supported on J'gJ’ = gJ’. We remark that the definition of n(f;)
for more general g can be quite complicated (see [15, pp. 42-45]). But J' C Q' C @

guarantees that the oscillator representation that normally appears in 7(f;) is trivial for
g € J', and thus n(f;) is as above. Hence, as Jo/J ~ J'/J',

A=va(D) ve (Moe ()70 Y Xile) 7

ged’)J!
=va(J0)™" Y Gext(9)fs
gEJ"/J’
_ UG(jO)ila—cxt on jO;
0 on G — Jp.
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That is, A is the identity element of H. Also, H = {A* f+ A| f € H} and the Hecke
algebra isomorphism 7 is the restriction of 1 to H.

Let 7, 7, v’ and 7' be the representations of #, H, ' and H’ associated to , 7, 7/,
and 7', respectively.

Let W be the space of Gex. The spaces of r and 7 are (Vy @ W)’ ~ (VTSJ’U) ® W)’
and (V, @ W)70 ~ (VTSJO’U""“) ® W), respectively, where J acts via 7 | Jo on Vy and
by Gext on W. Furthermore, if f € H, #(Ax fx A) =r(Ax f+ A) | (V@ W)7o.

Let J' act on C via x'. Then the spaces of 7' and 7/ are (Vyr @ C)7" =~ VTE/J/’XL‘) and
(Vir ® (C)j/ ~ V;,JI’X;), respectively.

Since ' = n*(n) and @' = 7*(7), there exist isomorphisms

T: (Ve ®C)” = (Ve @ W)’  suchthat Tor'(f')=r(n(f))oT, f e,
T: (Ve ®C) = (Ve @ W)”"7  such that To#'(f') = #(n(f) o T, f €.

Set ' =T oT| (Vo ® (C)j/. The representation of #' associated to 7’ is given by
f =7 (f) | (Ve ®C)7". To see that this representation is equivalent to 7/, it suffices to
show that

T or' (A s f' « )| (Ve @C)Y =#' (A s f/x A)oT Vf eH,

and this follows easily from the intertwining properties of T' and 7' and the relation
between 7 | H and 7. Thus 7/ ~ 7', O

10. Multiplicities of K-types—the depth-zero pure case

Let m € £(G) be such that the depth p(w) of 7 is zero and such that 7 contains a
pure minimal K-type. In this section, we study the dimension of the subspace Vf ! of
By, 1-fixed vectors the space V; of , for o € PY(n). Via a Hecke algebra isomorphism,
corresponds to a unipotent representation 7’ of a general linear group over an unramified
extension of F'. In Proposition 10.8, we show that if the dimension of VWBC"1 is non-zero,
it is an explicit multiple of the dimension of the space of B/ﬁ’l—ﬁxed vectors in the space
V. for some 3 € PO(n').

There exists a natural number d dividing n, together with an irreducible cuspidal
representation oo of GLq(F,), such that, if n’ = n/d, 7 contains (B 4., 0), where o is
the inflation of the n/-fold tensor product of o to B(d),,u. As Bipy1 C B(d)"/,l’ it follows
that Vo™ £ 0. Let s(r, B()) denote the representation of B, obtained by restricting
the action of 7r|B(n) to Vi ot

Lemma 10.1. The minimal K-type (B(d)n/ ,0) occurs with positive multiplicity in each
irreducible component of k(m, B(y)).

Proof. Let V = V2" and x = K(m, B(y)). Let 7 be any irreducible component of x.
By Theorem 3.5 of [30], 7 contains an unrefined minimal K-type of depth zero of a para-
horic subgroup G0 C B(). After replacing G0 by a B(,)-conjugate, we may assume
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that G0 = B, for some o € P(n). Thus 7 contains an irreducible representation ¢
of B, which is trivial on B, ; and is the inflation of an irreducible cuspidal represen-
tation of B,/Ba,1. By Proposition 6.2 of [30], all unrefined minimal K-types occur-
ring in k are associates of (Bg,§). Therefore (see §4 for the definition of associate),
Bo/Buy ~ B gy / B 1 and £ and o are inflations of equivalent cuspidal representa-
tions. This implies that B, = B(n)d/ and o ~ &. g

Let E/F be the unramified extension of degree d, embedded in gl,(F) as in §3.
Let G' = GL,(E). In this section, we will be comparing properties of x(m, B(,)) and
(7', B(nry) for some irreducible unipotent representation 7’ of G'. Set

H :H(G//B(d)n/,5'), HO ZIH(B(n)//B(d)n/,é),
W =G JBlyy).  Hy=H(Blu By

It is clear that Ho and H{ are subalgebras of H and H’, respectively. Let P = Py
G" = B{, /By 1 = GLn (Fya), and B' = B(yyur / B(nr),1- Then B’ is a Borel subgroup of
G'. Note that

~H(GJP,5) and Hy~H(G )B).

Theorem 10.2 (cf. Theorem 2.1.2 of [15]). There is an isomorphism n : H' — H
satisfying

supp(n(f')) = Bgyn supp(f')Bgyr and  supp(n(f’)) N G" = supp(f’)

for f' € H'. The isomorphism 7 is an L?-isometry for the natural L? structures on H and
H'. Furthermore, the restriction ng of n to Hy is an isomorphism of Hj, onto Hy which
preserves the natural L2-structures on H}, and Hy.

Via the Hecke algebra isomorphism 7, we obtain a bijection between the set of 7 € £(G)
that contain (B 4., 0) and the set of 7 € £(G’) that contain the trivial representation of
the Iwahori subgroup le)n, of G’. When 7 and 7’ correspond via 7, we write 7’ = n* (7).
Similarly, no gives rise to a bijection between the set of representations of G having the
property that every irreducible component contains (P, o) and the set of representations
of G’ having the property that every irreducible component contains the trivial represen-
tation of B/. When 7 and 7/ correspond via 19, we write 7/ = 0 (1) or 7 = 1y (7).

Lemma 10.3. Suppose that m € £(G) contains (Bgyn,0). Let 7' = n*(m). Then

H(TF’,BEn/)) =15 (k(m, Bny))-

Proof. The representation 7w corresponds to an irreducible representation of H whose
restriction to Hg corresponds to the representation of B (n) arising via restriction of

#(m, B(n)) to the (B 4. ,0)-isotypic subspace of Vi B . By Lemma 10.1, this iso-
typic subspace is all of V,; ™"
the representation of 7’ coming from 7" corresponds to x(w’, B(,,,)). As 7’ = n*(w) and
1Mo = n|#, the lemma follows. O

. Similarly, the representation of ’HO obtained by restricting
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As the restriction of k(m, Bn)) to By, is iso-trivial and B,)/Bmy1 ~ GLn(Fy),
whenever it is convenient, we will view x(m, B(;)) as a representation of G = G L, (F,).
Let a € P(n). Then

B(n),l C Ba,l C B, C B(n)

and P, = Ba/Bn),1 is a standard parabolic subgroup of G with standard Levi compo-
nent M, ~ B, /Bq,1 and unipotent radical Ny, ~ Ba,1/B(y),1- And hence VB>t can be
viewed as the space of N,-invariant vectors in the space of the representation (m, B,))
of G. In view of Lemma 10.3, in order to compare multiplicities of trivial represen-
tations of pro-unipotent radicals of parahoric subgroups in 7 and n*(7), it suffices to
compare multiplicities of trivial representations of finite unipotent radicals in #(m, B(y))
and ¢ (k(m, Byy)). Determining the relation between 75 and twisted induction allows us
to carry out the comparison.

Suppose that £ = L(F,) is a subgroup of G such that L is a Levi factor of a parabolic
subgroup of GLn(]Fq) such that L is defined over [, (the parabolic subgroup need not be
defined over FF,;). That is, £ is the centralizer of some torus in G. The twisted induction
map RY defined in [23] takes virtual representations of £ to virtual representations of
G. In the special case where £ is a Levi subgroup of a parabolic subgroup of G, R%
coincides with parabolic induction (also known as Harish-Chandra induction). If £ =T
is a Cartan subgroup of G, then Rg- is known as Deligne-Lusztig induction. Whenever
convenient, we will identify a virtual representation of a finite reductive group with the
corresponding class function.

Recall that an irreducible representation of a finite general linear group is unipotent if
and only if it contains the trivial representation of a Borel subgroup. Let C;fmip denote the
set of (equivalence classes of) unipotent representations of G’. Any elliptic Cartan sub-
group 7o of GLg(F,) is isomorphic to F:d. As 0g is an irreducible cuspidal representation
of GL4(F,), there exists a character v of Ty ~ qud, which is not fixed by any non-trivial
element of Gal(F,a/F,), such that

_1GLy(F
O,O ~ (71)d IR% d( q)(l/),
Define a character v/ of G’ by v o det’, where det’ is the determinant on G'.

Lemma 10.4. If 7' € G .| then 7/ = 773((—1)"_"/38,(# 7).

unip’

Proof. Given a € PY(n’), let P/, be the associated standard parabolic subgroup of G'.
The group W’ of permutation matrices in G’ is isomorphic to the Weyl group of G'. If
a € PO(n), let W) = W’'NP!,. As shown in [15, Appendix 1], there is a unique bijection
7' ¢ & between G/

imip and the set W' of irreducible representations of W, such that

dim(Homg/ (7', Ind%& (1))) = dim(Homyy- (&, IndVWVL:Y(l))) Va € PO(n).
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Similarly (see [15, Chapter 1, §5]), there is an analogous bijection between the set of
irreducible constituents of Ind% (o) and W’. The Hecke algebra isomorphism 7 satisfies

dim (Homg (ng ('), ng **(Ind, (1)))) = dim(Homg: (7', Ind%, (1))

Va € PO(n'), 7' € QA{miw (10.1a)
dimng (') = dimo[G : P)[G' : B dim 7 V7' € Gy (10.1b)

Any map from g]mip to the set of irreducible components of Ind$, o that satisfies (10.1 a)

is a bijection. We will show that the map 7" — (—=1)""" RY,(v/ ® 7') takes elements of

g}miP to irreducible components of Ind% o and satisfies (10.1) (with 5 '* replaced by

(1" RE,(V @ (-)))

If H is a finite group, let (-, )y denote the usual inner product on the space of class
functions on H. Given w € W', let T,, be the Cartan subgroup of G’ of type w (see [24]
for the definition). Given & € W, let

Te = Z tracef(w)ngr;(l)-

weWw’
By Theorem 2.2 of [24], 7¢ € QAl’mip. It is well known that
mdf, (1) = W4~ > RS (1), aecP(). (10.2)
weW/,

It follows from (10.2) and the orthogonality relations for the functions R% (1), we W,
that , ,
(re,Ind, (1))g: = (&, Indyy, (1))wr Vo € PO(n). (10.3)

Let 7/ € G By the above, if € € W’ is the representation corresponding to 7/ via the

unip*
above-mentioned canonical bijection, then 7¢ = 7'.
Let vy, = V|1, w € W'. Then v/ ® R%(l) = R%ﬂ (Vw), and we can apply transitivity
of twisted induction and Theorem 3.2 of [24] to conclude that

()" R @) = (-1)"" 3 trace&(w)RE. (vu) (10.4)
weW’
is an irreducible representation of G. Furthermore, denoting the split Cartan in B’ by T,
since 7/ is a component of Ind%, (1) = RY (1), (=1)"" RS, (v ® 7') is a component of

(-D)" ™ RE (' @ RS (1) = ()" " RE,(RF (V'|7)) = (=1)" " R§(V'|7) = Ind} (o).

Let a € P%(n’). Then, applying (10.2) and transitivity of twisted induction, followed
by (10.4) and the orthogonality relations for the functions R%;—w (Vw), w € W', we obtain

(R, (v @ 7), R, (v @ IndF, (1)g = [Wal ™" Y (RE(V @7, RS, (vu))g
weW/,

= (&, Ind}y, (1))w.
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Comparing this with (10.3) and using 7" = 7¢ results in

dim(Homg((—l)”_"/Rg,(V’ QT), (—1)”_"/Rg,(ul ® Ind%& (1))
= dim(Homg/ (7', Ind, (1)) Va € P°(n), 7' € G- (10.5)

We remark that (10.5) can also be obtained as a consequence of general results on twisted
induction (see, for example, Theorem 13.25 of [10]).
Above we have shown that the map 7/ — (—1)"’”,Rg,(1/ ® 7') takes elements G| .

to irreducible components of Ind$ (o) and satisfies (10.5) (which is (10.1a), with 7, **
replaced by (—1)"~" RS, (V' @ (-))). Also (see [23]),

dim((-1)""" RG, (V' ® 7')) = |Gl |G|} dim(v' @ 7') = |G|, |G'|.;} dim 7.

Here, if H is a finite group, |H|,s denotes the part of |H| that is prime to p. Let M be
the standard Levi component of P. Note that [G : P] = |g\p/\/\/l|;,1, G B =G| |T|I!
and

dim o = dim(~1)"" B |T) = [ M| 7],

SO

dimo[G: P|[G': B] ! = |g|,,,|g’|;,1.

It follows that (10.1b) holds if 5y '*(7') is replaced by (—1)”_”/Rg,(u' Q7).

As a consequence of the above results, the map 7/ — na‘((A—l)"’”/Rg, V' ®71)) is a
bijection of Q{mip onto itself. This map induces a bijection b, of W’ onto Aitself. To complete
the proof of the lemma, it suffices to prove that by(§) = £ for all £ € W”.

Now we will let ¢ vary over positive powers of p, and keep n and d fixed. For each
¢ € W', there exists a polynomial fe(t) in one variable ¢ such that f¢ is independent of
q and the degree of the corresponding unipotent representation 7¢ of G’ = GLy/ (Fa)
is equal to f¢ (¢%). This can be seen from the formulae for the degrees of the unipotent
representations of finite general linear groups (see, for example, [37]). As shown above,
the bijection b, has the property that, for cach & € W', f, (¢)(q%) = fe(q?) for all ¢. The
Hecke algebra isomorphism 7y has the property that 19 maps the characteristic function
of B'wB', w € W, to a function in Hg that is supported on PwP. In combination with
the fact that the relation Rg, ) R% = ng, w € W/, determines Rg,, this implies that
the bijections b, coincide for all positive powers of p. Denoting the bijection by b, we

have, for € € W', fe(q%) = fo(e)(q?) for all g. Hence fe(t) = fie)(t). Since e () # fe, (1)

if &1 is not equivalent to & (see [37]), it follows that b(&) = £ for all £ € W". O
Let m be a natural number. Recall that if « = (a1,...,a,) € P(m), then r(a) = r.
Set
AMa) = H Q;
1<igr

and let Stab(a) be the stabilizer of a in the symmetric group S, on r letters. If
a = (a1,...,0,) € P(n), fix embeddings of Fju, in GLy, (Fy), 1 < i < 7. Then the

image 7, of ngigr F;ai is a Cartan subgroup of the standard Levi subgroup M. Also,
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{To | @ € P°(n)} is a complete set of representatives for the conjugacy classes of Cartan

subgroups of G. Similarly, if & € P(n’), let 7. be an elliptic Cartan subgroup of the

standard Levi subgroup M., of the parabolic subgroup P/, of G'. Note that 7. ~ Tgq.
Given a = (aq,...,a,) € P(m), set

R(a) = {6 € P(m) | J is a rearrangement of o},
S(@)={5 € P(m) |5 =80 U 0", 50 e Pas), 1 <i <r(e)}.

When «,3 € P(n), the map § — 75 is a bijection between R(a) N S(B) and the set
of Mg-conjugacy classes of Cartan subgroups of Mg that contain a G-conjugate of 7.
A similar statement holds when «, 8 € P(n’). Note that if «, 5 € P(n’), the map § — dd
from R(oz) N S8(B) to R(da) N S(dB) is a bijection. Let o, 3 € P(n'). Suppose that
§=0MuU---Us® e R(@)NS(B). Let W, (T§) = Norm s, (7J)/T4 denote the Weyl
group of 7" in Mﬁ As WM/ (74) is the dlrect product of the Weyl groups of the Cartan
subgroups of GLg, (F ) associated to the 5@ it follows that

W, (T5)] = J[ A@™)|Stab(s").

1<i<s
As MN(d5@) = drCINED), r(d5D) = r(5@) and Stab(ds®)) = Stab(5®), it follows that
Wty (Tas)| = d=1<i "0 Wpgy (T))] = d"O W, (T7)], 8 € R() N S(B).

Let Ug be the set of unipotent elements in G. Given « € P(n), the Green function @,
corresponding to 7, is defined by

trace RS (1)(z) if z € Ug,
0 if otherwise.

Similarly, attached to each o € P(n’), we have a Green function @, on G'.

Lemma 10.5. Let o, § € P(n'). Then

W, (T Q0 Q5) g = [Was (Tas)| ™ (Qua, Qus)g, 0 € R(a) N S(B).

Proof. Let 6 € R(a) NS(B). Applying the orthogonality relations for Green functions,
using the fact that 7 and 7y are G'-conjugate, and |7§| = |Tgs|, results in

|WM;3(7:5/)|71<Q;,Q3>9/ = \WMb(73/)|71|Wg’(7:5/)||7:5/|71
= d" O W, (Tas)| = d ™" |Wg (Tas)|| Tas| ™"
= Wty (Tas)| ™ (Qaa, Qus)g-

O

If £ is a finite reductive Fy-group and p is the characteristic of F, let |£|, and |L],
be the p-part of |£| and the part of |£| prime to p, respectively.
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Lemma 10.6. Let 7 be a representation of G on a space V. Then

dimOVN) = [Maly Y ()" O Wa (T5)| 77, Qs)g, @ € P(n).
0ES(a)

Proof. Let 15, be the characteristic function of NV,. Then

dim(VNe) = [N, | Z tr7(z)1p, ()

z€eg

— NG S () (Z wa(yxyl))

z€G yeg

= INa|THGIT Y tr7 () [Pal Ry, (em. ) (@)

z€eG
= [Mal(7, RS, (em.))g-

Here, epq,, denotes the characteristic function of the identity element in M,. The map
0 — Ts is a bijection of S(a) onto a set of representatives for the conjugacy classes
of Cartan subgroups in M,. Given § € S(«), let Q?A‘* be the Green function on M,
attached to the Cartan subgroup 75. The Green functions Qg\/to‘, 0 € S(a), form a basis
for the space of class functions on M, that are supported on the unipotent subset of
M. It follows from the orthogonality relations for the Green functions that

em, = Maly 't D (FD)" O W (To) @3
6eS(a)

Substituting into the above expression for dim(VV«), we obtain

dim(VN) = [Maly Y (=)W, (T5)] "7, RS, (@)
0eS(a)

If er; is the characteristic function of the identity in 75, then it follows from the
Deligne-Lusztig character formula and the definition of the Green functions that
Q?A” = Ré\—f“ (e1;). Together with transitivity of twisted induction, this implies

Qs = RS, (Q5).
Substituting this above gives the desired result. O

If 3 € P(n'), let N be the unipotent radical of Pj.

Lemma 10.7. Suppose that 7' € G/ . Let 7 = (=1)""' RS, (V' © 7). Let V' and V be

unip*

the spaces of 7' and T, respectively. Let a € P(n). Then

: I
dim(VNe) = 0 1 . if o ¢ dP(n'),
[Magsly Mgl dim(V™5) if o = dB, 3 € P(n').
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Proof. Let a € PY(n). Since 7/ € QA;nip, there exist scalars a.,, v € P%(n’), such that
T =3 epo(nr) aWR%,(l). Hence

VO g =g = D> a,Qhug - (10.6)
YEPO(n’)

Hence

Thie = (D" 3" ayRY, Whie = (D" D" 0, Qurlue-

YEPO (') YEPO(n)

By Lemma 10.6,

dim(VV) = [Maly Y- (D" O, (1) Y a4(Qar. Qs)g. (10.7)

0eS(a) yEPO(n')

If (Qavy,Qs)g # 0, then 75 and T4, must be conjugate in G. That is, § € R(dy). If
0 € R(dy), then d divides every part of §, and, as § € S(«), d also divides every part of
. Hence (10.7) implies that dim(VNe) = 0 whenever o ¢ dP(n').

Assume that o = d for some § € P(n'). By the above remarks, (Qgs, Q~)g = 0 unless
0 € R(dy), and, in that case, 6 = dw for some w € P(n'). As dw € R(dvy) NS(dB) is
equivalent to w € R(y) N S(B), equation (10.7) can be rewritten as

dim(VNdﬁ) = ‘Mdﬁlp’ Z Ay Z (_1)n _TI(w)‘WM{m (%w)|_1<Qd7> de>g
YEPO(n)  weR(V)NS(B)

= Mgl Y oy Y (DT WA (TR, QL)

YEPO(n')  WER(MNS(H)

= Magly Y ()" T WA (T Y a(@,Q)er

weS(B) YEPO(n')
= [Magly > (1) O Wae (T, QL)gr by (10.6)
weS(B)

= \Mdﬂ|p’\M/g|;/1 dim(V"V3) by Lemma 10.6.

To obtain the second and third equalities above, we used Lemma 10.5 and the fact that
(Q,Ql,)gr = 0 whenever w ¢ R(7), respectively. O

Proposition 10.8. Let m € £(G) contain the pure minimal K-type (B4 ,0). Let
7' =n*(n) and let « € P(n). Then

0 ifa ¢ dP(n'),

dim(V,Per) = .
uap(Qus(qh) "t dim(V, ) if a=dB, B e P(n).

Proof. By Lemma 10.3, x(7’, B(,,)) = 15 (k(7, B(z,))). Lemma 10.4 extends linearly to
give k(m, Brn)) = (-1)* " RS, (V @ (7', B(ny)). Hence, if V and V' are the spaces of
(7, B(y)) and n(ﬁ',BEn,)) respectively, the conclusion of Lemma 10.7 is valid for V
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and V. As VBl =YNe o € P(n) and Vfﬂ’l — VN5 B € P(n') (see the remarks
following Lemma 10.1), the proposition follows upon observing that |[Mgsly = uas(q)
and [MJ|, = up(g?) (notation as in §2). O

Fix s € o} whose image in op/pp ~ F,4 generates Fga over F,. Recall that we are
assuming F is embedded in gl,,(F) as in §3. We will often identify s with its image in
9l (F). The following lemma will be used in §13. Recall (see §2) that Haar measure on
By 4)n is normalized, so that B4, has volume one.

Recall that o is the inflation to Bgyn of the n’-fold tensor product of o(, where o is
an irreducible cuspidal representation of GLg(Fy).

Lemma 10.9. Suppose that p > d. If h is such that d < h < p, then

h—1 i
XZ
XU(E ) - Xa(l)/B 1/)(tr(8 Ad k(X))) dk VX (S b(d)"” SUCh that Xh S b(d)"/,l'

7!
=1 (dyn’

Proof. Given X € b(d)n/, let X;, 1 < i < n/, be the ith component of the image of X
in bgyn /b(gynr 1 = (gla(F,))™ . Suppose that X" e b(g)n 1- Then each X is a nilpotent
element of gly(F,). This implies that X¢ = 0 for all 4, and thus X¢ € bigyn 1- Therefore,

Xo (hz:l )j'l) = ﬁ Xoo (€xp X5).

i=1 =1

By results of [18], viewing the restriction of ¢ to op as a non-trivial character of Fy, and
denoting the image of s in gl4(F,) by 3,

oo geGL4(Fy)

To complete the proof, note that

’
n

/B P(trsAdk(X))dk = |GLa(F) ™™ [ D w(tr(5Adg(Xi))).

(ayn’ 1=1geGLq4(Fq)

11. Homogeneity of orbital integrals and germs of characters

Recall (see §2) that if sy € gss, 2¢(s0) denotes the set of G-orbits in g whose closure con-
tains sg. Given a locally integrable G-invariant function D defined on an open subset S of
g and an open subset Sy of S, we say that the restriction of D to Sy is sg-asymptotic, or
D is sg-asymptotic on Sy, if D|s,ng,., belongs to the span of {fio|s,ng,., | O € 2a(s0)}-
The main results of this paper (see §14) concern sp-asymptotic expansions of germs of
characters. An essential step in the proofs of those results involves the application of
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some important results of DeBacker and Waldspurger concerning homogeneity proper-
ties of invariant distributions and 0-asymptotic expansions of germs of characters. In the
first part of this section, we summarize these homogeneity results. The original version of
this paper relied upon the validity of a hypothesis concerning linear independence of the
restrictions of the nilpotent orbital integrals to certain subspaces of C¢°(g). The hypoth-
esis is known to hold in some cases, that is, for some subspaces (see Proposition 11.6).
In this newer version of the paper, in order to avoid having to assume validity of the
hypothesis in cases where it has not been proved, we apply a special case of a result
of [22]. Namely, if 7 € £(G) has positive depth and contains a pure minimal K-type,
then the germ of O is sp-asymptotic on g,(,) for some semisimple element so. The pre-
cise statement is given in Theorem 11.8. Finally, the last part of the section concerns
properties of the functions jip, O € 2¢(s0), o € gss, which will be used elsewhere in the
paper.

As in §4, given a point z in the Bruhat-Tits building B(G) of G, g,,, r € R, denotes
the filtration of g defined by Moy and Prasad [29, 30]. For r € R, set

g:c,'rJr - U Gzt U 9z, grt = U g:r rt,

t>r 2€B(G) 2€B(G)

= Y Ce(9/92):

z€B(G)

Above, the sum in the definition of D, should be interpreted to mean that a function in
D, is a sum of finitely many functions, each of which lies in C.(g/g ) for some z € B(G).

If S is a subset of g, let J(S) be the set of G-invariant distributions on g with support
in the closure of G- S. If C is a subspace of CS°(g), then resc J(S) denotes the restrictions
of the distributions in J(.S) to C. Let gn; be the set of nilpotent elements in g. Versions of
Theorem 11.1 and Corollary 11.4 were first proved by Waldspurger [42] for r integral and
G belonging to a wide class of groups (including classical groups). Recently, DeBacker [9]
proved the theorems for arbitrary r and G, subject to certain hypotheses (which hold for
G = GL,(F) when p is sufficiently large). We state the theorems for G = GL,(F). The
reader may refer to [42] and [9] for the general versions.

Theorem 11.1 (cf. [9,42]). Suppose that p > 2n and r € R. Then resp, J(g,) =
resp,. J(gnﬂ).

The map f — f maps D, to C° (8(—r)+) [9]. Thus Theorem 11.1 implies the following.
Corollary 11.2. Assume that p > 2n. Let r € R. If X € g,, then fip(x) is 0-asymptotic
on g(,T)Jr.

Remark 11.3. Suppose that s € g, N gs. Note that Adg(gz,r) = 9g.z,r, © € B(G),
g € G, implies that g, is G-invariant. If O € 25(s), after conjugation by an element
in the centralizer of its semisimple part, the nilpotent part of any element of O can be
made arbitrarily small. Hence O C g,, and thus fip is 0-asymptotic on g(_,y+ for all

0Oe Qg(s).
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Corollary 11.4. Suppose that s € g, N gss. Then the functions jip, O € 2¢(s), remain
linearly independent upon restriction to any open neighbourhood of zero intersected with
Oreg if and only if /fLO|g(,T)+ﬂgreg’ O € 2¢(s), are linearly independent.

Proof. This is an immediate consequence of Corollary 11.2, the above remark and the
fact that the restrictions of the Fourier transforms of the nilpotent orbital integrals to
any open neighbourhood of zero intersected with g,eq are linearly independent (see [11,
Corollary 5.10]). O

Suppose that z € B(G) and X € go+. Then, as g, o+ = ga,» for some r > 0,
Xh e 0z,-n for h € N. Hence limj,_, oo X" =0 for all X € go+. By Lemma 2.6 (ii) of [42],
G- byn1 ={X € g |limy_,oo X" = 0}. This set is often referred to as the topologically
nilpotent set. Since G - b(1)» 1 C G - go+ = go+, it follows from the above that

go+ =G by 1 ={X €g| hli_{T;OXh =0}

Given m € £(G), by results of [11], we can view the character O, of 7 as a locally
integrable function on G that is locally constant on the regular subset of G. Note that
if X € go+ N Greg, then 14+ X is a regular element of G. We will refer to the restriction
of the function X — ©,(1+ X) to the intersection of g,z with an open neighbourhood
of zero contained in go+ as the germ of @,. Howe [13] proved that if 7 is an irreducible
supercuspidal representation of GL,(F'), then the germ of @, is 0-asymptotic on some
(unspecified) open neighbourhood of zero. This was later generalized to 7 € £(G) and
G reductive by Harish-Chandra [11], and Clozel [6], in the connected and disconnected
cases, respectively. The 0-asymptotic expansion of the germ of @, is sometimes referred
to as the Harish-Chandra local character expansion. The following theorem (stated for
G = GL,(F)) says that the open neighbourhood of zero can be taken equal to g,(x)+,
where p(7) is the depth of 7 (see §4).

Theorem 11.5 (cf. [9,42]). Let m € £(G). Assume that p > 2n. Then the germ of O
is 0-asymptotic on g,(x)+-

If « € PY(n), let b, be the parahoric o-subalgebra of g defined in § 3.
Proposition 11.6 (cf. [40]). Let F = span{[b,]|a € P°(n)}. Then

dimresz J(gni) = |£2¢(0)].

Suppose that n’ is a positive divisor of n, j is a positive integer and E is a tamely
ramified extension of F' of degree n/n’. Set e = e(E/F). Let s € p’ —p5’ "' be such
that w{,s@ generates 0g/pr over op/pr. It is easy to show that such an element s is a
good element in the sense of [22, §2.3].

Lemma 11.7. Suppose that p > 2n. Let s be as above, and let g’ be the Lie algebra of
Ca(s). If X € g’(_j)+, and O = Og(s + X), then fio is s-asymptotic on g, /..

Proof. The lemma is an immediate consequence of Lemma 3.1.5 and Theorem 3.1.7
of [22]. O
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Let s be as above. Define the pure minimal K-type (Qn/j, Xs) as in §6.

Theorem 11.8. Assume that p > 2n. Suppose that m € £(G) contains (Qn;, Xs). Then
the germ of O is s-asymptotic on g;/c = 8p(x)-

Proof. According to Remark 5.3.3 of [22], if p > 2n, then Theorem 5.3.1 of [22] can
be applied with the exponential map replaced by the map X — 1+ X. Thus it suffices
to prove that (Qn/j,Xs) is a good minimal K-type in the sense of [22, §2.3]. This is
equivalent to s being a good element in the sense of [22, §2.3], which, as remarked
above, is easy to check. O

If sy € g belongs to some elliptic Cartan subalgebra of g, then sy generates a finite
extension FEy of F. Let b = [Ey : F|. The centralizer Gy of sy in G is isomorphic
to GLy/(Eo). The Jordan decomposition defines a natural bijection between f2¢(so)
and g, (0). Given 8 € P°(n/b), let Xz be the nilpotent element in the Lie algebra
g0 =~ gl p(Eo) of Gy which corresponds to the element Y3 of gl,,/5(Eo) defined at the
end of §2. Then the orbit in £2¢(so) that corresponds to Og,(Xg) is Oc(so + Xg).

For each a € PY(n), let O, € 2(0) be the corresponding nilpotent G-orbit (as
discussed at the end of §2). Given 3 € P%(n/b), let 3° € P(n) be as defined in §2 and
let Bb be the unique element of P°(n) that is a rearrangement of 3°.

Lemma 11.9. Assume that p > 2n. Suppose that sg € g belongs to an elliptic Cartan
subalgebra of g. Let 3 € P°(n/b) and let Xz be as above. For each o € P°(n), let
ca(80,8) be the coefficient of jio, in the 0-asymptotic expansion of fio,(s,+x,)- Then
the following hold.

(1) ca(s0,8) = 0 unless o > V.

(2) cge(s0,8) > 0.
Proof. Let ¢ > 1. There exists a k& > 0 such that @w®s, € b(n),i- Let B € PO(n/b).

By the remark following Corollary 11.2, Og(w® (s + X)) = Og(%ﬂkso + X3) C g;. By
Corollary 11.2, fip (wksy+x,) 18 0-asymptotic on g(_;+. Let ca(w"s0,3) be the coeffi-
cient of fip, in the corresponding 0-asymptotic expansion. As b(,) _i41 C g(—i)+, and

J € Ce(g/b(n) ) if and only if f is supported on b(n),—i+1, we have
I‘LOG(wkSO+X[f)(f) = Z Ca(wk807 6)/’600‘ (f)7 f S Cc(g/b(n),z)

aePO(n)

If a € P°(n), let Y, € O, be the nilpotent element defined at the end of § 2. Note that
if o, v € P°(n), (Yo + bgny:) 1Oy # 0 implies v < a. Hence, given o € P°(n), there
exists a function f, € C2°(g) that is a linear combination of the characteristic functions
[Y) + b(nys), v € PY(n) such that v < o, and is such that po, (fo) =1 and po_ (fo) =0
whenever v # . Suppose that a € P°(n), 8 € P°(n/b), and c,(w*so,3) # 0. Then
HOg(wkso+x5) (fa) # 0, which implies that Oc(w* sy + Xg) N (Yy + b)) # 0 for some
v < a. By the Lie algebra version of Proposition 6.8 (1) of [31], there exists ¢ > 1 such
that

Oc(w*so + Xg) N (Y, + b(ny,i) =0 unless B < .

https://doi.org/10.1017/51474748003000124 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748003000124

452 F. Murnaghan

Hence (3° < ~ for some v < . This implies that 3° < a, and part (1) holds with " s
replacing sg.
By the Lie algebra version of Proposition 6.8 (2) of [31], if k is sufficiently large, then

Oc(@"so + Xp) N (Y + binyi) # 0

It follows from the above that

106 (wkso+ x5 (Vi + bmy.il) = egu (@50, 8) > 0.

To show that the lemma holds for sg, note that

Moc(wk(SQ+X5))(X) = ﬂOG(So-‘ng)(ka)) X S ngg'

As fio, (@"X) is a positive multiple of fip, (X) for X € greg, ca(@¥s0,3) is a positive
multiple of ¢, (s, 3) for all & € P°(n) and 8 € P°(n/b). O

Remark 11.10. The results of [31] give a more precise range of a for which ¢, (sg, )
can be non-zero, but Lemma 11.9 (1) suffices for our purposes.

Corollary 11.11. Suppose that sy € g belongs to an elliptic Cartan subalgebra of g.
Then the functions 1o, O € 2¢(s¢), remain linearly independent upon restriction to any
open neighbourhood of zero in g.

Proof. Let the notation be as in Lemma 11.9. As the restrictions of fio,, o € P°(n),
are linearly independent upon restriction to any open neighbourhood of zero (see [11,
Corollary 5.10]), it suffices to show that the matrix (aa,)g,aeP0(n/b): Ga,8 = ¢4 (S0, @)
is invertible. This is immediate from Lemma 11.9, as aq,o # 0, and aq g # 0 implies
B > &b, which implies 8 > o O

We remark that if s € gss does not belong to an elliptic Cartan subalgebra of g, then
the Fourier transforms fin, O € 2¢(so), might become linearly dependent on sufficiently
small neighbourhoods of zero. For example, let sg € gly(F') be a diagonal matrix with two
diagonal entries equal to 1 and the other two equal to —1. Then there are two nilpotent
orbits in the Lie algebra of Cg(sg) that are neither trivial nor regular. Let Y7 and Y5 be
representatives for these orbits. It is easy to check (see Lemma 17.1) that

MO(SU+YI)|EU+ Ngreg — MO(80+Y2)|90+ Ngreg — MO, 1y |90+ Nreg*

12. Asymptotic expansions of germs of characters: the pure case

In this section, we study the relation between asymptotic expansions of the germ of 6O,
and asymptotic expansions of the germ of @, in the case where 7 contains a pure minimal
K-type, and 7’ is a representation corresponding to 7 via the associated Hecke algebra
isomorphism. The proofs involve applying several results. Namely, results of DeBacker
and Waldspurger concerning homogeneity properties of germs of characters and of Fourier
transforms of orbital integrals (as discussed in §11), results comparing multiplicities of
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certain K-types contained in m and ' (Propositions 8.6 and 10.8), descent properties
of orbital integrals (Proposition 5.6) and a result from [22] (see Theorem 11.6). The
results of this section are applied later in the paper (see the proofs of Theorem 14.1,
Corollary 14.3 and Theorem 14.5).

When comparing germs of characters, it is convenient to impose some compatibility
conditions on invariant measures on orbits. If sg € gss and H = Cg(sp), there is a natural
bijection Oy +— G - Oy between 25(0) and 2¢(so). Fix Haar measures on G and H.
For each Oy € 25(0), fix a nilpotent element ¥ € Oy and choose a left Haar measure
on the centralizer Cy(Y). These Haar measures induce G-invariant measures on the
orbits Og(so +Y) ~ G/Cx(Y) and Oy (Y) ~ H/Cyx(Y). Throughout this paper, we
assume that the measures on the orbits in 2¢(sp) and 2p(0) are compatible in this
sense. Furthermore, the map On(Y) — so + O (Y) induces a bijection between 25 (0)
and 2p(so), and Og(so +Y) =~ H/Cy(Y). Thus the H-invariant measure on the orbit
Opn(so +Y) will be taken to be the one induced by the above H-invariant measure on
H/Ch(Y). Note that since we can choose left Haar measures on H and on each Cy(Y')
freely, we may use any normalizations of measures on the orbits in 27(0) (or 25 (so)).
However, having made these choices, the G-invariant measures on the orbits in 2¢(sg)
are all determined up to the same positive constant depending on the choice of Haar
measure on G. Conversely, we may take any normalization of measures on the orbits in
£2¢(sp), and this then determines the measures on orbits in £2;(0) and £25(s¢) up to a
positive constant depending on choice of Haar measure on H.

Let m € £(G). Suppose that m contains a pure minimal K-type. As usual, p(7) denotes
the depth of 7 (see §4). If p(m) > 0, then p(7) = j/e for some divisor e of n and a positive
integer j which is prime to e, and 7 contains some (Q.;, Xs), where s is as in §6. We
continue to use the notation of §§3-8. If p(m) = 0, then 7 contains (B 4., o), where o
and s are as in §10, E = F(s),d=[F: F],n’ =n/d and e = ¢(F/F) = 1. In this case,
setting j = 0, we also have p(7) = j/e.

Suppose that s' € g/, ﬂgz_jﬁ. As gy, =G - bl(l)"/,l (see §11), s’ € G’ - bzl),L,7_n,j+1,
so Lemma 5.5 implies C (s + s') = Cgr(s"). We will be comparing (s + s’)-asymptotic
expansions on g and s + s’ or s’-asymptotic expansions on g’, so we require compatibility
conditions on the measures on the orbits in 2¢(s + s’) and £2¢/(s’) or £2¢/(0). Consider
the bijection between 2¢(s + s’) and 2¢-(s') arising from the above-mentioned bijections
of 2¢(s + s') with ¢, (+(0) and ¢/ (s') with ¢, (s)(0). Fix Haar measures on G and
G'. Choosing a representative Y for an orbit in ¢, (+)(0), fix a left Haar measure on
Ccgi (s (Y). This results in a G-invariant measure on Og(s + 5" +Y) =~ G/Ce,, (s)(Y)
an a G'-invariant measure on the corresponding orbit Og:(s' +Y) ~ G'/Ce, (sH(Y). We
will assume that measures on the orbits in 2¢(s+ s") and Q¢ (s") are chosen so as to be
compatible in this sense. And the measures on the orbits in {2¢/(s + s’) will be chosen
to correspond to those on the orbits in £25/(s’) in the obvious way.

Let n : H' — H be the Hecke algebra isomorphism of Howe and Moy associated to
the above pure minimal K-type (see Theorems 7.1 and 10.2). Recall that, if a € P%(n)
and i € Z, [by ;] is the characteristic function of b, ;. Let u,(q) be defined as in § 2. Set
e1(X) =1+ X for X € go+. Let ¢} be the restriction of ¢; to gj; .

https://doi.org/10.1017/51474748003000124 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748003000124

454 F. Murnaghan

Proposition 12.1. Let n' = n*(7). Suppose that there exists an s’ € gl, N g’(_j)Jr such
that O o ¢} is s'-asymptotic on gi.. Let cor(n'), O" € £2¢/(s'), be the coefficients in
some s'-asymptotic expansion of O o¢}. Given O € Q¢(s + '), let O' € Q¢ (s') be
such that O = G - (s + O’), and set

Ao = va(Bn) e (Bl)g!™ (It 0 2y, (g un (gf) T eor ().

Define D = 3 ncq,(
a € P(n).

s+s) Aofto. Then (O o e1 — D)([ba, jr(a)/ej+1]) = 0 for every

Proof. First we note that, as g;, = G’ - b’(l)n/,l, there is no loss of generality in assuming
that s' € w,}jbzl)n,’l =9 1
As e1(ba, jr(@)/e)+1) = Bajr(a)/e)+15

. B, ljr(a)/e]+1
(O 0 e1)([ba, [jr(a)/e)+1]) = Vg(0a, [jr(a) fe)+1) dim (Ve @7/ 0 € P(n). (12.1)

By Propositions 8.6 (j > 0) and 10.8 (j = 0), the right-hand side of (12.1) is zero unless
a = (fB)¢ for some # € P(n'). Note that the Fourier transform of [by,| jr(a)/e|+1] is equal
t0 Vg (ba, | jr(a)/e)+1)[ba,— jr(a)/e)]- Hence, by Proposition 5.6 (1), D([ba,|jr(a)/ej+1]) =0
unless o = (fB)¢ for some S € P(n'). Thus it suffices to consider a = (f3)¢, 8 € P(n').

By Propositions 8.6 and 10.8, if « = (f5)¢, 8 € P(n’), equation (12.1) can be rewritten
as

g (b(¢)e jr(8)+1) " (O 0 e1)([0(s8)e jr(3)4+1])

fn'((n—n')j—e+1)/2

By .
B,ir(B)+1
V., )s

=q u(spye (@)us(q”) ™" dim(
which, by the analogue of (12.1) for 7', is equal to

fn'((n—n )j_e+1)/2U(f,8)e(Q)Uﬁ(qf)_lvg'(b/ﬁ,jr(g)+1)_1(@77' o ell)([h/ﬁ,jr(ﬁ)—i-l])?

q
wlllich, sinc? O 0 e/’l is s’—asyrr}ptotic on gl bl 5. = wbl, C wiﬂb’(l)n,’1 C g}+ and
(05 5r (541" = Vo (0 515 41) [0 )]s equals

I (=it D2y g (qua(a) ™ Y con(m ) por (165 _nis))s
OIG.QG/(S/)

which, by Proposition 5.6 and the definition of Ao, O € £g(s + §'), and D, can be
rewritten as

'UG(B(n))_lvG’(BZn’))qfn ((n=n )j_e+1)/gun(Q)un’(qf)_l

x Y co (M s+on ([brs)e—ir(s))

O/EQG/ (S,)
= Z Aono([bispye,—jr(s)))
OE.Qg(S"rS/)

= vg(b(sa)e jr(3)+1) " D([b(s)e jr(8)+1])-
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Remark 12.2. Suppose that j > 0 and there exists s’ as in Proposition 12.1 such that
Ons is (s + s')-asymptotic on g;. Then the (s + s’)-asymptotic expansion restricts to an
s’-asymptotic expansion on g;+, and if O’ € ¢/ (s), the coefficient ¢s o (7') of fistor
in the (s + s’)-asymptotic expansion equals the coefficient co (7') in the s-asymptotic
expansion of @ o ¢f.

Theorem 12.3. Assume that p > 2n. Let 7' = n*(m).

(1) Suppose that j = 0. Then O, o ¢y is s-asymptotic on go+. Furthermore, given a
0-asymptotic expansion of O,/ oe| with coeflicients co:(n'), O" € 2¢/(0), there
exists a unique s-asymptotic expansion of O o ¢e; with coeflicients given by

ca(s101) (1) = V6 (B(n) ™ 061 (Bl in (@)tne (4" ) Peor ('), O € R (0).

(2) Suppose that j > 0 and that O oe} is (s + s')-asymptotic on g’;, for some
s egn g’(_j)+. Then O oe; is (s+s')-asymptotic on g .. Furthermore, given an
(s+ s')-asymptotic expansion of @, o¢| with coefficients co: (7)), O' € ¢/ (s + §'),
there exists an (s + s’)-asymptotic expansion of ©, o ¢ with coefficients given by

fn’((n—n/)j—e+1)/2un(q>un/ (qf)_lco/ (7T/),

O € Q¢ (s+5).

cg.o(m) = UG(B(n))_lvG’(BEn/))q

Proof. Let D be as in Proposition 12.1. We must show that @, o ¢y — D vanishes on
g0+ N Greg (vespectively, g;/c N greg) if 7 = 0 (vespectively, j > 0) (see the remark above).

First, suppose that j = 0. By Corollary 11.2 and Theorem 11.5, ©,o0e¢; — D
is 0O-asymptotic on go+. As b,1 C go+, Propositions 11.6 and 12.1 imply that
(@r0er — D) | go+ N greg = 0. Hence, by definition of D, ©, oe; is s-asymptotic on go+,
and the coefficients co (), O € 2¢(s), can be chosen as given in (1). Furthermore, the
linear independence of the restrictions of the Fourier transforms fin, O € 24(s), to
go+ N Greg (see Corollary 11.11) guarantee uniqueness of the coefficients co ().

Next, suppose that j > 0. Since m contains (Qy;, xs), we may apply Theorem 11.8 to
conclude that O o e; is s-asymptotic on g;,.. Then, combining this with Lemma 11.7,
Oroe1 — D is s-asymptotic on g;/.. By Corollary 11.11, {fi¢ | £ € f2¢(s)} remain linearly
independent upon restriction to any open neighbourhood of zero in g. Therefore, to
prove that ©r o e; — D vanishes on g;/. N greg, it suffices to find a set of functions
supported in g;/. having the properties that on the span of this set of functions O o
¢1 — D vanishes, and the restrictions of the fi¢, £ € 2¢(s), to this span are linearly
independent. By Proposition 12.1, (O o ey — D)([b(¢g)c,—jr()+1]) = 0 for all 3 € P(n’).
By Proposition 5.6 (2), Proposition 11.6 and homogeneity properties of nilpotent orbital
integrals, the restrictions of fi¢, £ € £2¢(s), are linearly independent on the span of the
functions [b(sg)e, —jr(s)+1], B € P(n'). O

Remark 12.4. If r and 7’ are as above and j > 0, then an (s+s’)-asymptotic expansion
of O, o ¢} might not be unique (see comments at the end of §11). Clearly, in that case,
an (s + §')-asymptotic expansion of @, o¢; will not be unique. However, if s’ = 0, then
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because of the linear independence of the restrictions of fip, O € 2(s), to any open
neighbourhood of zero in g (Corollary 11.11), the s-asymptotic expansion of @, o e; is
unique.

13. Characters of refined minimal K-types

We assume throughout this section that p > n. In [17], Howe and Moy show that
there exist families of irreducible representations of parahoric subgroups, called refined
minimal K-types. Via a Hecke algebra isomorphism attached to some refined minimal
K-type, each w € £(G) corresponds to a unipotent representation of a direct product of
general linear groups over finite extensions of F. (Recall that an irreducible admissible
representation of a general linear group is unipotent if it has non-zero Iwahori-invariant
vectors).

Theorem 13.1 (cf. Theorem 5.6 of [17]).

(1) Every m € £(G) contains a refined minimal K-type.

(2) Let (B,T) be a refined minimal K-type. Then there exist extensions F;/F and
n; € N, 1 <@ < u, such that n = Z1gi<u n;[F; : F], B” = BNG" is an Iwahori
subgroup of G" = [[;_, GL,,(E;), and there exists a Hecke algebra isomorphism

v H" =H(G"|B") = H(r) = H(G/ B, 7)
such that

supp(¢(f)) = Bsupp(f)B and supp(c(f)) NG" =supp(f), feH".

Furthermore, ¢ is an L?-isometry for the natural L?-structures on H(r) and H".

We will say that a refined minimal K-type 7 is totally pure if v = 1, that is, if
there exists an extension L/F of degree dividing n such that G” ~ GL,(L), where
a = n/[L : F]. In this case, letting e, = e(L/F) and f, = f(L/F), B is conjugate
to B(fo)aeo = B(fo)n/fo. The totally pure refined minimal K-types are described in the
proof of Theorem 5.4 of [17] (see below for a summary). We are using the terminol-
ogy totally pure because it is possible to show that each such K-type is attached to a
finite sequence of pure unrefined minimal K-types for general linear groups arising as
centralizers of elements of L. The totally pure K-types are the refined minimal K-types
that are contained in the discrete series representations. If 7 is trivial, then G = G”
and 7 is the trivial representation of the standard Iwahori subgroup B = B(y)». For the
remainder of this section, we fix a totally pure refined minimal K-type (B, 7). Let ¢t be
the smallest non-negative integer such that the space of 7 contains non-zero By1-fixed
vectors. Set p(7) = t/ae, = fot/n. Recall that if 7 € £(G), then p(m) denotes the depth
of m (see §11). We are using the notation p(7) because p(m) = p(7) for all # € £(G) that
contain (B, 7).
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Let h be an integer such that n < h < p. Set

u

X
en(X)= Y T X €ao (13.1)
o<ush—1

This section is devoted to proving that the character y, of a totally pure refined
minimal K-type satisfies a Kirillov-type character formula (Theorem 13.2). For each h
as above, there exists s, € L such that, on an open subset of B, x o ¢, coincides with
a multiple of the Ad B-orbit of the linear functional ¥ (tr(s,p-)).

Theorem 13.2. Let (B, 7) be a totally pure refined minimal K-type. Then, for each h
as above, there exists s, € L such that the following hold.

(1) vi(srn) = —eop(T) and the centralizer of s, j, in G is equal to G”.

(2)
Xr(en(X)) = dimT /B b(tr(srn AdE(X))) dk

for all X € b such that X" € b(p(r)/1.)11 = @57 by

The proof of the theorem will be given later in the section. Next we outline the con-
struction (given in the proof of Theorem 5.4 of [17]) of the non-trivial totally pure
minimal K-types.

If p(r) = 0, then there exists a divisor d of n such that B =B . and 7 = o
is as in §10. In this case, L = F is the unramified extension of F' of degree d and
G"~G ~GL,(E).

Suppose that p(7) > 0. Let m be a discrete series representation of G that contains
(B, 7). As shown in [17], there exists a pure unrefined minimal K-type (Qn’;, xs) (nota-
tion as in §6) contained in 7. Let E, d, n', e, f, G’, etc., be as in §6. Then L is an
extension of E and 7 contains (B;/cf,,Xs). By definition of p(7), we have p(7) = j/e.
In §6, we saw that p(m) = j/e. Hence

As E C L, f divides f, and f, divides n/e, so we can define parahoric filtrations
qi, ¢ € Z, and Q;, i > 0, as in 89. Let o be the irreducible representation of the
compact open subgroup J that appears in §9. The parahoric @ has the property
that B=Q and B” =QNG". Setting b’ = ¢’ and B’ = @', we have b, = b; N ¢’
for all ¢ € Z. The K-type (B,7) is defined inductively, using a totally pure refined
minimal K-type (B’,7’) for G’ and an extension of the representation ¢ to B'J. Let
R H(G’//B;U/efo,xg) ~ H(G)J,5) be the Hecke algebra isomorphism attached to the
unrefined minimal K-type (By;/cs,,Xs) (as in Theorem 9.1). Fix a quasi-character 6 of
E* such that (denoting the determinant on G’ ~ G L, (E) by det) fodet’ is an extension
of the character x§ of B] | . Set & =#n"(m). As 7 B, contains X% and 7 belongs
to the discrete series, the representation (§~! o det’)7 is a discrete series representation
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of G’ such that p((#~! o det’)w) < p(#) = j. There exists a totally pure refined minimal
K-type (B’,7') contained in (§~! o det’)7, and p(7') = p((6~" o det’)#). Hence

p(7)/e < p(7). (13.2)

This inequality is essential for the induction step in the proof of Theorem 13.2.

There exists a uniquely defined extension dey; of & from J to B'J which is obtained
from ¢ using the character § o det’ |p/, and possibly also a Weil representation over [,
(depending on the parity of nj/ef,). This extension eyt is described in more detail in
the proof of Proposition 13.7. The representation 7/ extends trivially across J to give a
representation of B'.J, also denoted by 7. Also (see [17, p. 422]),

7=Ind%, (7' ® Gext)- (13.3)
Fix an integer h such that n < h < p. Define s;, € E as follows. First, in the case j = 0,
set s, = s. Otherwise, let 6 be as above. As 6 is trivial on 1+ pg‘l and non-trivial on
1+ p%, the map z +— 0(2?:_11 x%/il) is a character of pg/hﬁl. Thus there exists s, € F
such that
h—1 l‘i Li/h)+1
9(2 z') =Y(trg/p(snr)), x€pp . (13.4)
i=0

Note that if 2 € p’;, then

Y(trg/p(sne)) = 9(2 f,) =0(1+x) = x,(1+z) = p(trg/p(sz)).

This implies s, — s € pgj *1 In fact, s is the unique element of the subgroup of E* gen-
erated by wg and the roots of unity in E* of order prime to p such that |s;, — s|g < |sp].
Hence (see the remarks following Lemma 8 of [14]), F(s) C F(sp). But E = F(s), so

Given v € Z, let b/- = b, N g't, where g’* is the orthogonal complement of g’ relative
to trace. Recall that b) = b, Ng’ and, if v > 0, B, = B, NG".

Lemma 13.3.
(1) b, =b, ®blt veZ.
(2) B'(1+0bH)=B'B, ifv>1.
(3) [, bi" — by ] = b;L—nj/efo - b;l—nj/efu-‘rl'

4) Ifv > 1 and X € b is such that X" € b,, then
(

en(X)eEB'B, & Xeb +b,.

(5) If X = X' + X+ where X' € b/, X+ € b, and X" € b, for some r such that
0 <7 <w, then ep(X) € ep(X')(1 + b+ by,) and X" € b] .
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(6) Let X', v and r be as in (5). Then
(tr/ X’)h c p%v-&-r—l)efo/nj-i-l

and
= (0 X L(vtr—1)efo/n]+1
!/ / v+r—1)efo/n
mm@gxd)e<goi!>a+pE ).

Proof. Parts (1)-(3) are restatements of parts (1)—(3) of Lemma 5.1.

For (4), let X € b be such that X" € b,. Then the image X of X in b/b; is nilpotent.
This implies that e, (X) = exp(X) is unipotent. Hence ¢,(X) € b* = B. Suppose that
X € b +b,. Then X?/il € b’ +b, fori < h—1,s0 ¢,(X) € (b/ +b,) N B = B'B,.
Conversely, if ¢;,(X) € B'B,, then ¢,(X) — 1 € b’ + b,,. Hence, since X" € b,,

h—1 ; ;
—1)i(en(X) — 1)
xey EHO Z Iy g,
i=1 !

For (5), note that g’ is stable under left and right multiplication by elements of
g’. Fixing k < h, any monomial of the form XXXk~ 0 < i < k — 1, belongs to
gt Nb, = bt If X+ occurs at least twice in a monomial involving X’ and X, then,
since X’ € b’ and X+ € b,, that monomial lies in by, . Writing X* as a sum of momomials
involving products of powers of X’ and X, and decomposing the monomials into sums
of elements in g’ and g'*, we see that the g’-component of X* belongs to X'* + b5, .

Since X" € by, part (1) implies that the g’-component of X" belongs to b, .. Thus,
in view of the above, and by, C by, X € by ypy.

Since h — 1 < p,

Xk X/k

W
Therefore, z = ¢,(X) € e¢4(X') + bt + ba,. By arguing as in the proof of (4),
X' € b} implies e,(X’) € (b/)* = B’. Thus, as b/t and bg, are both left B’-stable,
x €ep(XH(1+ b;L + bay).

For (6), E' be a finite extension of E containing the eigenvalues A;, 1 < ¢ < n/, of
X'. Let | - | be an extension of |- |g from E to E'. By (5), X"""/¢fo € b(,irynser,. As
whb = bkn/es,s k € Z, we have wE(UH)X’h € b’. This implies |wg(v+r))\i|"h/ef° <1
for all 4. Thus | tr' X'|% < qE(UJrr)ef"/". Equivalently, (tr’ X')" € pgv+r71)ef°/nJ+l. Any

+0bt by, 1<k<h-—1.

multinomial occurring in

h—1 (trX')k n ,h—1 Ak h—1 , n' k
/ ’ _ i .
det/(e(X)) = Y e = H(Z k,) - Z(Z &) /K
k=0 i=1 Nk=0 k=0 \i=1
is of the form H?;l )\?;7 where h < Zil n}. And

< qg(v—i-r)efo/n.
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Thus
h—1
t /X/ k v+Tr— e n
det’ (en(X")) € (Z (e X" rk, ) )(1+p,§ Frobefo/nl+ly
k=0 ’

Recall from §9 that ¢, = [3((nj/ef,) +1)] and m, = [nj/2ef,] + 1.

Lemma 13.4. Suppose that p(7) = j/e > 0. Fix t € {{,,m,}. Assume that X € b’ + b,
is such that X" € b(np(T)/fo)+1 = b(nj/efo)+1' Write X =Y +Z, withY € b’ and Z € b;.
Set x = ep(X), y =en(Y), and z = y~'z. Then we have the following.

(1) Yh S bgOth.
(2) Ift = m,, then O(det’ y) = ¥(tr(s,Y)) and ¥(tr(sp(z — 1)) = 1.

Proof. Note that ¢, +m, = (nj/ef,) + 1. For (1), if t = ¢, (respectively, t = m,) apply
Lemma 13.3 (5) with v = r = /¢, (respectively, v = m,) and r = {,. For (2), applying
Lemma 13.3 (6) with v =t = m,, and r = {,, we have

; "y
(tr' V)" e pi™ and  O(det'y) = 9( g (tr‘ ) ),
which, by (13.4), implies

O(det'y) = Y (trg psptr'Y) = ¢(trgptr' (spY)) = (tr(spY)).

By Lemma 13.3(5), z € 1 + b;,fa + bam,, S0, since s, € bLnj/efov

tr(sp(z —1)) € tr(b—(nj/efo)+2mo) C tr(by) C pp.
Thus ¢(tr(sp(z —1))) = 1. O

Lemma 13.5. Suppose that p(1) > 0. Let s;, be as above. Let X € b and s’ € w’ 0.
Then the following hold.

(1) We have
/ D(er((sn + ) Ad k(X)) dk =0 if X ¢ b + by,
Bmo

(2) If X € by, then

(tr(sp Adk(X)))dk =0 if X ¢ b + by, .
Bgo

Proof. Since s, +s' =s+ (s, —s)+5 €s+ pEjH + ijH €s+ ngﬂb’, it suffices
to prove the lemma with s, replaced by s.
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For (1), given k € By,,, let Y =k —1 € b,,,. Then
AdE(X) € X + [V, X] 4+ bop, C X +[Y, X]+ b(nj/ef,)+1-

Combining this with s + s’ € ng b’ Cb_yjser, = b{,j/ef.)11> We have

+10

; Y(tr(s + ') Ad k(X)) dk = o(tr(s + s') X) i P(tr(s + s )Y, X])dY

=(tr(s + ) X) /b Yr([X, s+ §']Y))dY.

Assume that the above integral is non-zero. Then [X,s+s] € by, =b_,, 1. There
exists a unique 7 > 0 such that X € b; — b;; 1. By Lemma 13.3, X = X’ 4+ X for some
X" € b, and X+ €b/t. As s+’ € g/, and both g’ and g'* are ad g’-stable, it follows
from Lemma 13.3 that

s+, X]€b_m,41 = [s+8,XTeb . and [s+5,XT]eb?, ..
Let v be such that X € b* — b/} ;. By Lemma 13.3,

[, X € 6 /)40 = B mg e gy ot
As
Sewy T =t inyeny X €O jen) o
Therefore,
[s 48, XM €02 e ryho = O mijess) ot
Hence, if the above integral is non-vanishing, —(nj/ef,) + v = —m, + 1. That is,

v=(njlefo) +1—mo =1Ly +my,—my=Lo.

This implies X = X'+ X+ € b’ + bj- = b+ by, .
The proof of part (2) is omitted as it is very similar to that of (1). O

If S is a subset of g, let [S] be the characteristic function of S.

Corollary 13.6. If p(7) >0, s’ € p’ "0’ and X € b, then
/Bw(tr((Sh + ') Adk(X))) dk = /B[b’ + by, J(AdR(X)Y(tr((sn + 8') Ad k(X)) dk.
Proposition 13.7. Suppose that p(r) > 0. Let s, be as in (13.4). Then
Xoewe (en(X)) = (dim Gexe) [ Y(tr(sp Adk(X))) dk

Bu,

forall X e b’ + by, such that Xh e b(np(T)/fo)Jrl = b(nj/efD)Jrl.
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Proof. Given X as in the statement of the proposition, let Y € b, Z € b, be such that
X =Y+ Z Let x = e,(X), y = en(Y), and 2 = 2~ 'y. Note that, by Lemma 13.3(2),
B'J = B'By, and B'J; = B'B,,,. Define a character ¢ of B'J; by

el = 0o det|mr,  p(w) = (tr(sn(w — 1)) = pltr(s(w — 1)), we Jy.

If ¢, = m,, then dexy = . As shown in Lemma 13.4 (2),

p(x) = o(y)p(z) = O(det'y)p(tr(sn(z — 1)) = P (tr(snY)) = P (tr(sn X)).

As ¢, = m,, the function X — ¢(tr(s,X)) is Ad By, -invariant. The proposition now
follows.

For the remainder of the proof, assume that m, = £, + 1. The representation dey; can
be described as follows. Let N =1+ qnj/er,)+1 + g'=. Then J/N is isomorphic to the
direct product of finitely many Heisenberg groups H;. (This is discussed in [17, pp. 413,
414] in the description of o—the idea is the same for ¢.) Let ¢; be the restriction of ¢ to
the centre of H;. Attached to each H;, there is a natural finite symplectic vector space
V;. Let Sp(V;) be the corresponding symplectic group. The Weil representation w,, is a
uniquely defined irreducible representation of Sp(V;) x H;. One of its properties is that
Wy, | #, is the Heisenberg representation of H; with central character ¢;. The conjugation
action of B’ on .J induces a homomorphism B’ x J — [L; Sp(Vi) x H;. We can view the
restriction of w, = @), Wy, to the image of B’ x J/N as a representation of B’ x J, also
denoted by w,. Let inf(p) be the representation of B’ x J which is equal to ¢ on B’
and trivial on J. Then w, @ in f(p) factors through the natural map B’ x J — B'J. The
resulting representation of B’ J=nB By, is Oext-

Note that Gext|; = wy|; is the inflation of the tensor products of the Heisenberg rep-
resentations of the H; with central characters ;. This implies that Fext] j is the unique
irreducible component of Ind (<p| j, ), which is, by definition, ¢.

Case 1. Suppose that X € b} + by,. Then x € B{By,. Because w¢|B/ is a multiple
of the trivial representation, it follows that Fexi| B] is a multiple of ¢. As remarked
above, Uext\J = a It follows that Gextl B| By, is the unique irreducible component of
Ind 15 <p—IndB, Beo . As B{B,,, is normal in B! 1Be,,

Xows(®) _ Jo(z) if z € BB,
dlm é-ext 0 lf x ¢ BiBmo

If Z ¢ by, , then X ¢ b1 + b, s0 x ¢ BiB,,, (Lemma 13.3(4)) and hence xs_, () = 0.
Also, by Lemma 13.5 (2 fB Ytr(sp Adk(X)))dk =0. If Z € b, and k € By,, then,
by Lemma 13.4 (2),

P(tr(sn(Ad k(X)) = P(tr(sp X)) = ¥(tr(snY)) = 0(det'y)d(tr(sn(z — 1)) = ¢(@).

Hence the right-hand side of the above-displayed formula is equal to

b(tr(sp Adk(X)))dk for all X € b, + by, .
By,

That is, the proposition holds when X € b} + by,.
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Case 2. Suppose that X € (b’ +b,,) — (b5 + by, ). Then Y € b’ — b} and = ¢ B| By, .
Let U be the subgroup of B’ generated by y and Bj. The image of U in the direct
products of the symplectic groups Sp(V;) (see the comments preceding the discussion of
Case 1) is contained in the direct product of the cyclic group generated by the image of
the element y. Remarks in [12, p. 295] imply that

. UB _
Olext‘UBg{7 = IndUKZO (@)7

where K is a subgroup of By, containing B,,  having the property that the image of B K
in BBy, /ker(¢|p;p,, ) is a maximal abelian subgroup fixed under the action induced
by conjugation by y. Here, ¢ is any character of U By, that coincides with ¢ on UB,,, .
We shall take ¢ given by

Plu =0odet’ and @1+ W)= ¢(tr(sp(W — 1W?))), WeK 1.

It is a simple matter to check that ¢ is a well-defined representation of UK. (The argu-
ment is the same as that in [33, p. 441].)

Let F(z) = {w € UBy, | w™'zw € UK}. Then it follows from the Frobenius formula
for characters of induced representations that

dim dext

Xdcxt(x) :/ @(wilxw) dw.
F(x)

Conjugation by U fixes @, and U normalizes By, so F(x) may be replaced by
Fi(z) = F(x) N By,. Since xe.,, is supported on the set of conjugacy classes in UBy,
that intersect UB,,,, after replacing x by w™lzw, w € Fi(z), if necessary, we assume
that © € UB,,,. As will be shown in Lemma 13.9 (1),

P(w™zw) = gla)y(tr(sn(Adw™ ! (X) = X)), w € Fi(x).

It follows that

Moot _ payul- (o) [ wlerton Adw (X)) du

dim dext Fi(z)

Recall that ¢lyp,, = ¢|us,.,  As 2 € UBy, and U € B’, we have X € b’ + b,,,. By
Lemma 13.4 (2) and the definition of ¢, @(x) = p(z) = ¥(tr(spX)). Hence

Kol [ ey A () do
Fi(x)

dim o.'ext
Together with Lemma 13.9 (2), this completes the proof. O

The proof of the following lemma is omitted as it is very similar to that of Lemma 3.17
of [33].
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Lemma 13.8. Let X, Z, x and z be as in Lemma 13.4. Then the following hold.

$ ('
(1) Adz=!(T) € Al (ad X)(T) + by, T € by, .
i=0 ’
h—1 (_1)1 - )
2) X, 7)€ ——(Adz L 1D)YT) + by, T € by,.

D
(4)Z€Zi+1(Adx —1)i(z=1)+ by, .

=0

Lemma 13.9. Suppose that p(7) > 0, X € (b’ + by,) — (b} + by,) and X" € b(j/ef,)41-
Let the notation be as in the proof of Proposition 13.7. Assume that x = ¢, (X) € UK.
Then the following hold.

(1) p(w™zw) = p(x)e(tr(sn(Adw™ (X) = X)), w € Fi(2).

(2) Ytr(sp, Adw (X)) dX = Y(tr(sp, Adw (X)) dw.
By, Fi(x)

Proof. As B C U C B’ and K C By,, it follows that (UK)N By, = B) K. Since y
normalizes By K, x € yBBy,, v normalizes By K. This implies that

Adz~'(b), + K—1)Cb) +K—1 (13.5)
Combining this with Lemma 13.8 (2) results in
[X,b;, + K —1]Cby +K—1. (13.6)

Let w € Fi(z). As 2 € UK, 7 'w™'zw € (UK) N By, = By K. This implies, setting
W =w—1, that W — Adz~"(W) € b, + K — 1. Hence, by (13.5) and Lemma 13.8 (2),

(X, W]eb, +K—1, WeF) -1

Using (13.6) and the fact that, as B} K is abelian modulo ker(¢|p;p,, ), ¥ (tr(sa(-))) is
trivial on the commutator of [’20 + K — 1, it is possible to show that (for details, see the
proof of (8.12) in [34, p. 91]),

Y(tr(sp([(ad X)Y(T), W) =1, i>1, Teb, +K—-1, WeF(x)—1 (13.7)

From z =y~ 'z € (UK)N By, = B; K, it follows that z —1 € bj + K — 1. By (13.5)
and Lemma 13.8 (4),
Zeb, +K—1. (13.8)
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Let w=1+W € Fi(x). As y € G’, y commutes with sy, tr(s,(W — Adz=1(W))) =
tr(sp(Adz(W) — W)). Furthermore, Adz(W) — W € [z — 1,W] 4 b(pj/ef,)+1- Using
Lemma 13.8 (3) and [b,,,,, W] € b(y/ef,)+1, We can show that

D01 7)),

h—2
Y(tr(sp (W — Adz= LY (W)))) = 11) ¢<m~(sh [ D
By (13.8), we may apply (13.7) with T = (—1)*Z/(i + 1)! and i > 1. This results in
Y(tr(sp (W — Adz= Y (W) = (tr(sn[Z, W])) = ¥ (tr(sn[ X, W])). (13.9)
By Lemma 13.8 (1),

P(tr(sp[Adz™ (W), W])) = ¢ (tr(sp[Ad 2™ (W) — W, W]))
I o[22,

By (13.6), T = (ad X)*(W)/i! € b, + K — 1. Applying (13.7) with 7 — 1 instead of 4, we
see that the terms corresponding to 2 < ¢ < h — 1 in the above product are equal to one.
Thus

p(tr(sp[Ad 2™ (W), W) = (tx (s [W, [X, W]])). (13.10)
Proof of (1). A straightforward argument shows that
Pz wtaw) = Y(tr(sp (W — Adz™H(W) — L[Adz~ (W), W])))
= (tr(sp([X, W] — W, [X,W]]))) by (13.9) and (13.10).

It is easy to see that 1(tr(s,(Adw™1(X)))) = ¥ (tr(sp(X + [X, W] — L [W, [X, W]]))), so
part (1) follows. O

Proof of (2). Introducing an extra integration over K, we have

Y(tr(sp Adk(X)))dk = / (/ P(tr(sp Adwk(X))) dw) dk.

Be, B, \JK

Fix k € By,. Set X = Adk(X). To prove (2), it suffices to prove that if the inner integral
above, which we will denote by I(X), is non-zero, then k € Fy(z).

Note that I(X) can be rewritten as

I(X) = ¢ (tr(sn X)) . W (te(sn ([X, W]+ 5 [W, W, X])))) dW.

As X € X + by, it follows from (13.6) and the fact that v (tr(ss-)) is trivial on the
commutator of by + K — 1 that

(tr(sn W, [W, XT))) = (tr(snlW: W, X])) =1 VW € K — 1.
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Applying Lemma 13.4, write X =Y + Z, & = en(X), 9 =en(Y), 2= g 2. Then

I(X) = p(tx(s1 X)) / Wlex(sn[Z, W) dW.

K—1
Suppose that I(X) # 0. Then w(tr(Sh[Z~7 W])) =1for all W € K — 1. However, we can
easily check that o((1+2) 'w™ (1 + Z)w) = ¢(tr(sp[Z,W])). As B{K is a maximal
abelian subgroup modulo the kernel of ¢, it follows that 1+ Z € (B{K) N B,, = B; K.
Equivalently, Z € b} + K — 1. By (13.6) and Lemma 13.8 (3), it follows that zZ € B; K.
From

g=az"" =y(y 'kyk™")(k2kT1)Z7! € yBy,
and y,7 € G', we get g € yB; C U. Thus, if I(X) #0, then kzk™' = & = jz € UK.
That is, k € F1(x). O

Proof of Theorem 13.2. First suppose that p(7) = 0. In this case, 7 = o, where o is
as in § 10, and Theorem 13.2 is equivalent to Lemma 10.9. (We remark that if 7 is trivial,
then s, =0.)

Now suppose that p(7) > 0. Assume that the theorem holds for those totally pure
refined minimal K-types (B*,7*) of groups G* ~ GL,/g-.r)(E*), where E*/F is an
extension of degree dividing n, having the property that p(7*)/e(E*/F) < p(7). Let X1
(respectively, xs..,) be the function on B given by x, (respectively, xs,.,) on B'J, and
zero elsewhere. We have

X‘r(eh (X))
dim 7

— (dim 7)Y (dim Goxg) /B Cor Cren (X)k=1) o, (hen(X)k—1) d
= (dimT')fl(dimé’ext)*l/BXT’(eh(Adk(X)))Xdext(eh(Adk(X)))dk’
= (dim 7") [’ + by, ](Ad k(X))

[ ietenaar)( [ vt adwh)0)ay ) ak
B

Bgo

= @im)™ [ ] ey CO)[E + b
© x (Ad yk(X))e(tr(sp Adyk(X))) dy dk

= (dim )" /B X (en (Ad K(X))) 6 + by, | (Ad K(X))tb(tr(sp Ad k(X)) dk.
(13.11)

The first equality above follows from (13.3), and the second follows from kej (X)k—! =
en(Adk(X)). By parts (2) and (4) of Lemma 13.3,

en(Adk(X)) e BJ=BB,, < Adk(X)eb' +by,.

Combining this with Proposition 13.7 results in the third equality. For the fourth equality,
note that the function [b’ + by ] is Ad By, -invariant, and, as 7’ is a representation of B’ By,
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the function X,/ is invariant under conjugation by By, . Finally, the order of integration
is reversed and the By -integral disappears.
If 7/ is the trivial representation of B’J, then (13.11) can be rewritten as

X‘r(eh(X))

xR /B 167+ by, ) (AdE(X))i(tx(s, Ad k(X)) dk

:/ P(tr(sp Adk(X)))dk by Corollary 13.6 (with s’ = 0).
B

When 7/ is trivial, we have G’ = G”" and L = E. We know that s; generates FE over F,
so its centralizer in G’ is G’. Hence Theorem 13.2 holds with s, = s.

Next, assume that 7/ is non-trivial. Suppose that e,(Adk(X)) € B'J. Then, by
Lemma 13.4 (applied to Adk(X)), Adk(X) = Y + Z with Y € b/, Z € by, and
en(AdE(X)) € ep(Y')J. As 7/ is trivial on J, we have y,(en(AdE(X))) = x- (en(Y)).
By Lemma 13.4 (1) and (13.2),

h / / /
Y€ by, Cbupry/ra © Blnpr)/esan)+1-
By (13.2) and our inductive assumption, there exists s,/ ; € L such that vi(s; ) =
—e(L/E)p(t") = —(eo/e)p(r"), the centralizer of s,/ 5 in G’ is equal to G”, and

XT'(eh(Adk(‘X))) _ XT'(eh(Y)) _ 1/}(‘51"(87/ hAd k/(Y))) dkl (1312)

dim T! dim T/ B’

Note that we have taken 1 otrg,p for our non-trivial character ¢g of E, so that
Ypotr =t¢otr. As AdB'(bjh) = bt and s/, € E C ¢/, we have tr(s, , AdK/ (Z)) = 0.
This allows us to replace Y by Y + Z = Ad k(X)) in the right-hand side of (13.12). Com-
bining (13.12) with (13.11) results in

XT(eh(X))
dim 7

= | I+ bel(adk(x))

y ( [ (s, AR R(X)) dk;’)w(tr(sh Ad k(X)) dk
- /B / 6+ b JAKR(X))(tr(s.r s AdRR(X))) (s Ad (X)) I dk
= 18 AT tr(s+ 571) A (X))

:/Bw(tr(sh+sT,,h)Adk(X))dk.

For the second equality above note that [b’ 4 by, ] is Ad B’-invariant, and s/, € E so
belongs to centre of g’ and

tr(s, p AdK' k(X)) = tr(Ad k'~ (sp 5) Ad k(X)) = tr(s, 5 Ad k(X)).

The same statement holds if s,/ is replaced by sj,. For the third equality, reverse the
order of integration and then absorb the By, -integration. The final equality follows after
an application of Corollary 13.6 with s' = sp + s7/ 5.
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Set s p = Sp + s/, To complete the proof, it remains to show that s, generates
L/F. Since s,/ p, € ijHb’, by Lemma 5.5, the centralizer of s, in G is contained in
G'. As sy, is in the centre of G', and s,/ ), generates L over E, the centralizer of s, , in
G’ is equal to G”. Hence the centralizer of s, in G is G”. Since s, j, € L, it follows that
this element generates L over F. O

The following result will be needed for the proof of Theorem 14.1.
Lemma 13.10. Let (B, 7) be as in Theorem 13.2.
(1) If p(1) = 0, then dimT = ug(q)"™ uy (q?) ™.
(2) It p(r) > 0, then dimr = (dim™"Jug, (q)"Fouy, 5 (q) ™"/ eFoq(n/20)(n=nie+D),

Proof. For (1), recall that 7 = o, where o is as in § 10. Thus dim7 = (dim o)™ , where
0o is the inflation to GLg(0r) of an irreducible cuspidal representation of GL4(F,). As
shown in Appendix 3 of [17], dim oo = ug(q)u1(¢?) 1.

Suppose that p(7) > 0. By (13.3),

dim7 = [B : B'J)(dim 7')(dim Geyt) = (dim7')[B : B'By,|(dim &).

Arguing as in the proof of Proposition 8.4, except with ¢, By, J in place of o, Q, J,
etc., we see that

(B : Béo][Bi . Béo]—l dimo = q(fo/Q)(n—n/(ef))((nj/efo)—1)_

Hence
[B: B'By,|dimé = [B : By|[B': Bj] 1q\fe/Pn=n/(ef))((ni/efo)=1)
- ufo(q)n/foufo/f(qf)—n/efoq(n/2e)((n—n’)j—e+1)_
Here we have used (3.1) to compute various group indices. ]

14. Reduction to germs of unipotent characters

Throughout this section, in order to be able to apply Theorems 11.5 and 12.3, we assume
that p > 2n. Proofs of the results stated in this section appear in §§ 15-17.

One of our main results (Theorem 14.1) concerns the germs of characters of those
representations m € £(G) that contain totally pure refined minimal K-types. As discussed
in §13 (see Theorem 13.1), Howe and Moy [17] showed that there exist families of K-
types, called refined minimal K-types, having the property that every m € £(G) contains
some refined minimal K-type. Furthermore, the Hecke algebra attached to a refined
minimal K-type is naturally isomorphic to the Iwahori Hecke algebra of a direct product
of general linear groups over finite extensions of F'. Recall that we have defined a pure
refined minimal K-type (B, 7) to be totally pure if the Hecke algebra isomorphism of
Howe and Moy is of the form

LiH = H(GBY) = H(r) = H(G)B.7),

https://doi.org/10.1017/51474748003000124 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748003000124

Germs of characters of admissible representations 469

where G” ~ GL,(L) for some positive divisor a of n and some extension L/F such that
alL : F] = n, and B” = BN G is an Iwahori subgroup of G”’. The totally pure refined
minimal K-types are the ones that are contained in the essentially square integrable rep-
resentations (although they are also contained in many other representations). If (B, 7)
is a totally pure refined minimal K-type, let p(7) be the rational number defined in §13.
Recall that the depth p(m) of any 7 € £(G) that contains (B, T) is equal to p(7).

Before stating Theorem 14.1, we remind the reader of some of our notation. Given
r € R, let g+ be as in §11. If s¢ is a semisimple element in g, 25 (sg) denotes the set of
G-orbits in g whose closures contain sg. If O is a G-orbit in g, 1o is the locally integrable
function on g that represents the Fourier transform of the distribution po given by
integration over the orbit O relative to a G-invariant measure on O. We say that a locally
integrable G-invariant function D defined on an open subset S of g is sp-asymptotic on
an open subset Sy of S if D|syng,., belongs to the span of {fio|s,ng,., | O € 2c(s0)}.
The resulting linear combination of the functions fip, O € 2¢(sp), is referred to as an
sp-asymptotic expansion of D (on Sp). Recall (Corollary 11.11) that if so belongs to
an elliptic Cartan subalgebra of g, then the functions fip, O € g (sp), remain linearly
independent upon restriction to any open neighbourhood of zero intersected with gre. If
m € E(G), and O is the character of 7, the function X — ©,(1 4+ X), which we refer to
as the germ of O, is locally integrable on go+. If s9 € g is semisimple and if the germ
of O is sg-asymptotic on some open neighbourhood of zero, then, for each O € 25 (so),
we denote the coefficient of [ip in the sg-asymptotic expansion by co ().

If B is a parahoric subgroup of G, let b;, ¢ € Z, be the filtration of g given by powers
of the nilradical of the associated parahoric op-subalgebra of g (see §3). Given S C G,
vi(S) denotes the measure of S with respect to some fixed Haar measure on G.

Theorem 14.1. Let (B, 7) be a totally pure refined minimal K-type. Let L be as above.
Set f, = f(L/F). Suppose that n < h < p. Let ¢y, be the truncated exponential of (13.1).
Then the following hold.

(1) There exists s, € L such that the centralizer of s, in G equals G and

Xr(en(X0)) = dimr [ w(en(s AdK(X))) b
B
VX € b such that X" € b(p(r)/1.)41-

(2) There exist coefficients co(m), one for each O € 2¢(s; ), such that

9p(1) n Oreg if P(T) > 0,
go+ Ngreg  Otherwise.

O.1+X)= > colmio(X), Xe{

0€Nc(sr,n)

(3) Assume that the measures on the orbits in 2¢ (s, ) and 2¢~(0) are compatible in
the sense described in § 12. Let " be the irreducible unipotent representation of G
that corresponds to w via the Hecke algebra isomorphism . Given 0" € ¢ (0),
let O =G - (sr, +0O"). Then

co (71') = Ug(B)il"UGn(B//)(dim T)Co//(’/T//).
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Remarks 14.2.

(1) If p(r) = 0, then s, is independent of the choice of h such that n < h < p
(see the proof of Theorem 14.1). Suppose that p(r) > 0 and n < h, £ < p.
Given Oy, € 2¢(srn), if O =G (srp+O0"), then O, N g’ = s, + O”. The
map Oy, — Oy =G - (sr¢ + O”) is a bijection from 2¢(s, 1) to P2c(sre). By (3),
co, (1) = co,(m). It can be shown by a straightforward inductive argument using
descent properties of orbital integrals (see §5) that fip, and fip, coincide on
9p(r) N Breg- Hence the expression in Theorem 14.1(2) for the germ of @ is inde-
pendent of the choice of h. (We allow h to vary because it is convenient for the
induction step in the proof of Theorem 14.1 (1) (Theorem 13.2).)

(2) Suppose that 7 is essentially square integrable and contains (B, 7). Let d(m) be the
formal degree of 7, and let St be the Steinberg representation of G. It is easy to
show, using the fact that +(7) is a twist of Stg~, together with the relation between
d(m) and d(¢(m)) arising via ¢ (see [17, §5] and the discussion in [7, §2]) that

= folq" — 1)(qf0 - 1)a(qaf° - 1)71Uf0 (q)fn/a dim 7.

Here, we have divided by d(Stg) on the left-hand side in order to remove depen-
dence on measures. In Theorem 2.4.7 of [7], d(7)/d(Stq) is expressed in terms of
data involved in the supercuspidal support of 7.

Suppose that 7 € £(G) is supercuspidal. Then 7 contains a totally pure refined minimal
K-type such that [L : F] = n and G” = L*. In this case, an analogue of Theorem 14.1
was proved in [33]. There exists a compact open mod centre subgroup H of L* B and
a representation x of H such that 7 = Indg k. Let 19 = Indf;B k. Then m = Indng To
and 7 = 79 | B is a refined minimal K-type contained in 7. Proposition 3.10 of [33] is
essentially Theorem 14.1 (1) for h = n. This implies that the s, of [33] is the s, ,, of The-
orem 13.2. Taking h = n, parts (2) and (3) of Theorem 14.1 are analogues of Theorem 4.3
of [33], with one important difference. In [33], we do not specify the neighbourhood on
which the s -asymptotic expansion holds. Recently, Adler and DeBacker [2] have shown,
by refinements of the methods of [33], that the s;-asymptotic expansion holds on g,(x+.
In [33], the Kirillov-type character formula of Proposition 3.10 was proved via methods
similar to those used here to prove Theorem 13.2. But the analogues of (2) and (3) were
proved differently in [33], via a comparison of Harish-Chandra’s integral formulae for
O o exp and the Fourier transform fip s, )-

Given 7 € £(G), the wavefront set WF(w) of 7 is

WF(r) = U 0.
{0€926(0)|co(m)#0}

As shown in Proposition I1.2 of [25], there exists a unique O € 2¢(0) such that
WFE(r)=0. If a € P°(n/a), let a®/* € P(n) be as defined in §2. Let a™/* be the
unique element of P%(n) that is a rearrangement of /¢,
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Corollary 14.3. Let m € £(G) and 7" € £(G") be as in Theorem 14.1. If 8 € P°(a) is
such that WF (") = Og, then WF(r) = @B"/“'

Recall that 7 € £(G) is said to be essentially square integrable if some twist of 7
by a linear character of G belongs to the discrete series. Next, we give the coefficients
in the s, p-asymptotic expansion of the germ of O, for essentially square integrable 7.
Let a + O/ be the bijection between P%(a) and 2~ (0) discussed in §2. As shown by
Howe [13], given o € P°(a), there exists a parabolic subgroup P, of G’ such that the
germ of O d8" 1 coincides with A, fior for some positive constant A\, depending on the
normalization ‘of measure on O/. For the next result, we will assume that the measure
on O has been normalized so that A\, = 1. If r = r(«) is the length of «, let |Stab | be
the cardinality of the stabilizer of @ in the symmetric group on r letters.

Theorem 14.4. Suppose that m € £(G) is essentially square integrable. Then the fol-
lowing hold.

(1) 7 contains a totally pure refined minimal K-type 7.

(2) Let sy, G” and 7" be as in Theorem 14.1. Assume that the measures on the
orbits in 2¢(sr ) and 26+ (0) are compatible in the sense described in §12. Let
a€Pa). IfO=G: (s +OL), then

co (7T) = Ug(B)il’UGu (B//)(dlm T)COZ (StG”)
(1) )r(a

= UG(B)il’UG”(B”)(dimT) |Staba|

It follows from Theorem 14.4 that if 7 is essentially square integrable, in order to com-
pute the coefficients in the 0-asymptotic expansion of the germ of @, it suffices to com-
pute the coefficients in the 0-asymptotic expansions of the functions fip, O € 2¢(s,.n).
It is not known how to do this in general. In a separate paper [36], the coefficients in
the O-asymptotic expansions of the germs of characters of certain discrete series rep-
resentations are computed, via a slightly different approach, using some results of this
paper.

If 7 € £(G) contains a refined minimal K-type 7 that is not totally pure, then Howe
and Moy do not give an explicit construction of 7, so we do not have an analogue of
Theorem 14.1 (1) (Theorem 13.2). However, we can relate the germ of ©, to the germ of
the character of a unipotent representation of the centralizer of some semisimple element.

Theorem 14.5. Let m € E(G). Then there exists sx € gss N @—,(x) and an irreducible
unipotent representation m, of H = Cg(s,) such that the following hold.

(1) The germ of O is sy-asymptotic on g, (respectively, go+) if p(m) > 0 (respec-
tively, p(m) = 0).

(2) Assume that the measures on the orbits in f2¢(s,) and 21 (0) are compatible in
the sense described in § 12. Then there exists an s,-asymptotic expansion of the
germ of ©, such that the coefficients are given by

CG-(s5+0)(T) = Acoy (1),  On € 25(0),

for some positive constant .
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The constant A has the property that vg(K) vy (Kg)\ is independent of measures
for any open compact sugroups K and Ky of G and H, respectively. In order to relate
sz to the character of a refined minimal K-type contained in 7 (as was done for those
7 containing a totally pure refined minimal K-type), it would be necessary to derive
a precise relation between the characters of the refined minimal K-types contained in
representations which are related via parabolic induction.

15. Proof of Theorem 14.1

Assume that p > 2n. Let (B,7) be a totally pure refined minimal K-type. Let
t:H" — H(7) be the associated Hecke algebra isomorphism (see Theorem 13.1). Given
m € £(G), which contains (B, 7), let :*(7w) € £(G") denote the representation correspond-
ing to 7 via ¢. Let L be the extension of F such that G ~ GL,(L), and let f, = f(L/F).

Proof of Theorem 14.1. Note that part (1) is Theorem 13.2. Hence we need only
prove parts (2) and (3). Suppose that 7 € £(G) contains (B, 7). Let h and s, be as in
part (1). Let ¢1(X) =1+ X, X € go-+.

We start with the case p(7) = 0. Let E = L, d = f, and n' = n/d. In this case,
B = B and 7 is the representation o of B defined in §10. Define s, H, H', G, n,
ete, as in §10. Then G” = G', H” = H' and ¢ = n, so *(7) = n*(w) = 7’. Note that
e=e(E/F)=1, f=f(E/F)=dand j =ep(r) =ep(m) = 0.

By Lemma 10.9, the element s, j, of part (1) is equal to s. By Theorem 12.3 (1), O 0¢;
is s-asymptotic on go+ and, given O’ € 24/(0),

c.(s+0 (1) = va(Bn)) " var (Bl ) un(@)un (¢7) " cor (v (7).
After expressing vg(B(y)) and ver (B(,,,)) in terms of vg(B) and vg(B') (B’ = le)",)
with the help of (3.1), we obtain

ca.(s10n) (1) = va(B) v (B ua(g)™ ui (¢*) ™ cor (7 ()
= ve(B) g (B))(dim 7)cor (1 (1))

for O’ € 2¢/(0). Above, we have applied Lemma 13.10 to get the second equality. Hence
Theorem 14.1 holds in the case p(7) = 0.

For the rest of the proof, we assume that p(7) > 0. As discussed in § 13 (following the
statement of Theorem 13.2), there exists a pure unrefined minimal K-type (Qy;, Xs) such
that 7 contains (By,;/es,,Xs) and p(7) = j/e. Here, s is as in §5 and Q,; is as defined
in §6. Recall that E = F(s) is an extension of F' of degree d = n/n’, e = ¢(E/F) and
scpy —pg T The extension E is embedded in g as in §3, G' = Cu(s) ~ GL (E),
and g’ denotes the Lie algebra of g.

Let  be the Hecke algebra isomorphism attached to the K-type (Qn/j,xs) (see
Theorem 7.1). Set 7' = n*(m). Let € and s; be as in §13 (see (13.4)). Recall that
O|1+ph=xs|1+p%.

For a description of the construction of 7, the reader may refer to the discussion
following the statement of Theorem 13.2. The field E is a subfield of L.
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First we consider the case E = L. In this case, G’ = G, B" =B =Q' =QnG
(see §6) and +*(7) is a twist of 7' by some linear character of G'. Replacing 6 by another
quasi-character of E* that agrees with x on 1+ p7,, if necessary, we may assume that

(m) = (07 odet)n' = (671 o det’)n* (n).

Let ¢} = el|%+. Note that if X € g’ =1 + whgh, then O(¢) (X)) = 9(tr'(s,X)). Thus,
because 7’ contains the standard unrefined minimal K-type (Q,;,X5) = (@1, X5,),
v*(m) must contain the trivial representation of Q. Hence p(v*(m)) < j and, by Theo-
rem 11.5, ©,+ () o ¢} is 0-asymptotic on g;(L*(ﬂ))+ D g;. It follows from the above relation
between ¢*(7) and 7’ that ©,« () (¢} (X)) = ¥ (tr' (=5, X)) O (1 (X)) for all X € g} N gy,
Also, for each O € £2¢/(0),

fi(sn+0n) (X) = (tr' (51 X))o (X), X € @M Greg-
Thus @ o ¢} is sp-asymptotic on g}, with
cspr0 (1) = cor(L(m)), O € 0c(0).

Applying Theorem 12.3 (2) with s’ = s — s, we see that O, o ¢; is sp-asymptotic on
gj/e- After expressing ve(B(n)) and var (B(yy) in terms of vg(B) and vgr(B') (recall
that B is conjugate to B(y)n/s and B’ is conjugate to B(;).) with the help of (3.1), the
relation between cq. (s, +01) () and ¢, 1o/ (7') = cor(¢* (7)) given in Theorem 12.3 (2) can
be rewritten in the form

ca(snr0n) () = v6(B) v (B Yug ()" ui (qf) ™ g D=t R e, (1 ()
= vg(B) g (B')(dim 7)cor (v* (7)), O € 2¢:(0).

Here we have used Lemma 13.10 for the second equality. This completes the proof in the
case F = L.

Now suppose that F C L. Then G” is a proper subgroup of G’. Assume that
the theorem holds for those totally pure refined minimal K-types (B*,7*) of groups
G* ~ GL, g+.r|(E*), where E*/F' is an extension of degree dividing n, having the prop-
erty that p(7%)/e(E*/F) < p(1).

Let ¢ be the irreducible representation of the compact open subgroup J defined in 89,
and let 7 : H' — H be the associated Hecke algebra isomorphism. As discussed in §13,
there exists a totally pure unrefined minimal K-type (B’,7’') of G’ such that (13.2)
p(t')/e < p(r) and (13.3) 7 = Indg,j(r’ ® Gext ), Where Gext 18 a uniquely defined exten-
sion of ¢ to B'J. Let H(7') = H(G'JB’,7'). As follows from remarks in the proof of The-
orem 5.4 of [17], the Hecke algebra isomorphism attached to (B’,7’) is an isomorphism
' :H" — H(7'). Let ¢y be the composition of +" and the map which to each f € H(7')
attaches the function (=1 o det’) f. Then, setting 7, = (8 o det’)r’, ¢}, : H" — H(7)) is
an isomorphism of Hecke algebras. Also (see [17]), H(r}) is a subalgebra of H’ whose
image under the isomorphism 7 : H' — H is equal to H(7), and ¢ = 50 },. Hence, setting
7 =n*(m) and 7 = (0! o det’)7/,

() = (07 odet’ )t (7)) = F (07 o det’) ) = * (7). (15.1)
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As 7t contains (B',7') and p(7')/e < p(7), the theorem holds for 7, with s, € L
as in Theorem 13.2 (applied to (B’,7)). Note that g} =g, ), C @,,y+- Thus Oz o ¢
is s,/ p-asymptotic on g}. If 0" € 26+ (0) and O’ = G" - (77,5 + O"), then

Co/(ﬁ'lg) = Vg’ (B/)ilvgn (B”)(dim T/)Co//(bl* (7‘('/9)) (15.2)
In addition, arguing as in the case £ = L, we can see that, for X € g;- N g;eg,

O (¢1(X)) = ¥(t2'(51.X)) O, (€1 (X)),
fi(sn+01)(X) = ¥(tr'(sp.X))fior (X), O € Qcr(sr7,n)-
Hence O, o ¢} is (s, + s,/ )-asymptotic on g;-, with
csu+o0 (1) = cor (), O € ar(s0 ) (15.3)
Recall from Proposition 9.2 that 7’ = n*(n) ~ #. By Theorem 12.3(2), applied with
s' = sp — 8+ 50/, Oroey is (s + s,/ )-asymptotic on g; /. and, if 0" € Q¢ (s + 5:/,1),

cg.o(m) = UG(B(n))ilvG/(BZn'))Un(Q)un’ (qf)71qfn/((n7n/)jie+1)/2c(’)’ (7:(/)
1

= UG<B)_ UG/(B’)Ufo(q)"/foufo/f(qf)_”/f/foqf"/((”—n’)j_e“)/%@f(7'7’).
(15.4)

Note that the second equality follows from (3.1) and the fact that B is conjugate to
By,yn15, and B’ is conjugate to BEfo/f)"/fo/f'

As shown in the proof of Theorem 13.2, Theorem 14.1 (1) holds with s, 5 = sp, + S/ p-
It follows from (15.1)—(15.4) and Lemma 13.10 that

CG'(ST,h+O//)(7r)
= Uc;(B
= Ug(B

)" ver (B ug, (@) g, g (q7) T e g (T I m et 2 (dim Yo (1% ()
)_11)(;/(Bl)(dimT)C(gu(L*(ﬂ')), O” S QGH(O).
O

16. Proofs of Corollary 14.3 and Theorem 14.4

Proof of Corollary 14.3. Let m and " be as in Theorem 14.1. Let notation be as
in §14 and Lemma 11.9 (with so = s, 4).

Let o € P°(n). By Theorem 14.1 (2), the coefficient co_ (7) of fip, in the 0-asymptotic
expansion of @, oe1 on g+ is equal to the coefficient of fip, in the 0-asymptotic
expansion of

D (o100 (MG (51140,
YEPO(a)
There exists a unique 3 € P°(a) such that WF(n”) = Og. By Theorem 14.1 (3) and the
definition of WF (7""),

co,, (1) = vg(B) tvgn (B")(dim 7) Z co., (7")ea(Srn,7),
{~€PO(a)|v=8}
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where ¢ (Sr,n,7y) is the coefficient of fip, in the 0-asymptotic expansion of ROG (57 nt+0.)
By Lemma 11.9(1), co(srn,7) # 0 implies a > 547/%. Note that v > 3 implies
Anle > gn/e Hence

co,, (1) = vg(B) tvgr (B”)(dim 1) Z co, (") cal(srn:7)-

{yEPO(a)|azyn/azpm/}

Thus co, () # 0 implies « > [3"/“. To complete the proof, it suffices to show that
€O 4/ (m) # 0. By the above,
(m) = v(;(B)flva (B")(dim T)co, (W//)CB”/Q (87,1, ).

Coﬁn/a

As WF(a") = Op, co, (") # 0. By Lemma 11.9 (2), ¢4n/a (57,0, 3) > 0. ]

Proof of Theorem 14.4. Part (1) is Theorem 5.4 of [17]. For (2), by Theorem 5.4
of [17], " is essentially square integrable and unipotent, hence is a twist of the Stein-
berg representation Stgr of G”. Thus con (1) = corn (Ster) for all O” € 2¢+(0). The
character of Stgr is expressed in terms of characters of representations parabolically
induced from one-dimensional representations of Levi subgroups (see [5]). Using Howe’s

result concerning fior (see above), it is straightforward to show that (if the measure on
O/ is normalized as in §14) con (Stgr) = (—1)*"@r(a)!/|Staba| for « € P%(a). O

17. Proof of Theorem 14.5

Before proving the theorem, we need a result relating germs of characters and parabolic
induction, as well as a refinement of Proposition 4.3.

Let P be a parabolic subgroup of G, with Levi component M and unipotent radical V.
Let m and n be the Lie algebras of M and N, respectively. Normalize Haar measures on
K = B,y and n so that vg (K) = va(nNb,)) = 1. Given f € CF(g), let fp € C°(m)
be defined by

fp(X) = / /f(Ad KX +2))dkdZ, X em.
KJn
If s9 € my is such that Ch(sp) = Ca(so), then the map Oy — G - Oy is a bijection
from £2p1(s0) to ¢ (so). Y € mysy and Opnr = Ons(so+Y) = M/Chrr(so+Y), then left
Haar measures on M on Cy(sp+Y') determine an M-invariant measure on Oy, and we

will take the G-invariant measure on G - Oy ~ G/Ch(so +Y') determined by the above
Haar measure on Cs(sp +Y) and Haar measure on G.

Lemma 17.1. Let P be as above. Suppose that sy € mgs is such that Cpr(sg) = Ca(so).
Let Op € 204(s0). Then

1.0y (f) = va ()" oar (K N M)|det(ad so)a| " po, (fP), [ € CZ(a).

Proof. Note that Cps(sg) = Ca(so) guarantees that (ad sg)y is invertible. If Y € myy;,
then (ad sg)n and (adY'), are the semisimple and nilpotent parts of (ad(sg+Y"))n. Hence
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det(ad sp)n = det(ad(sg + Y))n. If Opr = Op(so +Y), arguing as in [11, §1.2], but
without discriminants, results in

pe-0y () = va(K) " oy (K 0 M)|det(ad(so +Y))u| ™ 1oy, (fr).  f € CZ(9).
(]

Lemma 17.2. Let 7 € £(G). Suppose that m = Ind% 7y, for some my; € E(M) and
the germ of O, is sg-asymptotic on M, Nmy+ for some sp € my such that
Cur(so) = Cg(so). Let K = By, and let n be the Lie algebra of the unipotent radi-
cal of a parabolic subgroup with Levi component M. Let co,, (7)), Onm € 20 (s0), be
the coeflicients in some sg-asymptotic expansion of the germ of ©,,. Then there exists
an sg-asymptotic expansion of the germ of O on g,(x) N g+ for which the coefficients
cg.0,, () of the Fourier transforms fig.0,, are given by

CGOM(TF) = vg(K)*lvM(KﬂM)|det(ad30)n|71coM(7rM), Oy € _QM(SO).

Proof. If f € C®(go+ ), define f € C®(Go+) by f(z) = f(x — 1), & € Gy+. Suppose that
Jf € C&(g) is supported on g, Ngo+. Then, if P is a parabolic subgroup with Levi
component M and fp € C°(m) is as defined in §11, fp is supported on m,) Nmg+
(see Remark 4.2.10 of [1]). By Theorem 5.2 of [30], p(mps) = p(). Hence, if f is supported
on gy (r) N go+,

u((fP)) = Z con (Tar)fioy (fr)

Onr€2n(s0)

= vg(K)op (K N M)|det(ad so)al ™' Y coy ()0 (f)-
On€R¢(s0)

To obtain the second equality, we have used Lemma 17.1 and (fp)"= ( f)p (see Lemma 1.7
of [11)). It follows from [38, §5] that O, (f) = Oy, ((fp)") for f € C™(go+).
Hence the function

va(K)oar (K N M)|det(ad so)a| ™" Y cop (Tar)fic.on
OmENM(s0)

and the germ of O, agree on g,(x) N Go+ N Greg- O

If M is the Levi component of a parabolic subgroup P of G, there exists a

partition (nl,.. n,) of n such that M ~[[_, GL,,(F). Set G = GL,,(F). Let

™ = Qi 17TM, where W()GE(G ), 1 <@ <. Suppose that 7r()

minimal K-type. If p(7 (Z)) > 0, then, by Lemma 6.1, 7r](\4) contains a pure minimal K-

contains a pure

type (BfL )J ,Xs; ), where s; is a semisimple element in g that generates an extension
E;of F, s € pp’ —pg! ™! mf = ny/[E; : Fl, fi = J(Ei/F), and B = B{ ;.
> 0, where B( ) yil 5 is the parahoric subgroup of G() corresponding to the partition

( fi )"’/ Fi of n,, as deﬁned in §3. The parahoric filtration that appears in the statement
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of Lemma 6.1 is actually a conjugate of BT(,?, but we are replacing it by By(,i) as it is
convenient for the proof of the next result.
If p(wg\?) =0, then (see §10) 71'5\2) contains
( B® | U(i))
()"’ ’
= n;/d;, and ¢ is the inflation to BYW . of

the n/-fold tensor product of an irreducible cuspidal representation of GLg, (F,). In this

where d; is a positive divisor of n;, n}

case, define s; relative to o(¥) as s was defined relative to the representation o of §10.
Let E; = F(s;).

Proposition 17.3. Let m € £(G). Then there exists a parabolic subgroup P = M N of
G and wy; € E(M) such that, with notation as above, the following hold.

(1) 7 =IndG my,.

(2) Each 71'5\?, 1 <1 < r, contains a pure minimal K-type.

(3) If s = (s1,...,8r), where s; € E; is as above, then Cp(s) = Ca(s).

Proof. After repeated applications of Proposition 4.3 and transitivity of induction, we
may assume that there exists P = MN and myy € E(M) such that (1) and (2) are

satisfied. As there is nothing to show otherwise, we assume that P # G.

First, consider the case where p(wg\?) > 0 for 1 < i < r. Suppose that Cys(s) # Ca(s).

After renumbering the n; if necessary, we can assume that

Cor y(51,82) 2 Caa(s1) X Cgea) (s2) =~ GLn/l (Ep) x GLn’Z (E2).

oty (F
It follows that Ey ~ Es, j; = ja, and CGL,,,1+”2(F)(817 52) = GLy; 1y (E1). After replac-
ing so by a conjugate, we may (and will) assume that E; = Es.

Let By, = B(f,)(n1+n2)/1 gm» M 2 0, be the parahoric filtration associated to the par-
tition (fl)(n1+nz)/f1. Set s* = (s1,52) in g* = gl 4n, (F). Then (an§+n§)j17xs*) is a
pure minimal K-type. Let P* = M*N* be an upper triangular parabolic subgroup of
G* = GLp, 40, (F) with standard Levi component M* = GL,, (F) X GL,,(F). If m is a
positive integer and N*~ is the unipotent radical of the parabolic subgroup opposite to
P*, then

B:, = (B, N N*")(B:, N M*)(B:, NN*).
Furthermore, BY , . ,\. N M* = BY » B® | Observe that the character Xs* 18
(n1+n2)31 niJi nyJ1
equal to xs, ® Xxs, extended trivially across Béané)ﬁ N N*~ and B?n1+n;)j1 N N*.
7(11,131 X Bz)jl,xsl ® Xs,) 18 an unrefined minimal K-type contained in
7r§\}[) ®7r1(\3), it follows from Theorem 4.5 of [30] that (B} ;)jl’XS*) is contained in

(nf+n
Th = Ind%. (7‘('](3[) ® 71'](3[)). Note that G*P is a parabolic subgroup of G with Levi com-

Hence, since (B

ponent G* x [[/_y G®. By transitivity of induction, 7 ~ Ind&. p(7}; ® @/_s 74,), s0
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we may replace M by G* x [[[_s G and my by 7h; @ @iy 775\?. Continuing in this
manner, after a finite number of steps, part (3) is satisfied.

Next, we turn to the case where p(wg\?) = 0for 1 < i < 7. Recall that (¥ is the inflation

of the n}-fold tensor product of a(()i), where O'(()i) is an irreducible cuspidal representation

of GLy, (Fy), 1 <i<r.

Suppose that r > 2, dy = do, and oél) ~ 0(()2). As shown in § 10, s; can be any element
of o, whose image 5; in op,/pp, ~ F e, generates F,a, over F,. So we can (and will)
take s; = so. Set d = dy. Let G*, P* and M™ be as above. It is easy to see from the

definitions of the parahorics that

B rNM*=DB X B

(d)n/lJrnQ ()™ (d)né 5

(Bigyws X Bigyes )/ (Bgyot 3 X By 1) = Bty / Bgpniong -

s

Let o* be the lift of o ®o® to B(d)n,flJrn,rz. As o(()l) 2052), (B(d)n,'1+n'2,0*) is a

pure minimal K-type. By Theorem 5.2(2) of [30], (B(d)n/lJrn/Q,a*) is contained in
T = Indg:(wg\? ®7T§5[)). Arguing as in the positive depth case using transitivity of
induction, after a finite number of steps we are reduced to considering the case where
a(()i) * U(()j) whenever d; = d; and © # j.

Let d be a positive integer. There is a bijection between the set of equivalence classes
of irreducible cuspidal representations of GL4(F,) and the set of Gal(FF,a/F,)-orbits of
characters of IE‘;d that are not fixed by any non-trivial element of Gal(Fa/F,). This
second set is in bijection with the Gal(F,a/F,)-orbits of elements of F 4 that generate
F,a over IF,. Hence the number of distinct possible choices for cr(()i), up to equivalence,
is equal to the number of distinct possible choices for 5;, up to Gal(F,a /F,)-conjugacy.
Thus, assuming that a(()i) % aéj ) whenever d; = dj and i # j, we can (and will) arrange
for the s; to be chosen so that whenever d; = d;, and i # j, 5; and 5; belong to distinct
Gal(F,4; /F,) orbits. This guarantees that Cas(s) = Cq(s).

The general case can be dealt with by writing my; = 79, ®7r;\r/[, where 79, is the tensor
product of those WEVZI) that have depth zero, and ﬂ';& is the tensor product of the 771(\2) that
have positive depth, and treating 79, and 7TJJ\F4 as above. (I

Proof of Theorem 14.5. Let 7 € &£(G). Let P = MN and my = ®;_, 71'1(\?,
FJ(CI) cE(GW), s; € E;, 1 < i < r, be as in Proposition 17.3. Let G’ = Cg) (s4).
Suppose that the following holds for 1 <7 < 7.

There exists s, € g’ N g(i)( o) such that the theorem holds for 775\?,
—p(n
M with s o) = s; + ;. (17.1)
T )
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Let m(j) be the corresponding irreducible unipotent representation of H(®) = Caw(si+
s}). Set

s =5+ 5l s =(sW,... M), H=HH(i) and 7ru:®7rl(f).
i=1

i=1

Note that s, C gEl_)'ji)Jr =Gur. b(l)n;7_n£ji+1, s0 Caeiy () = Cgan(sh) by Lemma 5.5.

This combines with Cps(s) = Ca(s) (s = (s1,-..,8-)) to give Cuy(sr) = Ca(sr)-
Since p(mas) is the maximum of the p(ﬂj(\f,)), and p(m) = p(mwar) (see Theorem 5.2
of [30]), sz € g_p(x). Assuming that (17.1) holds for each i, the theorem now follows

from Lemma 17.2.

It remains to show (17.1). Without loss of generality, we may assume that M = G.
First, if p(7) = 0, equation (17.1) holds with s’ = 0, by Theorem 14.1. Next, assume that
p(m) > 0. By induction, we may assume that the theorem holds for 7* € £(G*), where
G* ~ GL,,(E*), m < n, E*/F is a finite extension, and p(7*)/e(E*/F) < p(7). By
Lemma 6.1, m contains a pure minimal K-type (Qn;, Xs). Let n be the associated Hecke
algebra isomorphism (see §7). Set G’ = Cg(s), 7' = n*(n) and 7, = (07! o det’)7/,
where 0 is as in §13. By the same argument used in the proof of Theorem 14.1,
p(my) < p(r'). As p(n") = p(m)/e(F(s)/F) (see Lemma 4.2 (2)), by induction, the theo-
rem holds for mj. Let H = C¢r (swé) and s; = s+ sp;. By Lemma 5.5, as s,/ € g’(fj)+7
Cc(sx) = Cg/(sry) = H. An application of Theorem 12.3 (2) yields (17.1). O
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