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Abstract Let G = GLn(F ), where F is a p-adic field of characteristic zero and residual characteristic p.
Assuming that p > 2n, we compare germs of characters of irreducible admissible representations of G

with germs of characters of unipotent representations of direct products of general linear groups over
finite extensions of F . We show that the character of an irreducible admissible representation has an
s-asymptotic germ expansion, for some semisimple s in the Lie algebra of G. Furthermore, this expansion
matches with the 0-asymptotic expansion (that is, the local character expansion) of the character of a
unipotent representation of the centralizer of s in G.
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1. Introduction

Let F be a p-adic field of characteristic zero and residual characteristic p. Let
G = GLn(F ), where n is an integer such that n � 2. Suppose that π belongs to the
set E(G) of irreducible admissible representations of G. Let g0+ (respectively, greg) be
the set of topologically nilpotent (respectively, regular) elements in the Lie algebra g of G.
If Θπ is the character of π, we will refer to the function X �→ Θπ(1+X), X ∈ g0+ ∩ greg,
as the germ of Θπ.

If s ∈ g is semisimple, let ΩG(s) be the set of G-orbits in g whose closures contain s. If
O ∈ ΩG(s), let µ̂O be the function representing the Fourier transform of the distribution
given by integration over O with respect to a G-invariant measure on O. We will say
that the germ of Θπ is s-asymptotic (on V) if there exist constants cO(π), one for each
O ∈ ΩG(s), and an open neighbourhood V ⊂ g0+ of zero in g, such that

Θπ(1 + X) =
∑

O∈ΩG(s)

cO(π)µ̂O(X), X ∈ greg ∩ V.

If the germ of Θπ is s-asymptotic on some V, the expression on the right will be referred
to as an s-asymptotic expansion of the germ of Θπ (on V). If the Fourier transforms µ̂O,
O ∈ ΩG(s), remain linearly independent upon restriction to any open neighbourhood of
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zero intersected with greg (for example, this is the case whenever s belongs to an elliptic
Cartan subgroup of g; see Corollary 11.11), then the coefficients cO(π), O ∈ ΩG(s), are
unique and we refer to the above as the s-asymptotic expansion of the germ of Θπ.

It is known [11,13] that the germ of Θπ is 0-asymptotic on some open neighbourhood
of zero. Recall that the depth ρ(π) of π, as defined in [29,30] (see § 4), is a non-negative
rational number. Waldspurger [42] and DeBacker [9] have shown, in the case ρ(π) ∈ Z

and the case ρ(π) arbitrary, respectively, that if p is sufficiently large, then the germ of
Θπ is 0-asymptotic on the set gρ(π)+ defined in [8,9] (refer to § 11 of this paper for the
definition of gρ(π)+).

If p > 2n, given π ∈ E(G), we prove (see Theorem 14.5) that there exists a semisimple
sπ in g and an irreducible unipotent representation πH of the centralizer H of sπ in
G such that the germ of Θπ is sπ-asymptotic on gρ(π) (respectively, g0+) if ρ(π) > 0
(respectively, if ρ(π) = 0) and some sπ-asymptotic expansion of the germ of Θπ matches
the 0-asymptotic expansion of the germ of ΘπH

in the following sense. Given OH ∈ ΩH(0),
let cOH

(πH) be the coefficient of µ̂OH
in the 0-asymptotic expansion of the germ of ΘπH

.
The map OH �→ G · (sπ +OH) is a bijection from ΩH(0) to ΩG(sπ). If measures on orbits
in ΩH(0) and ΩG(sπ) are chosen to be compatible (as described in § 12), then there exists
an sπ-asymptotic expansion of the germ of Θπ for which the coefficients cG·(sπ+OH)(π)
of the Fourier transforms µ̂G·(sπ+OH) satisfy

cG·(sπ+OH)(π) = λcOH
(πH), OH ∈ ΩH(0),

where λ is a constant depending on normalizations of Haar measures on G and H.
In an earlier version of this paper, Theorem 14.5 was proved subject to validity of

a hypothesis concerning linear independence of the restrictions of the nilpotent orbital
integrals to the space spanned by the characteristic functions of certain lattices in g. The
hypothesis has not been proven in general, though is has been verified in some cases (see
Proposition 11.6). Here, in order to avoid assuming the hypothesis, we apply a special
case of a result of [22] concerning s-asymptotic expansions of germs of characters and
unrefined minimal K-types (see Theorem 11.8).

In [17], Howe and Moy showed that if p > n, there exist certain representations of
parahoric subgroups of G, called refined minimal K-types, having the property that every
π ∈ E(G) contains a refined minimal K-type. In addition, the Hecke algebra attached to
a refined minimal K-type is naturally isomorphic to the Iwahori Hecke algebra of the cen-
tralizer G′′ of some semisimple element in g. Suppose that τ is a refined minimal K-type
that is contained in some discrete series representation, or, equivalently, G′′ � GLa(L),
where L is an extension of F and a[L : F ] = n. Then, as we show in Theorem 13.2, the
character χτ of τ satisfies a Kirillov-type character formula. This can be described as
follows. The refined minimal K-type τ is a representation of some parahoric subgroup
B, with corresponding parahoric subalgebra b. Suppose that ψ is a non-trivial character
of F , h is an integer such that n � h � p and eh(X) =

∑h−1
i=0 Xi/i!, X ∈ g. There exists

a semisimple element sτ,h such that L = F (sτ,h), and the function χτ ◦ eh coincides with
the AdB-orbit of the linear functional ψ(tr(sτ,h·)) on the set of X ∈ b such that Xh is
sufficiently small.
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In one of the main results of this paper (Theorem 14.1), we show that if π ∈ E(G)
contains a refined minimal K-type τ of the above form, then the sπ of Theorem 14.5 may
be taken equal to sτ,h (for any h such that n � h � p) and H = G′′. Furthermore, πH is
the unipotent representation of G′′ corresponding to π via the Hecke algebra isomorphism
of Howe and Moy. Also, the constant λ above is equal to vG(B)−1vG′′(B ∩ G′′)(dim τ),
where υG(B) and υG′′(B ∩ G′′) are the measures of B and B ∩ G′′ relative to Haar
measures on G and G′′, respectively. If π is essentially square integrable, a formula for
the value of each of the coefficients cO(π), O ∈ ΩG(sπ), is given in Theorem 14.4.

A partial analogue of Theorem 14.1 was proved for supercuspidal representations of
GLn(F ) (in the case p > n) in [33]. There we derived a Kirillov-type character formula for
the inducing data for π, and, via methods different from those used in this paper, proved
that the germ of Θπ is sπ-asymptotic on some unspecified open neighbourhood of zero,
where sπ is a regular elliptic element appearing in the Kirillov-type character formula.
The relation between the results of this paper and those of [33] is discussed in more
detail in § 14. Recently, Adler and DeBacker [2] have extended the main result of [33]
and shown that the sπ-asymptotic expansion of Θπ holds on gρ(π)+ if ρ(π) > 0, and on
g0+ if ρ(π) = 0. Their methods are refinements of the methods used in [33], do not involve
Hecke algebra isomorphisms and do not apply to non-supercuspidal representations.

The irreducible complex characters of a finite general linear group have Jordan decom-
positions, expressed in terms of particular semisimple characters of the group and unipo-
tent characters of centralizers of semisimple elements. Our results, particularly Theo-
rem 14.1, suggest that when p is large, the Hecke algebra isomorphisms of Howe and
Moy (attached to refined minimal K-types) realize some kind of Jordan decomposition
for characters of irreducible admissible representations of p-adic general linear groups.

In [39] and [7], formal degrees of discrete series representations of GLn(F ) have been
computed using properties of Hecke algebra isomorphisms. Up to sign and division by
the formal degree of the Steinberg representation, the formal degree of a discrete series
representation is the term corresponding to the trivial orbit in the 0-asymptotic expansion
of the germ of the character. The results of this paper are the first in which entire germs
of characters of irreducible admissible representations are compared via Hecke algebra
isomorphisms.

In [32,34], analogues of the results of [33] (and hence of Theorem 14.1) were proved for
many supercuspidal representations of classical groups (for p sufficiently large). However,
as discussed in § 4 of [32] and § 11 of [34], there exist supercuspidal representations having
the property that the germ of the character cannot be s-asymptotic for any semisimple
element s whose centralizer in the group is compact modulo the centre of the group. Hence
if the results of this paper have analogues for characters of admissible representations
of other reductive groups, either those analogues have a different form (perhaps in some
cases involving germs of stable sums of characters, as results of [34] suggest), or they only
have analogues for some admissible representations. Preliminary investigations, using the
Hecke algebra isomorphisms of [26,27], show that for some discrete series representations
of GSp4(F ), analogues of Theorem 14.1 do hold. In the future, we will investigate the
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possibility of using the Hecke algebra isomorphisms constructed by Kim [19–21] to obtain
results similar to Theorems 14.1 and 14.5 for classical groups.

The homogeneity results of Waldspurger and DeBacker concerning germs of characters
require that the residual characteristic of F be sufficiently large. If these results could
be extended to small p, then possibly the methods of this paper could be adapted to use
the types and Hecke algebra isomorphisms of Bushnell and Kutzko [4] to study germs of
characters of admissible representations of GLn(F ) when p � n.

A special case of Theorem 14.1 was announced in [35]. In another paper [36], some
of the results of this paper are used to compute the coefficients in the 0-asymptotic
expansions of germs of characters of certain discrete series representations of GLn(F )
(when p > 2n).

We now discuss the contents of the paper. Most of our notation is defined as we need
it, but § 2 contains a summary of some notation that appears throughout the paper. Let
oF be the ring of integers in F . In § 3, we list basic facts about filtrations of parahoric
subgroups of G and parahoric oF -subalgebras of g associated to periodic lattice flags
in Fn.

Section 4 starts with a review of the definition of the minimal K-types defined by
Howe and Moy [16] (these we refer to as standard minimal K-types) and a discussion
of their relation to the unrefined minimal K-types of Moy and Prasad. Next we recall
the definition of depth ρ(π) for π ∈ E(G), and indicate how ρ(π) can be detected from
properties of any standard minimal K-type contained in π. There are two sorts of stan-
dard minimal K-types, called pure and separated by Howe and Moy. It is straightforward
to show that if π ∈ E(G) is not properly parabolically induced, then π contains a pure
minimal K-type.

Much of this paper is devoted to proving results (see § 12) about germs of characters
of representations that contain pure minimal K-types. If π ∈ E(G) happens to contain
a refined minimal K-type that occurs in some discrete series representation, then, as
seen in [17], this refined minimal K-type is defined inductively via a finite sequence of
pure minimal K-types for general linear groups over extensions of F . This allows us
to argue by induction on depth, using the results of § 12 in the main induction step,
to obtain Theorem 14.1. For arbitrary π ∈ E(G), we show (see Proposition 17.3) that
π is parabolically induced from an irreducible admissible representation πM of a Levi
subgroup M , where πM is a tensor product of irreducible admissible representations
(of general linear groups), each of which contains a pure minimal K-type. Theorem 14.5
is then proved by induction on depth, using both the results of § 12 and Proposition 17.3.

Sections 5–10 and 12 are concerned with questions related to pure minimal K-types
and the representations π ∈ E(G) that contain a pure minimal K-type. Suppose that π

is such a representation. Then π contains a particular sort of pure minimal K-type (see
Lemma 6.1). Attached to that pure minimal K-type there is an extension E/F , along
with an s ∈ E that generates E/F . Let G′ be the centralizer s in G. As discussed in § 3,
there is a family of parahoric subgroups of G having the property that the corresponding
filtrations intersect G′ in filtrations of parahoric subgroups of G′ attached to lattice flags
in En′

, n′ = n/[E : F ]. Some more properties of these parahoric filtrations, relative to
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G′ and its Lie algebra g′, and the element s, are given in § 5. One of the key results here,
Proposition 5.6, due to Waldspurger [41], is a descent property for orbital integrals. It
can be stated roughly as follows. Suppose that Z ∈ g′ is such that s−1Z is topologically
nilpotent. If B belongs to the above family of parahoric subgroups and i is the smallest
non-negative integer such that the G-orbit OG(s) intersects b−i, then the integral of the
characteristic function of b−i over the orbit OG(s + Z) is equal to a non-zero multiple
of the integral of the characteristic function of b−i ∩ g′ over the orbit OG′(s + Z). Here,
b−i is the (−i)th power of the pronilpotent radical of the parahoric oF -subalgebra b of g

that corresponds to B. If B is a parahoric subgroup that is not conjugate to a parahoric
in the above family, there is a uniquely determined non-negative integer i depending on
s and B (but that is not defined the same way as for parahorics that belong to the above
family), and OG(s + Z) does not intersect b−i.

Howe and Moy [15,17] showed that the above-mentioned pure minimal K-type gives
rise to an isomorphism of Hecke algebras, which we call η, via which π corresponds to
a representation π′ ∈ E(G′). Let Vπ and Vπ′ be the spaces of π and π′, respectively.
Given a parahoric subgroup B, let i be the non-negative integer discussed above. The
aim of §§ 6–8 and 10 is to express dim(V Bi+1

π ) as an explicit multiple of dim(V Bi+1∩G′

π′ )
whenever B belongs to the above family of parahoric subgroups, and to show that if
B is not conjugate to one of those subgroups, then V

Bi+1
π = {0}. See Propositions 8.6

and 10.8 for precise statements in the cases ρ(π) > 0 and ρ(π) = 0, respectively.
The case ρ(π) > 0 is dealt with in §§ 6–8. In § 6, we define a set of pure minimal K-types

(depending on the element s and on the set of nilpotent G′-orbits in g′). There is a natural
bijection between this set of K-types and a set of pure minimal K-types of G′. If χ is one
of these K-types, and χ′ is the corresponding K-type of G′, Proposition 8.4 expresses
the multiplicity mχ(π) of χ in π as an explicit multiple of the multiplicity mχ′(π′) of
χ′ in π′. If B is a parahoric subgroup of G and i is as above, dim(V Bi+1

π ) is a linear
combination of the multiplicities mχ(π) for χ ranging over the given set of pure minimal
K-types. A similar statement holds for dim(V B′

i

π′ ) and the multiplicities mχ′(π′), when B′

is a parahoric subgroup of G′. This allows us to deduce Proposition 8.6 (see above) from
Proposition 8.4. The Hecke algebra isomorphism η matches certain isotypic subspaces in
Vπ and Vπ′ in a very simple way. These subspaces, and the resulting relations between
multiplicities, are described in § 7. In order to prove Proposition 8.4, it is necessary to
relate the isotypic subspaces occurring in § 7 and the χ-isotypic subspaces of Vπ and the
χ′-isotypic subspaces of Vπ′ . This is done in the first part of § 8.

In the proofs of Theorems 14.1 and 14.5, the induction step may involve a Hecke
algebra isomorphism η̇ that is slightly different from η. In order to be able to apply the
results of § 12 (which relate the germs of Θπ and Θπ′) in later sections, we need to know
that the representation π̇′ ∈ E(G′) corresponding to π via η̇ is equivalent to π′. This is
proved in § 9.

In § 10, we consider the case where ρ(π) = 0 (and π contains a pure minimal K-type).
In this case, E/F is unramified and the Hecke algebra isomorphism η gives rise to an
isomorphism η0 between a Hecke algebra of G = GLn(Fq) and one of G′ = GLn′(Fqd),
d = [E : F ]. Here, q is the cardinality of the residue class field of F . In order to prove
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Proposition 10.8 (see above), it is necessary to compare the dimensions of certain isotypic
subspaces of Vπ and V ′

π using η0. These particular isotypic subspaces can be viewed as
representations of G and G′, respectively, and one step in this process involves relating
η0 and the twisted induction map RG

G′ of [23], which takes virtual representations of G′

to virtual representations of G. Having done this, it is a simple matter to compare the
dimensions of the relevant isotypic subspaces using properties of RG

G′ . At the end of the
section, we derive a Kirillov-type character formula for the character of a pure minimal
K-type contained in π.

Section 11 contains statements of homogeneity properties of orbital integrals and germs
of characters (due to Waldspurger [42] and DeBacker [9]), as well as a particular case
of a result from [22]. These results will be applied in later sections. We also prove some
results concerning the behaviour of (the functions representing) Fourier transforms of
orbital integrals, on neighbourhoods of zero in g.

In § 12, Propositions 5.6, 8.4 and 10.8, homogeneity results for orbital integrals and
germs of characters, and, if E/F is partly ramified, the hypothesis of § 11, are applied to
derive relations between the germs of Θπ and Θπ′ .

Section 13 is devoted to proving Theorem 13.2, which gives a Kirillov-type character
formula for the character of a refined minimal K-type that is contained in a discrete
series representation.

Complete statements of the main theorems appear in § 14. In addition to the results
mentioned previously, we give a relation between the wavefront set of a representation
π ∈ E(G), which is one of the ones considered in Theorem 14.1 and the wavefront set of the
corresponding unipotent representation of G′′. With the exception of Theorem 14.1 (1)
(which is Theorem 13.2), proofs of the results stated in § 14 appear in §§ 15–17.

2. Notation and conventions

Let F be a p-adic field of characteristic zero with ring of integers o = oF and maximal
ideal p = pF in oF . Let p and q be the characteristic and cardinality, respectively, of the
residue class field oF /pF . If m is a positive integer, Fpm denotes the finite field of order
pm. Let � = �F be a uniformizer. Normalize the absolute value | · | = | · |F by |�| = q−1.
If E/F is a finite extension of E, we denote the corresponding objects relative to E by
oE , pE , p, qE and �E .

We will define much of our notation for G = GLn(F ). The obvious analogues of this
notation will be used without comment for groups of the form

∏
1�i�r GLni(Ei), where

ni � 1 and Ei/F is a tamely ramified extension of finite degree, 1 � i � r.
Let g be the Lie algebra of G and let C∞

c (g) be the space of complex-valued locally
constant compactly supported functions on g. If L is a lattice in g, Cc(g/L) denotes the
subspace of functions in C∞

c (g) that are invariant under translation by L. The sets of
semisimple elements, nilpotent elements and regular (semisimple) elements in g will be
denoted by gss, gnil and greg, respectively.

The notation υX (S) will be used for the volume of a subset S of a space X (relative
to a specific measure on X ). If X = G or g, the measure is assumed to be Haar measure.
Haar measure on a compact group K will be normalized so that υK(K) = 1.
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Fix a character ψ of F such that ψ is trivial on p and non-trivial on o. Throughout the
paper, ψ will be the character of F used in the definition of K-types and in the Fourier
transform on the Lie algebra. Haar measure on g will be normalized to be self-dual with
respect to Fourier transform, so ˆ̂

f(X) = f(−X) for all f ∈ C∞
c (g) and X ∈ g. If E/F

is a tamely ramified finite extension of F , K-types on GLh(E), h � 1, and the Fourier
transform on glh(E) will be taken relative to the character ψE = ψ ◦ trE/F of E (note
that ψE is trivial on pE and non-trivial on oE).

Given a representation π of G, Vπ denotes the space of π. If K is a compact open
subgroup of G, V K

π denotes the subspace of π(K)-invariant vectors in Vπ. If κ is a non-
trivial finite-dimensional representation of K, V

(K,κ)
π denotes the κ-isotypic subspace of

Vπ (viewed as a K-space). The notation E(G) will be used for the set of (equivalence
classes of) irreducible admissible representations of G. The character of π, viewed either
as a distribution or as a locally integrable function on G, will be denoted by Θπ.

If X ∈ g, OG(X) denotes the G-orbit of X and CG(X) denotes the centralizer of X

in G. If S ⊂ g, G · S = {Ad g(X) | g ∈ G, X ∈ S}. Given s ∈ gss, let ΩG(s) denote the
set of G-orbits O such that s belongs to the closure of O. Note that ΩG(0) is the set of
nilpotent orbits.

If X ∈ g and O = OG(X), µO denotes the distribution on C∞
c (g) given by integration

over the orbit O, relative to a G-invariant measure on O (see § 12 for comments on nor-
malizations of measures). As shown in [11], the Fourier transform µ̂O of the distribution
µO is represented by a locally integrable function, also denoted µ̂O, on g.

Given a positive integer h, denote the set of partitions of h by P(h). Each α ∈ P(h) is
a finite sequence α = (α1, . . . , αr) of positive integers αi such that

∑
1�i�r αi = h. When

referring to α without mentioning the αi, we will use the notation r(α) for r. The set
P0(h) of ordered partitions of h consists of those α ∈ P(h) such that α1 � · · · � αr.

If nj is a positive integer and α(j) ∈ P(nj), 1 � j � m, let

α(1) ∪ · · · ∪ α(m) = (α(1)
1 , . . . , α

(1)
r(α(1)), . . . , α

(m)
1 , . . . , α

(m)
r(α(m))) ∈ P(n1 + · · · + nm).

Let i be a positive integer and α ∈ P(h). Define iα and αi ∈ P(ih) by

iα = (iα1, . . . , iαr) and αi = α ∪ · · · ∪ α︸ ︷︷ ︸
i times

.

If i and j are positive integers, set uj(qi) =
∏

1�t�j(q
it − 1). If α = (α1, . . . , αr) ∈

P(h), set uα(qi) =
∏

1�t�r uαt(q
i).

Let h be a positive integer and let F0 be either a finite extension of F or a finite field.
Given α = (α1, . . . , αr) ∈ P0(h), for 1 � i � α1, let α̇i be the number of j ∈ {1, . . . , r}
such that αj � i. Fix a nilpotent element Yα in glh(F0) in Jordan canonical form, with
blocks of sizes α̇i, 1 � i � α1. Then α ↔ Oα = OGLh(F0)(Yα) defines a bijection between
P0(h) and the set of nilpotent GLh(F0)-orbits in glh(F0). Given α and β ∈ P0(h), we
write α � β whenever

∑�
i=1 αi �

∑min(�,r(β))
i=1 βi for 1 � � � r(α). This corresponds to

the partial order on the set of nilpotent orbits Oα, α ∈ P0(h), given by inclusion in
closure, since α � β if and only if Ōα ⊃ Oβ .
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Finally, if t ∈ R, �t� and t� are used to denote the greatest integer less than or equal
to t and the smallest integer greater than or equal to t, respectively.

3. Lattice flags and filtrations of parahoric subgroups and subalgebras

A lattice L in Fn is a free o-submodule of rank n. A periodic lattice flag L in Fn, of
period r, is a sequence L = {Li | i ∈ Z} of lattices Li ⊂ Fn such that Li+1 � Li and
Li+r = �Li, i ∈ Z. We can define an associated filtration of g = gln(F ) by

bi = bL,i = {X ∈ g | XL� ⊂ L�+i ∀� ∈ Z}, i ∈ Z.

The o-subalgebra b = b0 is a hereditary order in g and b1 is the nilradical of b. We have

bi = (b1)i, i � 1, bi+r� = ��
bi, �, i ∈ Z.

Define
b

∗
i = {X ∈ g | tr(XY ) ∈ p ∀Y ∈ bi}.

Then b∗
i = b1−i. Given a parahoric o-subalgebra of g, there exists a periodic lattice flag

L such that b = bL, and the ith power of the nilradical of b equals bL,i, i � 1.
The group B = b× is a parahoric subgroup of G. Define a filtration of B by compact

open normal subgroups of B as follows:

B0 = B, Bi = 1 + bi, i � 1.

For 0 � i � n − 1, define Lstd
i ⊂ Fn by

Lstd
i = o ⊕ o ⊕ · · · ⊕ o︸ ︷︷ ︸

n−i times

⊕ p ⊕ p ⊕ · · · ⊕ p︸ ︷︷ ︸
i times

.

Set Lstd
i+�n = ��Lstd

i for 0 � i � n − 1 and � ∈ Z. Given α = (α1, . . . , αr) ∈ P(n), define
a lattice flag Lα = {Lα

i | i ∈ Z} by

Lα
0 = Lstd

0 , Lα
i = Lstd

αr−i+1+···+αr
, 1 � i � r − 1,

Lα
i+�r = ��Lα

i , 0 � i � r − 1, � ∈ Z.

Set
bα,i = bLα,i, i ∈ Z, Bα,i = BLα,i, i � 0.

The hereditary order bα can be described as follows:


glα1(o) Mα1×α2(o) . . . Mα1×αr (o)
Mα2×α1(p) glα2(o) . . . Mα2×αr

(o)
...

...
. . .

...
Mαr×α1(p) Mαr×α2(p) . . . glαr (o)


 .

Here, if S ⊂ F , Mj×k(S) denotes the set of j×k matrices with entries in S. The nilradical
bα,1 of bα consists of matrices having the block form as above, except with glαk

(o)
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replaced by glαk
(p), 1 � k � r. Given a hereditary order b ⊂ g and associated filtration

bi, there exists an α ∈ P(n) such that Ad g(bi) = bα,i, i ∈ Z, for some g ∈ G. In fact, if
g ∈ G, then gL = {gLi | i ∈ Z} is a periodic lattice flag in Fn and bgL = Ad g−1(bL).

From the above descriptions of bα and bα,i, it is easy to see that, if α = (α1, . . . , αr) ∈
P(n), then

Bα/Bα,1 �
∏

1�i�r

GLαi(o/p) =
∏

1�i�r

GLαi
(Fq)

[B(1)n,1 : Bα,1] = [b(1)n,1, bα,1] =
∏

1�i�r

qαi(αi−1)/2

[Bα : B(1)n,1] = uα(q),

[Bα,i : Bα,i+1] =
∏

1�j�r

qαjαj+i , i � 1.




(3.1)

Here, uα(q) is as defined as in § 2.
Suppose that d is a positive divisor of n. Let E/F be a tamely ramified extension of

degree d. Set f = f(E/F ), e = e(E/F ) and n′ = n/d. Fix a prime element �E ∈ pE such
that �e

E�−1
F is a root of unity of order prime to p. Let G′ = GLn′(E) and g′ = gln′(E).

Choose a basis of E over F in such a way that the corresponding F -linear isomorphism
ξE : E � F d has the property ξE(pi

E) = L
(f)e

i , i ∈ Z. That is, ξE maps the lattice flag
{pi

E | i ∈ Z} to the lattice flag L(f)e

. Then the filtration b(f)e,i of gld(F ) has the property
that E ∩ b(f)e,i = pi

E , i ∈ Z. (Here, E is embedded in gld(F ) via the above-mentioned
basis of E over F ). Define an F -linear isomorphism ξ : En′ � Fn by

ξ(x1, . . . , xn′) = (ξE(x1), . . . , ξE(xn′)), xi ∈ E, 1 � i � n′.

Given a periodic lattice flag L′ = {L′
i | i ∈ Z} in En′

, define a lattice flag ξ(L′) in Fn by

ξ(L′) = {ξ(L′
i) | i ∈ Z}.

If we write a matrix X ∈ g in the form X = (Xij)1�i,j�n′ , where Xij ∈ gld(F ), we can
view g′ as a subalgebra of g as follows. Given X ′ = (X ′

ij), X ′
ij ∈ E, we identify each X ′

ij

with its image in gld(F ) via the above embedding of E in gld(F ). Similarly, G′ will be
viewed as a subgroup of G. Given L′, let bL′ and BL′ be the parahoric oE-subalgebra of g′

and parahoric subgroup of G′ corresponding to L′. Relative to the above identifications,
if L = ξ(L′) and L′ has period r, we have

bL,i ∩ g
′ = bL′,i, i ∈ Z, BL,i ∩ G′ = BL′,i, i � 0, �EbL,i = bL,i+r. (3.2)

Note that it follows from the last equality and �e
E�−1

F ∈ o
×
E that L = ξ(L′) has period er.

Given α ∈ P(n′), define a periodic lattice flag L′α = {L′α
i | i ∈ Z} in En′

in a manner
analogous to that of Lβ , β ∈ P(n). Set

b
′
α,i = bL′α,i, i ∈ Z, B′

α,i = BL′α,i, i � 0.
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Let LE,std
i ⊂ En′

, i ∈ Z, be the analogue of Lstd
i . There exists a permutation matrix

w ∈ G such that ξ(LE,std
i ) = w−1Lstd

if for every i ∈ Z. It follows that ξ(L′α) = w−1L(fα)e

for any α ∈ P0(n′). Thus bξ(L′α) = Adw(b(fα)e). The explicit form of w is given in (4.12)
of [17] (their m and a are equal to our e and f , respectively).

4. Standard minimal K-types and depth

A K-type is a pair (K, κ) consisting of a compact open subgroup of G and an irreducible
representation κ of K. When there is no need to specify the subgroup K, we denote the
K-type by κ. An admissible representation π is said to contain the K-type (K, κ) if κ is
a constituent of the restriction of π to the subgroup K.

This section begins with a recollection of the definitions of and some basic properties
of certain families of K-types attached to filtrations of parahoric subgroups associated
to periodic lattice flags. Following that, we recall some properties of the depth of a
representation π ∈ E(G) and show how the depth is determined by any one of the above
K-types contained in π. Finally, we give the definition of pure and separated minimal
K-types (in the sense of [17]) and show that any π ∈ E(G) that does not contain a pure
minimal K-type is properly parabolically induced.

For GLn(F ), the notion of minimal K-type was first defined by Moy [28]. Let B = b×

be a parahoric subgroup associated to a periodic lattice flag L = {Li | i ∈ Z}, with asso-
ciated filtration Bi as described in § 3. The structure of Bi/Bi+1 and the representations
of Bi that are trivial in Bi+1 can be described as follows.

(i) Set αi = dimFq (Li/Li+1), 1 � i � r, where r is the period of L. If i = 0, then

B0/B1 �
∏

1�i�r

GLαi(Fq).

Hence an irreducible representation of B which is trivial on B1 is the inflation of
an irreducible representation of the finite reductive group

∏
1�i�r GLαi(Fq).

(ii) If i > 0, then Bi/Bi+1 is abelian and the map X �→ 1+X from bi to Bi factors to an
isomorphism between bi/bi+1 and Bi/Bi+1. Via this map, the group of characters
of Bi/Bi+1 is realized as the cosets b−i/b−i+1. As in § 2, let ψ be a character of
F with conductor p. The coset Ξ = X + b−i+1, X ∈ b−i, is identified with the
character

χΞ(y) = ψ(tr(X(y − 1))), y ∈ Bi.

We will often use the notation χX for the character χΞ .

A coset Ξ = X + b−i+1 in b−i is said to be non-degenerate if Ξ does not contain any
nilpotent elements. A standard minimal K-type is a pair (Bi, κ), where κ is an irreducible
representation of Bi that is trivial on Bi+1 and such that the following hold.

(i) If i = 0, κ is the inflation of a cuspidal representation of B/B1.

(ii) If i > 0, κ = χΞ for some non-degenerate coset Ξ = X + b−i+1 of b−i+1 in b−i.
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We remark that in [28] Moy calls the above representations minimal K-types. We refer
to them as standard minimal K-types in order to distinguish them from other sorts of
minimal K-types (see below).

Two standard minimal K-types (Bi, κ) and (B′
i′ , κ′) are said to be associates if one of

the following holds.

(i) i = i′ = 0, B/B1 � B′/B′
1, and κ and κ′ are inflations of equivalent cuspidal

representations.

(ii) i > 0, i′ > 0 and Ξ ∩ AdG(Ξ ′) �= ∅.

Theorem 4.1. [cf. [3,16]] Let π ∈ E(G). Then we have the following.

(1) π contains a standard minimal K-type.

(2) Any two standard minimal K-types contained in π are associates.

In [29,30], Moy and Prasad defined families of K-types, called unrefined minimal K-
types, for connected reductive p-adic groups. If x belongs to the Bruhat–Tits building
B(G) of G, then Gx,t, t � 0, and gx,t, t ∈ R, denote the filtration subgroups of Gx and oF -
subalgebras of g, respectively, defined by Moy and Prasad [29,30]. Set gx,t+ =

⋃
s>t gx,s

and, if t � 0, set Gx,t+ =
⋃

s>t Gx,s. If g = gln(F ), the Moy–Prasad filtrations gx,t, t ∈ R,
include the filtrations of g associated to periodic lattice flags. Suppose that L ⊂ Fn is a
periodic lattice flag, bi = bL,i, i ∈ Z, and B = b

×
L

. Then there exists x ∈ B(G) (which,
for our purposes, need not be specified) such that Gx = B and the filtrations gx,t and bj

are the same in the sense that

gx,t = b�tr� and gx,t+ = b�tr	+1, t ∈ R.

As Gx,t = 1 + gx,t for t > 0, it follows that Bi = Gx,(i/r) and Bi+1 = Gx,(i/r)+ .
It follows from the definition of the depth ρ(π) of a representation π ∈ E(G) [29,30]

that ρ(π) is the smallest non-negative rational number such that the set of Gx,ρ(π)+-fixed
vectors in the space of π is non-zero for some x ∈ B(G). If y ∈ B(G) and the subspace
V

Gy,ρ(π)+
π of Gy,ρ(π)+-fixed vectors in the space Vπ of π is non-zero, then the representation

of Gy,ρ(π) given by the action of Gy,ρ(π) on V
Gy,ρ(π)+
π contains an unrefined minimal

K-type. Although ρ(π) is defined in terms of the Moy–Prasad filtrations, it is actually
determined by any standard minimal K-type contained in π, as the following result
shows.

Lemma 4.2. Let G = GLn(F ) and let (Bi, κ) be a standard minimal K-type.

(1) (Bi, κ) is an unrefined minimal K-type.

(2) Let r be the period of the lattice chain L to which the filtration {Bj}j�0 is attached.
If π ∈ E(G) contains (Bi, κ), then ρ(π) = i/r.

Proof. If i = 0, then the above cuspidality condition on κ is the same as that of Moy
and Prasad [30, p. 105].
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If i > 0, we can use the trace map to identify the coset Ξ that corresponds to κ with a
coset Ξ∗ in the F -dual g∗ of g. The non-degeneracy condition on Ξ is equivalent to the
non-degeneracy condition on Ξ∗ given in [30, p. 104]. Hence (1) holds.

For (2), it follows from results of [29,30] that if π contains an unrefined minimal K-
type (Gy,t, τ), then ρ(π) = t. In view of (1) and the fact that Bi = Gx,(i/r), it follows
that ρ(π) = i/r. �

When considering a standard minimal K-type (Bi, κ), the lattice L can be chosen so
that i and the period r of L are relatively prime [17, p. 391]. From now on, we assume
that i and r are relatively prime. The cases of pure and separated minimal K-types (see
below for the definitions) are treated differently.

Suppose that i = 0. Then there exist irreducible cuspidal representations τj of
GLαj

(Fq), 1 � j � r, such that κ is the inflation of ⊗1�j�rτi to B. As in [17], we
say that (B0, κ) is a pure minimal K-type if αj = αk and τj � τk for all j and k.
Otherwise, (B0, κ) is a separated minimal K-type.

Suppose that i > 0. Let X ∈ Ξ. Then �iXr ∈ �ib−ir = b and so for each j, �iXr

induces an Fq-linear map on Lj/Lj+1 � F
αj
q . As this map is independent of the choice

of X ∈ Ξ, we denote it by TΞ,j . Let fj(t) be the characteristic polynomial of TΞ,j . As
discussed in [17, § 2], there are two possibilities.

(i) There exists j such that fj(t) is the product of two relatively prime polynomials of
positive degree in Fq[t]. In this case, (Bi, κ) is a separated minimal K-type.

(ii) Each fj(t) is a power of an irreducible polynomial in Fq[t]. In this case, (Bi, κ) is
a pure minimal K-type.

In much of this paper, we will study characters of representations π ∈ E(G) that
contain pure minimal K-types. Recall that if π arises via parabolic induction from a
πM ∈ E(M), where M is the Levi component of a parabolic subgroup of G, van Dijk [38]
gives a formula expressing the character of π in terms of the character of πM . Hence
the proposition below shows that if π does not contain a pure minimal K-type, then
the study of the character of π reduces to the study of the character of an irreducible
admissible representation of a proper Levi subgroup of G. As a standard minimal K-
type must be pure or separated, any such representation π must contain a separated
minimal K-type. If π contains a pure minimal K-type, it may be the case that π does
not arise via parabolic induction (from a proper Levi subgroup); for example, if π is a
discrete series representation. Given a proper parabolic subgroup P of G, we will use
the notation IndG

P to denote normalized parabolic induction (that is, induction taking
unitary representations of the Levi component of P to unitary representations of G). A
refinement of the following result will be proved in § 17.

Proposition 4.3. Suppose that π ∈ E(G) and π does not contain a pure minimal K-
type. Then there exists a proper parabolic subgroup P = MN of G and a πM ∈ E(M)
such that π = IndG

P πM .
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Before proving the proposition, we show that certain representations must contain a
pure minimal K-type. Recall [43] that the support of a representation π ∈ E(G) is defined
as follows. There exists a parabolic subgroup P = MN of G and an irreducible super-
cuspidal representation τ of the Levi component M of P such that π is a subquotient of
IndG

P τ . There exists a partition α = (α1, . . . , αr) ∈ P(n) such that M �
∏

1�i�r GLαi
(F )

and irreducible supercuspidal representations τi of GLαi(F ) such that τ � ⊗1�i�rτi. The
set {τ1, . . . , τr} (taken in any order) is the support of π.

Lemma 4.4. Suppose that there exists d | n and an irreducible supercuspidal represen-
tation τ of GLd(F ) such that the support of π is a subset of {|det(·)|�τ | � ∈ Z}. Then π

contains a pure minimal K-type.

Proof. By assumption, there exist integers bj , 1 � j � n/d, such that π is an irreducible
subquotient of IndG

P (⊗1�j�n/d|det(·)|bj τ), where the Levi component M of P is the direct
product of n/d copies of GLd(F ). Without loss of generality, we can assume that P

contains an upper triangular Borel subgroup.
By Theorem 5.1 of [17], the supercuspidal representation τ contains a pure minimal

K-type (Bi, κ), where B = b
×
L

for some periodic lattice chain L ⊂ F d. After conjugating
by an element of GLd(F ), if necessary, we can assume (see [17, § 4]) that bL = b(m)d/m

for some divisor m of d. Let K (respectively, K+) be the direct product of n/d copies
of Bi (respectively, Bi+1) and let κ(n/d) be the n/d-fold tensor product of κ with itself.
Then (K, κ(n/d)) is an unrefined minimal K-type contained in ⊗1�j�n/d|det(·)|bj τ .

Suppose that i = 0. Then B(m)n/m/B(m)n/m,1 � K/K+, κ(n/d) lifts to a represen-
tation of B(m)n/m and (B(m)n/m , κ(n/d)) is a pure minimal K-type of depth zero. By
Theorem 5.2 (2) of [30], π contains (B(m)n/m , κ(n/d)).

Suppose that i > 0. Let N be the unipotent radical of P , and let N− be the unipotent
radical of the parabolic subgroup opposite to P . There exists a permutation matrix w ∈ G

such that, for any positive integer �,

wB(m)n/m,�w
−1 = (wB(m)n/m,�w

−1 ∩ N−)(wB(m)n/m,�w
−1 ∩ M)(wB(m)n/m,�w

−1 ∩ N),

wB(m)n/m,ni/dw
−1 ∩ M = K and wB(m)n/m,(ni/d)+1w

−1 ∩ M = K+, so κ(n/d) extends
to a character of wB(m)n/m,ni/dw

−1, which is trivial on wB(m)n/m,ni/dw
−1 ∩ N and

wB(m)n/m,ni/dw
−1 ∩ N−, and is a pure minimal K-type. By Theorem 4.5 of [30], this

pure minimal K-type is contained in π. �

Proof of Proposition 4.3. By assumption, the support of π cannot be of the form
given in Lemma 4.4. Results of [43] imply that π has the desired form. �

5. Conjugacy and filtrations of parahoric subalgebras

Here we summarize some results that will be used later in the paper for comparing
unrefined minimal K-types and germs of characters.

Let E/F be a tamely ramified extension of degree d, where d is a positive divisor of
n. As in § 3, set n′ = n/d, e = e(E/F ), f = f(E/F ), g′ = gln′(E) and G′ = GLn′(E).
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Choose a prime element �E in E, and embed E in gld(F ) and g′ in g as in § 3. Fix
a positive integer j such that e and j are relatively prime. Let s ∈ E be such that
s ∈ p

−j
E − p

−j+1
E and the image of �j

F se in oE/pE generates oE/pE over oF /pF . Note
that E = F (s). Viewing E as the centre of g′, we consider s as an element in g whose
centralizer is g′.

Given a periodic lattice flag L′ in En′
, let ξ(L′) be the periodic lattice flag in Fn defined

in § 3. Notation for parahoric subalgebras and subgroups corresponding to periodic lattice
flags will be as in § 3.

Lemma 5.1 (cf. [17]). Fix a positive divisor u of n′. Let L = ξ(L′(u)n′/u

) and b = bL.
Set b′⊥

i = bi ∩ g′⊥, i ∈ Z, where g′⊥ is the orthogonal complement of g′ in g, relative to
the trace map. Then the following hold.

(1) bi = b′
i ⊕ b′⊥

i .

(2) Bi = B′
i(1 + b′⊥

i ), i � 1.

(3) ad s : b′⊥
i /b′⊥

i+1 → b′⊥
i−n′j/u/b′⊥

i+1−n′j/u is an isomorphism

Remarks 5.2. Parts (1) and (3) are Lemma 4.4 (u = 1) and Lemma 4.8 (u > 1) of [17].
For (2), note that Bi = 1 + bi = 1 + b′

i + b′⊥
i by (1). And (1 + b′

i)b
′⊥
i = b′⊥

i , as b′⊥
i is

stable under left multiplication by b′. Hence Bi = (1 + b′
i)(1 + b′⊥

i ) = B′
i(1 + b′⊥

i ).

Lemma 5.3. Let L, b and b′⊥
i be as in Lemma 5.1. Suppose that Z ∈ b′

(1)n′ ,−(n′j)+1.
Then the following hold.

(1) ad(s + Z) : b′⊥
i /b′⊥

i+1 → b′⊥
i−n′j/u/b′⊥

i+1−n′j/u is an isomorphism.

(2) Let v be a positive integer. Then

s + Z + b−(n′j/u)+v = Bv · (s + Z + b
′
−(n′j/u)+v).

Proof. Note that, as ob′⊥
i ⊂ b′⊥

i and pb′⊥
i ⊂ b′⊥

i+1, V = b′⊥
i /b′⊥

i+1 is a Fq-vector space.
Given X ∈ b′

−n′j/u = �−j
E b′, the map Y �→ �j

E [X, Y ] from b′⊥
i to b′⊥

i induces a linear
transformation TX : V → V . It is easy to see that Ts and TZ are the semisimple and
nilpotent parts of Ts+Z , respectively. By Lemma 5.1 (3), as left multiplication by �j

E

induces a vector space isomorphism of b′⊥
i−n′j/u/b′⊥

i+1−n′j/u onto b′⊥
i /b′⊥

i+1, the map Ts

is an isomorphism. As Ts is the semisimple part of Ts+Z , Ts+Z is also an isomorphism.
Hence (1) holds.

Part (2) follows from (1) by a standard type of argument (see, for example, the proof
of Lemma 3.2 of [17]). �

Lemma 5.4. Let Z ∈ b′
(1)n′ ,−(n′j)+1.

(1) Let α ∈ P(n). If OG(s + Z) ∩ bα,−�jr(α)/e	 �= ∅, then α = (fβ)e for some β ∈ P(n′).

(2) Let β ∈ P(n′). If Ad g(s + Z) ∈ bξ(L′β),−jr(β), then g ∈ Bξ(L′β)G
′.
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Proof. Let g ∈ G. Set X = Ad g(s + Z). Note that s + Z = s(1 + s−1Z) and s−1�−j
E is

a root of unity in o
×
E , so s−1�−j

E ∈ B′
(1)n′ and s−1Z ∈ b′

(1)n′ ,1. Hence 1 + s−1Z ∈ B′
(1)n′ ,1

and
Xe ∈ Ad g(s + Z)e = Ad g(se(1 + s−1Z)e) ∈ g(�−j

F o
×
EB′

(1)n′ ,1)g
−1,

which implies det(�j
F Xe) ∈ o×.

Suppose that e does not divide r(α) and X ∈ bα,−�jr(α)/e	. Let m = �jr(α)/e�. Then

�j
F Xe ∈ �j

F bα,−me = bα,jr(α)−me ⊂ bα,1,

which, as det(bα,1) ⊂ pF , is a contradiction. Therefore, OG(s + Z) ∩ bα,−�jr(α)/e	 = ∅
whenever e does not divide r(α).

Suppose that α ∈ P(n) and e divides r(α). Set r = r(α). Given Y ∈ bm, m ∈ Z,
the image of Y + bm+1 in bm/bm+1 is determined by an r-tuple (Ȳ1, . . . , Ȳr), where
Ȳi ∈ HomFq (L

α
i−1/Lα

i , Lα
i−1+m/Lα

i+m), 1 � i � r. For convenience, we will treat sub-
scripts on the αi and the Ȳi as integers modulo r. Let g and X be as above, and set
Y = Xe. Then

Ȳi = X̄i−(e−1)(jr/e) ◦ · · · ◦ X̄i−(jr/e) ◦ X̄i, 1 � i � r.

As X ∈ b−jr/e, �j
F Xe ∈ �j

F b−jr = bα,0. So �j
F Xe is an element of bα,0 whose determi-

nant lies in o×. Hence �j
F Xe ∈ Bα,0. This implies that each Ȳi is an isomorphism. From

the above expression for Ȳi, it follows that αi = αi−(jr/e) = · · · = αi−(e−1)(jr/e). Using
the fact that e and j are relatively prime, we have αi = αi+(r/e) = · · · = αi+(e−1)(r/e),
which is equivalent to γ = (α1, . . . , αr/e) ∈ P(n/e) and α = γe.

Suppose that α = γe for some γ ∈ P(n/e). Let g ∈ G. Suppose that Ad g(s + Z) ∈
bγe,−jer(γ). Because

det(�j
E Ad g(s + Z)) ∈ det(�j

Eg�−j
E o

×
EB′

(1)n′ g−1) ⊂ o
× and �j

Ebγe,−jer(γ) = bγe,0,

we have �j
E Ad g(s + Z) ∈ Bγe . By definition, s is E/F -cuspidal in the sense of [41,

§ VI.2]. Also, 1 + s−1Z ∈ b′
(1)n′ , and �−j

E Bγe is G-conjugate to the subgroup denoted
ζ

nd/e
G Iγe,G in [41]. Hence the statement of the lemma for α = γe is equivalent to that of

Lemma VI.3 of [41]. �

The following is a restatement of Lemma 8 of [14].

Lemma 5.5 (cf. [14]). Let Z1, Z2 ∈ b′
(1)n′ ,−(n′j)+1. Then Ad g(s+Z1) = s+Z2 implies

g ∈ G′.

Given parahoric subalgebras b ⊂ g and b′ ⊂ g′, and an integer i, let [bi] and [b′
i]

be the characteristic functions of bi and b′
i, respectively. The following proposition is a

consequence of Lemmas 5.4 and 5.5. Let

Z ∈ b
′
(1)n′ ,−(n′j)+1.

By Lemma 5.5, we have CG(s + Z) = CG′(Z). Fix left Haar measures on G, G′ and
CG′(Z). These determine a G-invariant measure on OG(s + Z) � G/CG′(Z) and a G′-
invariant measure on OG′(Z) � G′/CG′(Z).
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Proposition 5.6. Let Z ∈ �−j
E b′

(1)n′ ,1. Let the measures on OG(s + Z) and OG′(Z) be
as above. Then the following hold.

(1) If α ∈ P(n), µOG(s+Z)([bα,−�jr(α)/e	]) = 0 unless α = (fβ)e for some β ∈ P(n′).

(2) If β ∈ P(n′),

µOG(s+Z)([b(fβ)e,−jr(β)]) = υG(B(n))υG′(B′
(n′))

−1un(q)−1un′(qf )

× u(fβ)e(q)uβ(qf )−1µOG′ (Z)([b′
β,−jr(β)]).

Proof. Part (1) is immediate from Lemma 5.4 (1). For (2), assume that α = (fβ)e

for some β ∈ P(n′). Let dg∗ denote the G-invariant measure on G/G′ determined by
the chosen Haar measures on G and on G′. Let dx′∗ denote the G′-invariant measure
on G′/CG′(Z) determined by the Haar measures on G′ and on CG′(Z). As b(fβ)e is
G-conjugate to bξ(L′β), we may replace b(fβ)e,−jr(β) with bξ(L′β),−jr(β). Then

µOG(s+Z)([bξ(L′β),−jr(β)]) =
∫

G/G′

∫
G′/CG′ (Z)

[bξ(L′β),−jr(β)](Ad(gx′)(s + Z)) dx′∗ dg∗.

Let g ∈ G and x′ ∈ G′. Suppose that Ad(gx′)(s + Z) ∈ bξ(L′β),−jr(β). By Lemma 5.4,
gx′ ∈ Bξ(L′β)G

′. Let g = kg′, k ∈ Bξ(L′β), g′ ∈ G′. Then, since both �−j
E and Bξ(L′β)

normalize bξ(L′β),i, i ∈ Z,

s + Ad(g′x′)(Z) = Ad(g′x′)(s + Z) ∈ Ad k−1(bξ(L′β),−jr(β)) = bξ(L′β),−jr(β).

Since s ∈ b′
β,−jr(β) and Ad(g′x′)(Z) ∈ g′, it follows that Ad(g′x′)(Z) ∈ b′

β,−jr(β). There-
fore, we may rewrite the above integral as

µOG(s+Z)([bξ(L′β),−jr(β)])

= υG/G′(Bξ(L′β)G
′)
∫

G′/CG′ (Z)
[b′

β,−jr(β)](Adx′(Z)) dx′∗

= υG(Bξ(L′β))υG′(B′
β)−1

∫
G′/CG′ (Z)

[b′
β,−jr(β)](Adx′(Z)) dx′∗

= υG(B(n))υG′(B′
(n′))

−1[B(n) : B(fβ)e ]−1[B′
(n′) : B′

β ]

×
∫

G′/CG′ (Z)
[b′

β,−jr(β)](Adx′(Z)) dx′∗.

To finish the proof, note that (3.1) can be used to evaluate the above group indices. �

6. Pure minimal K-types of positive depth

Let E, d, n′, g′, G′, etc., be as in § 3. We will use the notation of § 3 concerning periodic
lattice flags, parahoric subgroups and subalgebras and the associated filtrations.

Given π ∈ E(G) such that ρ(π) > 0 and π contains a pure minimal K-type, there is
a finite family of pure minimal K-types whose multiplicities in π determine the germ
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of the character Θπ of π. This will follow from results of §§ 8 and 12. In this section,
after defining some notation, we recall a result of Howe and Moy which says that any
π as above must contain a particular kind of pure minimal K-type. Then we describe
the above-mentioned family of pure minimal K-types, and give the decomposition of a
particular subspace of the space of π in terms of these K-types.

Let L′1 = L′(1)n′
and L′2 = L′(n′) be the periodic lattice flags in En′

attached to the
partitions (1)n′

and (n′), respectively. Let L1 = ξ(L′1) and L2 = ξ(L′2) be the associated
periodic lattice flags in Fn. Attached to L′h and Lh, h = 1, 2, we have parahoric subgroups
in G′ and G and parahoric subalgebras in g′ and g, respectively. Set

qi = bL1,i, ri = bL2,i, i ∈ Z,

Qi = BL1,i, Ri = BL2,i, i � 0,

If i = 0 in any of the above filtrations, we may suppress the subscript; for example, we
may write r for r0. The intersection of any of the above with g′ will be denoted by the
same notation with a prime added. By (3.2),

q
′
i = qi ∩ g

′ = b
′
(1)n′ ,i

, r
′
i = ri ∩ g

′ = b
′
(n′),i, �Eqi = qi+n′ , �Eri = ri+1, i ∈ Z.

Fix a positive integer j that is relatively prime to e = e(E/F ). Let s ∈ E be defined
as at the beginning of § 5. Note that

s + q−n′j+1 ⊂ �−j
E (o×

E + q1) ⊂ �−j
E Q,

so the coset consists of invertible matrices and thus does not contain any nilpotent
elements. Hence the character χs of Qn′j defined by

χs(x) = ψ(tr(s(x − 1))), x ∈ Qn′j

is an standard minimal K-type. It is easy to see that the K-type is pure (see § 4).
Recall from § 4 that we are denoting the depth of a representation π ∈ E(G) by ρ(π).

Lemma 6.1 (cf. §4 of [17]). Suppose that π ∈ E(G) is such that ρ(π) > 0 and π

contains a pure minimal K-type. Then π contains (Qn′j , χs) for some E, n′, j and s as
above.

Suppose that π ∈ E(G) contains (Qn′j , χs).
Note that every oE-lattice occurring in L′2 occurs in L′1. This implies that each oF -

lattice occurring in L2 also occurs in L1. Hence q = bL1 ⊂ bL2 = r and q1 ⊃ r1. Together
with the above information regarding the effect of left multiplication by �E on qi and ri,
this implies

Rj+1 ⊂ Qn′j+1 ⊂ Qn′j ⊂ Rj .

Hence
V Rj+1

π ⊃ V
Qn′j+1
π �= {0}.
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Let κ(π, Rj) be the representation of Rj given by the action of π|Rj
on V

Rj+1
π . Recall

that, since the lattice flag L′2 has period 1, L2 has period e (see remarks following (3.2)).
As mentioned in § 4, there exists an x ∈ B(G) for which

Rj = Gx,j/e � Gx,(j/e)+ = Rj+1,

By Lemma 4.2, since the period of the lattice flag L1 is n′e and π contains (Qn′j , χs),
it follows that ρ(π) = (n′j)/(n′e) = j/e. On the other hand, since π contains the trivial
representation of Rj+1 = Gx,(j/e)+ , Theorem 5.2 of [30] implies that κ(π, Rj) is a finite
direct sum of unrefined minimal K-types. Because the filtration ri is the standard one
coming from powers of the nilradical of r, these unrefined minimal K-types are standard
minimal K-types. If (χX , Rj) is an standard minimal K-type, let m(κ(π, Rj), χX) denote
the multiplicity of (χX , Rj) in κ(π, Rj).

Given α = (α1, . . . , αr) ∈ P0(n′), let Yα be the upper triangular nilpotent matrix in
g′ defined as in § 2. It is well known that the set {Yα | α ∈ P0(n′)} corresponds bijec-
tively to the set ΩG′(0) of nilpotent G′-orbits in g′. Since R′/R′

1 � GLn′(Fqf ), the set
{Yα | α ∈ P0(n′)} also corresponds bijectively to the set of nilpotent R′/R′

1-orbits in
r′/r′

1.

Lemma 6.2. Every irreducible component of κ(π, Rj) is of the form (Rj , χAd k(s+−j
E Yα))

for some k ∈ R and some α ∈ P0(n′). Furthermore,

m(κ(π, Rj), χAd k(s+−j
E Yα)) = m(κ(π, Rj), χs+−j

E Yα
) ∀k ∈ R.

Proof. Let (Rj , χX) be such that m(κ(π, Rj), χX) �= 0. As π contains (Qn′j , χs) and
(Rj , χX), by results of [3] and [15] (see Theorem 4.1 (2)), there exists g ∈ G such that

Ad g(s + q−n′j+1) ∩ (X + r−j+1) �= ∅.

Choose Y ∈ q−n′j+1 such that Ad g(s + Y ) ∈ X + r−j+1. By Lemma 5.3 (2) (with u = 1),
there exist y ∈ Q1 and Y ′ ∈ q′

−n′j+1 such that s + Y = Ad y(s + Y ′). By Lemma 5.4 (2),
gy ∈ RG′. Write gy = kg′ with k ∈ R and g′ ∈ G′. We have

X ∈ Ad k(s + Ad g′(Y ′)) + r−j+1.

Because �j
EY ′ ∈ q′

1, we have (Ad g′(�j
EY ′))m → 0 as m → ∞. Combining this with

Ad g′(�j
EY ′) ∈ r′, we see that the image of Ad g′(�j

EY ′) in r′/r′
1 is nilpotent. Hence

there exists k′ ∈ R′ and α ∈ P0(n′) such that

Ad g′(Y ′) ∈ Ad k′−1�−j
E Yα + r

′
−j+1.

It follows that
X ∈ Ad(kk′)(s + �−j

E Yα) + r−j+1.

The final statement of the lemma follows from the fact that Rj is normal in R. �
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Corollary 6.3. We have

κ(π, Rj) =
⊕

α∈P0(n′)

m(κ(π, Rj), χs+−j
E Yα

)
⊕

k∈R/CR′ (Yα)R1

χAd k(s+−j
E Yα).

Proof. Fix α ∈ P0(n′). Let k ∈ R be such that χAd k(s+−j
E Yα) = χs+−j

E Yα
. Then

Ad k(s + �−j
E Yα) ∈ s + �−j

E Yα + r−j+1.

Note that, by definition, r is the parahoric b of Lemmas 5.1 and 5.3 in the case u = n′,
and �−j

E Yα ∈ �−j
E b′

(1)n′ ,1 = q′
−n′j+1. By Lemma 5.3 (2),

R1 · (s + �−j
E Yα + r

′
−j+1) = s + �−j

E Yα + r−j+1.

Let k1 ∈ R1 and Z ∈ r′
−j+1 be such that

Ad(k−1
1 k)(s + �−j

E Yα) = s + �−j
E Yα + Z.

Now, since
�−j

E Yα, �−j
E Yα + Z ∈ b

′
(1)n′ ,−n′j+1,

we can apply Lemma 5.5 to conclude that k−1
1 k ∈ G′. We have k−1

1 k ∈ G′ ∩ R = R′, and
therefore k ∈ R1R

′ = R′R1. We now have, setting k′ = k−1
1 k,

Ad k(s + �−j
E Yα) ∈ (Ad k′(s + �−j

E Yα) + r−j+1) ∩ (s + �−j
E Yα + r−j+1),

which implies that
Ad k′(s + �−j

E Yα) ∈ s + �−j
E Yα + r

′
−j+1.

Now k′ commutes with s, and �E belongs to the centre of G′. Hence we have Ad k′(Yα) ∈
Yα + r′

1. That is, k′ ∈ CR′(Yα)R′
1. It follows that k ∈ R1CR′(Yα)R′

1 = CR′(Yα)R1. �

Suppose that π′ ∈ E(G′) contains the pure minimal K-type (Q′
n′j , χ

′
s). The represen-

tation κ(π′, R′
j) of R′

j on V
R′

j+1
π′ decomposes into a direct sum of pure minimal K-types

of the form (R′
j , χ

′
X), X ∈ r′

−j . The following lemma and corollary, whose proofs are
similar to (but easier than) those of Lemma 6.2 and Corollary 6.3, describe those X that
appear and give the decomposition of κ(π′, R′

j).

Lemma 6.4. Each irreducible component of κ(π′, R′
j) is of the form(

R′
j , χ

′
s+−j

E Ad k′(Yα)

)
,

for some α ∈ P0(n′) and some k′ ∈ R′. Furthermore,

m(κ(π′, R′
j), χ

′
s+−j

E Yα
) = m(κ(π′, R′

j), χ
′
s+−j

E Ad k′(Yα)), k′ ∈ R′.

Corollary 6.5. We have

κ(π′, R′
j) =

⊕
α∈P0(n′)

m(κ(π′, R′
j), χ

′
s+−j

E Yα
)

⊕
k∈R′/CR′ (Yα)R′

1

χs+Ad k(−j
E Yα).
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7. Hecke algebra isomorphisms and matching of certain K-types

We continue to use notation from § 6. Set

� = [ 12 (n′j + 1)], m = [ 12n′j] + 1 and q
′⊥
i = qi ∩ g

′⊥, i ∈ Z.

Let

J = 1 + qn′j + q
′⊥
� ,

J+ = 1 + qn′j + q
′⊥
m .

It follows from Lemma 5.1 (2) that Q′
�J = Q� and Q′

mJ+ = Qm. As qi ∩ g′ = q′
i, we have

J ∩ G′ = Q′
n′j . Extend χs to J+ by extending trivially across 1 + q′⊥

m . The representation
σ of J is defined to be χs if J = J+, that is, if � = m. Otherwise, σ is the unique irreducible
component of IndJ

J+
χs [17, § 4]. Set H = H(G//J, σ̃) and H′ = H(G′//Q′

n′j , χ
′
−s).

Theorem 7.1 (cf. [15, 17]). There is an isomorphism η : H′ → H satisfying

supp(η(f ′)) = J supp(f ′)J and supp(η(f ′)) ∩ G′ = supp(f ′)

for f ′ ∈ H′. Furthermore, η is an L2-isometry for the natural L2 structures on H and H′.

Remark 7.2. Howe and Moy state the theorem for H(G//J, σ) and H(G′//Q′
n′j , χ

′
s).

The existence of an isomorphism between our H and H′ having the desired properties is
immediate upon noting that χ−s = χ̃s and if χs is replaced by χ−s then the corresponding
representation of J is σ̃.

Howe and Moy [17, Theorem 4.6] also show that if π ∈ E(G) contains (Qn′j , χs),

then π must contain (J, σ). Therefore, via the Hecke algebra isomorphism η, we obtain

a bijection between the set of π ∈ E(G) that contain (Qn′j , χs) and the set of π′ ∈ E(G′)

that contain (Q′
n′j , χ

′
s). When π and π′ correspond via η, we will write π′ = η∗(π).

We begin with some elementary results giving the decomposition of V
(Q′

n′j
,χ′

s)
π′ as a Q′

�-

space, and a qualitative description of the Q�-spaces contained in V
(Qn′j ,χs)
π . Following

that, in Lemma 7.7 and Corollary 7.8, we show how η matches Q′
�-subspaces of V

(Q′
n′j

,χ′
s)

π′

with Q�-subspaces of V
(σ,J)
π , and compare the dimensions of the matching Q′

�- and Q�-

spaces. Finally, Lemma 7.9 is a technical result that will be used in § 8 to apply results

of this section to obtain relations between the multiplicities m(κ(η∗(π), R′
j), χ

′
s+−j

E Yα
))

and m(κ(π, Rj), χs+−j
E Yα

) for α ∈ P0(n′) (defined as in § 6).

Suppose that π′ ∈ E(G′) contains (Q′
n′j , χ

′
s). Fix a linear character Λs of G′ that

extends χ′
s. Note that π′ ⊗ Λ−1

s contains the trivial representation of Q′
n′j . As 2� � n′j,

the group of characters of Q′
�/Q′

n′j � q′
�/q′

n′j is isomorphic to q′
−n′j+1/q′

−�+1 via

X + q
′
−�+1 �→ χ′

X , where χ′
X(y) = ψ(tr(X(y − 1))), y ∈ Q′

�.
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Hence (Λ−1
s π′) | Q′

� acting on V
Q′

n′j

Λ−1
s π′ decomposes into a direct sum of characters of the

form (Q′
�, χ

′
X), X ∈ q′

−n′j+1. This implies that π′ | Q′
� acting on V

(Q′
n′j

,χ′
s)

π′ is a direct

sum of characters of the form (Q′
�, Λsχ

′
X), X ∈ q′

−n′j+1. Consider the action of π′ | Q′
1 on

V
(Q′

n′j
,χ′

s)
π′ . We have π(k)V (Q′

�,Λsχ′
X)

π′ = V
(Q′

�,Λsχ′
Ad k(X))

π′ , k ∈ Q′
1. Number the Q′

1-orbits

of Q′
�-types occurring in V

(Q′
n′j

,χ′
s)

π′ from 1 to t. To the ith such orbit, attach a (finite)

subset Si of q′
−n′j+1/q′

−�+1 having the property that the orbit coincides with the direct

sum
⊕

X∈Si
V

(Q′
�,Λsχ′

X)
π′ . We will often abuse notation and identify a coset X ∈ Si with

a representative of the coset in q′
−n′j+1.

Lemma 7.3. With notation and assumptions as above,

V
(Q′

n′j
,χ′

s)
π′ =

⊕
1�i�t

⊕
X∈Si

V
(Q′

�,Λsχ′
X)

π′ .

Suppose that X ∈ q−n′j+1. As 2� � n′j, we may define a character of Q� by

χX(y) = ψ(tr(X(y − 1))), y ∈ Q�.

As Λs | Q′
� extends (trivially across J+) to Q′

�J+, given Z ∈ s + q−n′j+1, χZ =
ΛsχZ−s | Q′

�J+ defines a character of Q′
�J+. Because Q� = Q′

�J , Q′
� normalizes J ,

and σ | Q′
� ∩ J = Q′

n′j is a multiple of χs,

σs | J = σ, σs | Q′
� = Λs · 1dim σ

defines an irreducible representation of Q�.
Given X ∈ q−n′j+1, let χX denote the character of Q� that corresponds to the coset

X + q−�+1. Let σs+X = χXσs.

Lemma 7.4. Let τ be an irreducible representation of Q� such that τ | Qn′j is a multiple
of χs | Qn′j . Then there exists X ∈ q−n′j+1 such that τ = σs+X .

Proof. Let τ be as in the statement of the lemma. Let k ∈ Q′
�J+ and y ∈ Q�. Set

X = k − 1 and Y = y − 1. Then k−1y−1ky ∈ 1 + [X, Y ] + qn′j+1, which implies

τ(k−1y−1ky) = χs(k−1y−1ky)1dim τ

= ψ(tr(s[X, Y ]))1dim τ

= ψ(tr([s, X]Y ))1dim τ

= 1dim τ ,

since [s, X]Y ∈ ([s, q′
�] + [s, qm])Y = [s, qm]Y ⊂ q−n′j+m+� = q1. Thus τ(k), k ∈ Q′

�J+

commutes with τ(y) for all y ∈ Q�, forcing τ(k) to be scalar by Schur’s Lemma. Thus
τ | Q′

�J+ is a multiple of a character of Q′
�J+. Note that this, together with Q� = Q′

�J ,
forces τ | J to be irreducible.

Let ωs be the character of Q′
�J+ that is equal to Λs on Q′

�, and χs on J+. Since τ | Qn′j

is a multiple of χs, it follows from above that ω−1
s τ | Q′

�J+ is a multiple of a character
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of Q′
�J+ which is trivial on Qn′j . Note that Q� ⊃ Q′

�J+ ⊃ Qn′j ⊃ Q2�. Thus there exists
X ∈ q−n′j+1 such that ω−1

s τ | Q′
�J+ is a multiple of χX .

As τ | J is irreducible, χ−1
X τ | J is irreducible. Also, χ−1

X τ | J+ is a multiple of χs.
Hence χ−1

X τ | J = σ. Together with the fact that χ−1
X τ | Q′

� is a multiple of Λs, this
implies that χ−1

X τ = σs (by definition of σs). �

Remarks 7.5.

(1) If X ∈ q−n′j+1, σs+X is the unique irreducible representation of Q� whose restric-
tion to Q′

�Qm is a multiple of ωsχX .

(2) Lemma 7.4 gives the form of the Q�-spaces contained in V
(Qn′j ,χs)
π .

It is easy to show the following.

Lemma 7.6. Let X ∈ q−n′j+1. Then

π(k)V (Q�,σs+X)
π = V

(Q�,σAd k(s+X))
π , k ∈ Q1.

For the rest of this section, assume that π ∈ E(G) contains (Qn′j , χs).

Lemma 7.7. Let X ∈ q′
−n′j+1. Set

ϕ′
s+X(x) =

{
υG′(Q′

n′j)
−1(Λ−1

s χ−X)(x) if x ∈ Q′
�,

0 if x ∈ G′ − Q′
�

and

ϕs+X(x) =

{
υG(J)−1σ̃s+X(x) if x ∈ Q�,

0 if x ∈ G − Q�.

Then ϕ′
s+X ∈ H′, ϕs+X ∈ H and η(ϕ′

s+X) = ϕs+X .

Proof. First, note that X ∈ q′
−n′j+1 implies χX | J ≡ 1. As σ̃s+X = χ−X σ̃s, we have

σ̃s+X | J = σ̃s | J = σ̃. Hence it is immediate from the definitions of H′ and H that
ϕ′

s+X ∈ H′ and ϕs+X ∈ H.
Fix g ∈ Q′

�. Set J ′ = Q′
n′j . Note that, as � � 1 and Q′

1 normalizes J ′ and J , J ′gJ ′ = gJ ′

and JgJ = gJ . As discussed in [16,17], there exists a unique f ′
g ∈ H′ that is supported

on gJ ′ and has the property that f ′
g(gy) = υG′(J ′)−1χ′

−s(y) for all y ∈ J ′. As discussed
in [16, pp. 41–45], for g ∈ Q′, in order to define the function fg ∈ H, which is equal
to η(f ′

g), a so-called ‘oscillator’ representation of Q′ is needed. However, the restriction
of the oscillator representation to Q′

1 is trivial, and Q′
� ⊂ Q′

1, so, for g ∈ Q′
�, fg has

a particularly simple form. In fact, fg is the unique function in H whose support lies
in gJ and that satisfies fg(gy) = υG(J)−1σ̃(y), y ∈ J . (We have included the volumes
υG′(J ′) and υG(J) as we have not assumed that they are equal to 1.) Fix a set of coset
representatives {xu} for Q′

�/J ′ � Q�/J . Then

η(ϕ′
s+X) = η

(∑
u

(Λ−1
s χ−X)(xu)f ′

xu

)
=

∑
u

(Λ−1
s χ−X)(xu)fxu .
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As σ̃s+X is the unique irreducible representation of Q� whose restriction to Q′
�J+ is a

multiple of (ΛsχX )̃ � Λ−1
s χ−X , and σ̃s+X | J = σ̃, it follows that

σ̃s+X(xuy) = (Λ−1
s χ−X)(xu)σ̃(y) = υG(J)(Λ−1

s χ−X)(xu)fxu
(y), y ∈ J.

By the above, this implies that η(ϕ′
s+X) = ϕs+X . �

Corollary 7.8. Let X ∈ q′
−n′j+1. Then

dim(V (Q�,σs+X)
π ) = (dimσ) dim(V (Q′

�,Λsχ′
X)

π′ ).

Proof. Let ϕs+X and ϕ′
s+X be as in Lemma 7.7. By definition of ϕs+X , the operator on

(V (J,σ)
π ⊗ W̃ )J corresponding to the element ϕs+X of H is projection onto the subspace

(V (J,σ)
π ⊗ W̃ )Q� � (V (Q�,σs+X)

π ⊗ W̃ )Q� ,

where Q� is acting on W̃ by σ̃s+X . And the operator on (V
(Q′

n′j
,χ′

s)
π′ ⊗ C)Q′

n′j correspond-
ing to the element ϕ′

s+X of H′ is projection onto the subspace

(V
(Q′

n′j
,χ′

s)
π′ ⊗ C)Q′

� � (V (Q′
�,Λsχ′

X)
π′ ⊗ C)Q′

� ,

where Q′
� acts on C by Λ−1

s χ′
−X . By Lemma 7.7, as ϕs+X = η(ϕ′

s+X), the dimensions of
the images of the two projections are equal. �

Lemma 7.9. Let X ∈ q−n′j+1 be such that V
(Q�,σs+X)
π �= 0. There exist k ∈ Q1,

i ∈ {1, . . . , t}, and Xi ∈ Si such that the following hold.

(1) Ad k(s + Xi) ∈ s + X + q−�+1 + q′⊥
−m+1.

(2) V
(Q�,σs+X)
π = π(k)V (Q�,σs+Xi

)
π .

(3) If k0 ∈ Q1 and Z ∈ q′
−n′j+1 are such that V

(Q�,σs+X)
π = π(k0)V

(Q�,σs+Z)
π , then

k0 ∈ kQ′
1Q� and Z ∈ Ad z(Xi) + q′

−�+1 for any z ∈ Q′
1 such that k−1

0 k ∈ zQ�.

Proof. By Lemma 5.1 (4) (with u = 1, Z = 0 and v = 1), there exist k ∈ Q1 and

Y ∈ q′
−n′j+1 such that s+X = Ad k(s+Y ). As Y ∈ q′

−n′j+1, we have V
(Q′

�,Λsχ′
Y )

π �= 0 by

Corollary 7.8 and V
(Q′

n′j
,Λsχ′

Y )
π′ ⊂ V

(Q′
n′j

,χ′
s)

π′ . By Lemma 7.3, there exists i ∈ {1, . . . , t}
and Xi ∈ Si such that V

(Q′
�,Λsχ′

Y )
π′ = V

(Q′
�,Λsχ′

Xi
)

π′ . As Y ∈ Xi + q′
−�+1, it follows that

χY = χXi , so V
(Q�,σs+Y )
π = V

(Q�,σs+Xi
)

π . Hence V
(Q�,σs+X)
π = V

(Q�,σAd k(s+Xi))
π .

Since σAd k(s+Xi) = χAd k(s+Xi)−sσs and σs+X = χXσs, and these two representations
coincide, their characters must coincide. From the remarks following Lemma 7.4, this is
equivalent to

χAd k(s+Xi)−s | Q′
�Qm = χX | Q′

�Qm,

which, as Q′
�Qm = 1 + q′

� + qm, is equivalent to

Ad k(s + Xi) − s ∈ X + q−�+1 + q
′⊥
−m+1.

Hence (1) and (2) both hold.
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For (3), suppose k, i, Xi, Z and k0 are as in the statement of the lemma. Then

V (Q�,σs+Z)
π = π(k−1

0 k)V (Q�,σs+Xi
)

π .

Arguing as above (with Z playing the role of X), results in

Ad(k−1
0 k)(s + Xi) ∈ s + Z + q−�+1 + q

′⊥
−m+1.

As q−�+1 + q′⊥
−m+1 ⊂ q−m+1 and � + m = n′j + 1, we may apply Lemma 5.3 (2), with

u = 1 and v = �, to conclude that there exists x ∈ Q� such that

Ad(x−1k−1
0 k)(s + Xi) ∈ s + Z + q

′
−m+1.

As Z ∈ q′
−n′j+1 and Xi + q′

−m+1 ⊂ q′
−n′j+1, Lemma 5.5 implies x−1k−1

0 k ∈ G′. Since it
is also the case that x−1k−1

0 k ∈ Q1, we have x−1k−1
0 k ∈ Q′

1. Hence k0 ∈ kQ′
1Q�. Let

z = x−1k−1
0 k. Then, as Ad z−1 preserves q−�+1 + q′⊥

−m+1, it follows from above that

s + Ad z−1(Z) = Ad z−1(s + Z) ∈ Q� · (s + Xi) + q−�+1 + q
′⊥
−m+1.

Note that q� = q′
� ⊕ q′⊥

� and s ∈ q′
−n′j commutes with g′, so ad s(q�) ⊂ q′⊥

−�+n′j+1 =
q′⊥

−m+1. And Xi ∈ q−n′j+1 implies ad Xi(q�) ⊂ q−�+1. Thus

Q� · (s + Xi) ⊂ s + Xi + q−�+1 + q
′⊥
−m+1,

from which it follows that

s + Ad z−1(Z) ∈ s + Xi + q−�+1 + q
′⊥
−m+1.

Because s + Ad z−1(Z), s + Xi ∈ g′, and (q−�+1 + q′⊥
−m+1) ∩ g′ = q′

−�+1, this forces
s + Ad z−1(Z) ∈ s + Xi + q′

−�+1. �

8. Comparison of multiplicities of K-types

Let notation be as in §§ 6, 7. Throughout this section we will assume that π ∈ E(G)
contains the pure minimal K-type (Qn′j , χs) and π′ = η∗(π) is the corresponding repre-
sentation of G′.

For convenience of notation, given α ∈ P0(n′), set

mα(π) = m(κ(π, Rj), χs+−j
E Yα

), mα(π′) = m(κ(π′, R′
j), χ

′
s+−j

E Yα
),

Vα = V
(Rj ,χ

s+�
−j
E

Yα
)

π , V ′
α = V

(R′
j ,χ′

s+�
−j
E

Yα
)

π′ .


 (8.1)

Then mα(π) = dim(Vα) and mα(π′) = dim(V ′
α). One of the main results of this section,

Proposition 8.4, gives the relation between mα(π) and mα(π′). In Proposition 8.6, this is
translated into a form in which it will later be applied to compare the germs of Θπ and
Θπ′ , namely a result relating dimensions of subspaces of Vπ and Vπ′ that are invariant
under certain compact open subgroups contained in G(j/e)+ and G′

j+ , respectively.
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Because Rj+1 ⊂ Qn′j+1 ⊂ Qn′j ⊂ Rj and �−j
E Yα ∈ q′

−n′j+1, it follows that

Vα ⊂ V
(Qn′j ,χs)
π and V ′

α ⊂ V
(Q′

n′j
,χ′

s)
π′ .

As shown in § 7, the Hecke algebra isomorphism η matches Q′
�-types contained in

V
(Q′

n′j
,χ′

s)
π′ with Q�-types contained in V

(J,σ)
π ⊂ V

(Qn′j ,χs)
π . In order to compare mα(π)

and mα(π′), we must express Vα and V ′
α in terms of Q�-types and Q′

�-types, respectively.
It is fairly easy to see that if j � 2, Q� ⊂ R1, which implies that Vα and V ′

α are Q�-stable
and Q′

�-stable, respectively. However, if j = 1, this is not the case, so it is necessary
to work with the smallest Q�-stable subspace of V

(Qn′j ,χs)
π that contains Vα, and the

smallest Q′
�-stable subspace of V

(Q′
n′j

,χ′
s)

π′ that contains V ′
α. Set

U ′
α =

∑
x∈Q′

�/(Q′
�∩R′

1)

π′(x)V ′
α,

Uα =
∑

x∈Q�/(Q�∩R1)

π(x)Vα,

Sα
i = Si ∩ (�−j

E Yα + r
′
−j+1 + q

′
−�+1), 1 � i � t,

W ′
α =

⊕
1�i�t

⊕
X∈Sα

i

V
(Q′

�,χ′
s+X)

π′ ,

Wα =
∑

y∈R1/(R1∩Q�)

π(y)
⊕

1�i�t

⊕
X∈Sα

i

V (Q�,σs+X)
π .

Lemma 8.1. Let α ∈ P0(n′). Then

Wα =
⊕

y∈R1/(R1∩Q′
1Q�)

π(y)
⊕

1�i�t

⊕
X∈Sα

i

V (Q�,σs+X)
π .

Proof. Let
W 0

α =
⊕

1�i�t

⊕
X∈Sα

i

V (Q�,σs+X)
π .

By definition, W 0
α is a Q�-space. Suppose that k ∈ R′

1 and X ∈ Sα
i for some i. Then

Ad y(X) − �−j
E Yα ∈ X − �−j

E Yα + r
′
−j+1,

which implies that π(k)V (Q�,σs+Xi
)

π ⊂ W 0
α. Hence W 0

α is R1 ∩ (Q′
1Q�)-stable, as it is both

Q�- and R′
1-stable.

Suppose that y ∈ R1 is such that W 0
α ∩ π(y)W 0

α �= {0}. Then there are i, h ∈ {1, . . . , t},
Xi ∈ Si, and Zh ∈ Sh, such that

V
(Q�,σs+Xi

)
π = π(y)V

(Q�,σs+Zh
)

π .

Applying Lemma 7.9 with X = Xi, Z = Zh, k = 1 and k0 = y results in y ∈ kQ′
1Q� =

Q′
1Q�. Hence y ∈ R1 ∩ (Q′

1Q�). �
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Lemma 8.2. Let α ∈ P0(n′). Then Uα = Wα and U ′
α = W ′

α.

Proof. We will omit the proof of U ′
α = W ′

α as it is similar to, but easier than, that of
Uα = Wα.

Set Y = �−j
E Yα. Since Vα is a sum of copies of (Rj , χs+Y ), V

(Q�,σs+X)
π ∩ Uα �= 0 if and

only if (Q�, σs+X) is a component of (IndQ�Rj

Rj
χs+Y )|Q�

� IndQ�

Rj∩Q�
χs+Y . By Frobenius

reciprocity, this will be the case if and only if χs+Y |Rj∩Q�
is a component of σs+X |Rj∩Q�

.
Note that σs+X |Rj∩Q�

is a multiple of χs+X |Rj∩Q�
. The characters χs+Y and χs+X agree

on Rj ∩ Q� if and only if X − Y ∈ r−j+1 ∩ q−�+1. Hence, as a Q�-space, Uα is a sum of
those spaces V

(Q�,σs+X)
π where X ∈ q−n′j+1 is such that X ∈ Y + r−j+1 + q−�+1.

Suppose that i ∈ {1, . . . , t}, Xi ∈ Sα
i and y ∈ R1. Then, by definition of Sα

i , since
R1 · (s + Y ) ⊂ s + Y + r−j+1, and r−j+1 and q−�+1 are R1-stable,

Ad y(s + Xi) ∈ Ad y(s + Y + r
′
−j+1 + q

′
−�+1) ⊂ s + Y + r−j+1 + q−�+1.

It follows that π(y)V (Q�,σs+Xi
)

π ⊂ Uα, which, by definition of Wα, implies Wα ⊂ Uα.
It remains to show that Uα ⊂ Wα. Let X ∈ q−n′j+1 be such that X − Y ∈

r−j+1 + q−�+1. In light of the above description of Uα as a Q�-space, it suffices to show
that V

(Q�,σs+X)
π ⊂ Wα for all such X. By Lemma 7.9, there exists k ∈ Q1, i ∈ {1, . . . , t},

and Xi ∈ Si such that

Ad k(s + Xi) ∈ s + X + q−�+1 + q
′⊥
−m+1 and V (Q�,σs+X)

π = π(k)V (Q�,σs+Xi
)

π .

Adding an element of q−�+1 to X will not affect σs+X , or the above inclusion and identity.
As X ∈ Y + r−j+1 + q−�+1, there is therefore no loss of generality in assuming that
X ∈ Y + r−j+1. By Lemma 5.3 (2), s + Y + r−j+1 = R1 · (s + Y + r′

−j+1). Thus there
exists x ∈ R1 and Y0 ∈ r′

−j+1 such that s + X = Adx(s + Y + Y0). This implies

V (Q�,σs+X)
π = π(x)V (Q�,σs+Y +Y0 )

π .

By Lemma 7.9 (3), with k0 = x, if z ∈ Q′
1 is such that x−1k ∈ zQ�, then

Y + Y0 ∈ Ad z(Xi) + q
′
−�+1,

which, as Y0 ∈ r′
−j+1 implies that Ad z(Xi) + q′

−�+1 ∈ Sα
i . We have

V (Q�,σs+X)
π = π(x)π(x−1kQ�)V

(Q�,σs+Xi
)

π = π(x)V
(Q�,σs+Ad z(Xi))
π ⊂ Wα.

�

Lemma 8.3. Let α ∈ P0(n′).

(1) dim(Uα) = [Q� : Q� ∩ R1][CQ′
�
(Yα) : CQ′

�
(Yα) ∩ R′

1]
−1 dim(Vα).

(2) dim(U ′
α) = [Q′

� : Q′
� ∩ R′

1][CQ′
�
(Yα) : CQ′

�
(Yα) ∩ R′

1]
−1 dim(V ′

α).
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Proof. For (1), recall that, as shown in the proof of Corollary 6.3, if k ∈ R and

χAd k(s+−j
E Yα) and χs+−j

E Yα

agree on Rj , then k ∈ CR′(Yα)R1. Hence it follows from the definition of Uα that

dim(Uα)
dim(Vα)

= [Q� : Q� ∩ (CR′(Yα)R1)] = [Q� : CQ′
�
(Yα)(Q� ∩ R1)].

The proof of (2) is similar. �

Proposition 8.4. Let α ∈ P0(n′) and let mα(π) and mα(π′) be as in (8.1). Then

mα(π) = [Q1 : R1]−1[Q′
1 : R′

1][Q1 : Q�][Q′
1 : Q′

�]
−1(dimσ)mα(π′)

= qfn′(n−n′)(j−1)/2mα(π′).

Proof. It follows from Lemmas 8.2 and 8.3 that V ′
α = {0} if and only if Vα = {0}.

Furthermore, if V ′
α �= {0}, then

mα(π)
mα(π′)

=
[Q� : R1 ∩ Q�]−1 dim(Wα)
[Q′

� : R′
1 ∩ Q′

�]−1 dim(W ′
α)

.

As [R1 : R1 ∩ (Q′
1Q�)] = [R1 : R1 ∩ Q�][R′

1 : R′
1 ∩ Q′

�]
−1, by Corollary 7.8, the definition

of W ′
α, and Lemma 8.1,

dim(Wα) = [R1 : R1 ∩ Q�][R′
1 : R′

1 ∩ Q′
�]

−1(dimσ) dim(W ′
α).

Combining this with the above gives

mα(π)
mα(π′)

= [R1 : R1 ∩ Q�][Q� : Q� ∩ R1]−1[R′
1 : R′

1 ∩ Q′
�]

−1[Q′
� : Q′

� ∩ R′
1](dimσ),

which, together with

[R1 : R1 ∩ Q�][Q� : R1 ∩ Q�]−1 = [Q1 : R1]−1[Q1 : Q�],

yields the first equality in the statement of the proposition.
Note that

[Qi : Qi+1] = [b(f)n′e : b(f)n′e,1] = |glf (o/p)|n′e = qfn,

[Q′
i : Q′

i+1] = [b′
(1)n′ : b

′
(1)n′ ,1] = |oE/pE |n′

= qfn′
, i � 1,

and

[Q� : Qm] = [Q′
�J : Q′

m(J ∩ Qm)] = [Q′
� : Q′

m][J : J ∩ Qm].

Hence, as dim σ = [J : J ∩ Qm]1/2 and � + m = n′j + 1, we have

[Q1 : Q�][Q′
1, Q

′
�]

−1(dimσ) = qf(n−n′)(n′j−1)/2

In view of this, after using (3.1) to evaluate the indices

[Q1 : R1] = [B(f)n′e,1 : B(fn′)e,1], [Q′
1 : R′

1] = [B′
(1)n′ ,1 : B′

(n′),1],

we obtain the second equality in the statement of the proposition. �
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Recall that r(β) denotes the length of a partition β.

Lemma 8.5. Let β ∈ P(n′) and γ ∈ P0(n′). If k ∈ R, then

χAd k(s+−j
E Yγ) | Bξ(L′β),jr(β)+1 ≡ 1 ⇔ k ∈ Bξ(L′β){k′ ∈ R′ | Ad k′(Yγ) ∈ b

′
β}.

Proof. The restriction of the character to Bξ(L′β),jr(β)+1 is trivial if and only if

Ad k(s + �−j
E Yγ) ∈ (bξ(L′β),jr(β)+1)

∗ = bξ(L′β),−jr(β).

As �−j
E Yγ ∈ q′

−n′j+1, Lemma 5.4 (2) implies that k ∈ Bξ(L′β)G
′. By assumption, k ∈ R.

Thus k ∈ Bξ(L′β)R
′. Choose k′ ∈ R′ such that kk′−1 ∈ Bξ(L′β). Then

Ad k′(s + �−j
E Yγ) = s + �−j

E Ad k′(Yγ) ∈ bξ(L′β),jr(β) ∩ g
′ = b

′
β,jr(β)

and s ∈ q′
−n′j = �−j

E b′
(1)n′ ⊂ �−j

E b′
β . Hence Ad k′(Yγ) ∈ b′

β . �

Proposition 8.6. Let α ∈ P(n). Then dim(V Bα,�jr(α)/e�+1
π ) is equal to

qfn′((n−n′)j−e+1)/2u(fβ)e(q)uβ(qf )−1 dim(V
B′

β,jr(β)+1

π′ )

if α = (fβ)e for some β ∈ P(n′), and zero otherwise.

Proof. Let α ∈ P(n). Recall (see § 4) that there exists x in the Bruhat–Tits building
B(G) such that gx,t+ = bα,�tr(α)	+1, t ∈ R. Suppose that π has non-zero Bα,�jr(α)/e	+1-
fixed vectors. Then π has non-zero Gx,(�jr(α)/e	/r(α))+-fixed vectors. It follows from the
definition of depth that ρ(π) � �jr(α)/e�/r(α). By Lemma 4.2, ρ(π) = j/e, so

j

e
� �jr(α)/e�

r(α)
.

As j and e are relatively prime, the latter quantity is at most j/e, with equality if and
only if e divides r(α). Thus V

Bα,�jr(α)/e�+1
π = {0} whenever e does not divide r(α).

Assume that e divides r(α) and π has non-zero Bα,jr(α)/e+1-fixed vectors. As ρ(π) =
j/e, by Theorem 5.2 (2) of [29], the action of Bα,jr(α)/e on V

Bα,(jr(α)/e)+1
π contains a stan-

dard minimal K-type (Bjr(α)/e, χX), where X ∈ b−jr(α)/e. Any two unrefined minimal
K-types contained in π are associates of each other (see Theorem 4.1 (2)). This means
that

G · (s + q−n′j+1) ∩ (X + bα,−(jr(α)/e)+1) �= ∅.

As X ∈ b−jr(α)/e, this implies

G · (s + q
′
−n′j+1) ∩ bα,−jr(α)/e �= ∅,

By Lemma 5.4 (1), α = (fβ)e for some β ∈ P(n′).
To finish, assume that α = (fβ)e for some β ∈ P(n′). Note that �jr(α)/e� = jr(β).

In the statement of the proposition, we can replace B(fβ)e,jr(β)+1 by Bξ(L′β),jr(β)+1, as
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these two subgroups are G-conjugate. We know that V
B

ξ(L′β),jr(β)+1
π is equal to the space

of Bξ(L′β),jr(β)+1-fixed vectors in the space V
Rj+1
π of κ(π, Rj). Let γ ∈ P0(n′). Set

Aγ,β = {k ∈ R′ | Ad k(Yγ) ∈ b
′
β}.

It is easy to see that Bξ(L′β)Aγ,β is right CR′(Yγ)R1-invariant. Let u(γ, β) be the car-
dinality of the image of Aγ,β in R′/CR′(Yγ)R′

1. Then the cardinality of the image of
Bξ(L′β)Aγ,β in R/CR′(Yγ)R1 is equal to [Bξ(L′β) : B′

βR1]u(γ, β).
It now follows from Corollary 6.3 and Lemma 8.5 that

dim(V
B

ξ(L′β),jr(β)+1
π ) = [Bξ(L′β) : B′

βR1]
∑

γ∈P0(n′)

mγ(π)u(γ, β).

Similarly, Corollary 6.5 implies

dim(V
B′

jr(β)+1

π′ ) =
∑

γ∈P0(n′)

mγ(π′)u(γ, β).

After comparing the above two dimensions via Proposition 8.4, we obtain

dim(V
B

ξ(L′β),jr(β)+1
π ) = [Bξ(L′β) : B′

βR1]qfn′(n−n′)(j−1)/2 dim(V
B′

jr(β)+1

π′ ).

To complete the proof, note that

[Bξ(L′β) : B′
βR1]

= [Bξ(L′β) : B′
βBξ(L′(n′)),1]

= [Bξ(L′β) : Bξ(L′(n′)),1][B
′
β : B′

(n′),1]
−1

= [B(fβ)e : B(1)n,1][B′
β : B′

(1)n′ ,1]
−1[B(1)n,1 : B(fn′)e,1][B(1)n′ ,1 : B(n′),1]−1

= u(fβ)e(q)uβ(qf )−1qfn′(n−n′−e+1)/2 by (3.1).

�

9. Varying Hecke algebra isomorphisms

In [17], Howe and Moy construct refined minimal K-types and the corresponding Hecke
algebra isomorphisms inductively. As a result, in some cases, the Hecke algebra iso-
morphism η of Theorem 7.1 must be replaced by a slightly different Hecke algebra iso-
morphism, which we call η̇. Suppose that π′ and π̇′ ∈ E(G′) correspond via η and η̇,
respectively, to π ∈ E(G). In § 12, the results of § 8 will be applied to match the germs of
Θπ and Θπ′ . The same kinds of arguments cannot be used to match the germs of Θπ and
Θπ̇′ , due to the fact that the analogues, relative to η̇, of the results of § 8 may not involve
enough different K-types to determine the germs of the two characters. An essential step
in the proof of Theorem 14.1 requires matching of the germs of Θπ and Θπ̇′ . This can
be done using the results of § 12 as a consequence of Proposition 9.2, which says that π′

and π̇′ are equivalent.
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Let fo be a positive integer such that f divides fo and fo divides n/e. Let
L′3 = L′(fo/f)n/efo be the periodic lattice flag in En′

attached to the partition (fo/f)n/efo

of n′ (see § 3). Let L3 be the periodic lattice flag in Fn defined by L3 = ξ(L′3), where
ξ is as in § 3. Attached to L′3 and L3, we have parahoric subgroups in G′ and G and
parahoric subalgebras in g′ and g. Set

q̇
′
i = bL′3,i, q̇i = bL3,i, i ∈ Z,

Q̇′
i = BL′3,i, Q̇i = BL3,i, i � 1.

With these definitions, q̇i ∩ g′ = q̇′
i, i ∈ Z. Also, q̇ is G-conjugate to b(fo)n/fo . Since L′3

has period n/efo, by (3.2),

�E q̇
′
i = q̇

′
i+n/efo

and �E q̇i = q̇i+n/efo
, i ∈ Z.

Hence
s + q̇−(nj/efo)+1 ⊂ �−j

E (o×
E + q̇1) ⊂ �−j

E Q̇,

which implies that the coset consists of invertible matrices and therefore cannot con-
tain any nilpotent elements. Thus the character χs of Q̇nj/efo

defined by χs(x) =
ψ(tr(s(x − 1))), x ∈ Q̇nj/efo

is a standard minimal K-type. The restriction χ′
s of χs

to Q̇′
nj/efo

is also a standard minimal K-type (of G′).
Set �o = �( 1

2 (nj/efo) + 1)� and mo = �nj/2efo� + 1 and

J̇ = 1 + q̇
′
nj/efo

+ q̇
′⊥
�o

, J̇+ = 1 + q̇
′
nj/efo

+ q̇
′⊥
mo

.

The character χs of Q̇nj/efo
extends trivially across 1 + q̇′⊥

mo
to give a character (also

denoted by χs) of J̇+. Define the representation σ̇ of J̇ to be χs if J̇ = J̇+ (that is, if
�o = mo). Otherwise, σ̇ is the unique irreducible subrepresentation of IndJ̇

J̇+
χs.

Let Ḣ = H(G//J̇, ˜̇σ) and Ḣ′ = H(G′//Q̇′
nj/efo

, χ′
−s).

Theorem 9.1 (cf. Theorem 4.9 of [17]). There exists an isomorphism η̇ : Ḣ′ → Ḣ
satisfying

supp(η̇(f ′)) = J̇ supp(f ′)J̇ and supp(η̇(f ′)) ∩ G′ = supp(f ′)

for f ′ ∈ Ḣ′. Furthermore, η̇ is an L2-isometry for the natural L2-structures on Ḣ and Ḣ′.

We remark that Howe and Moy use the notation eη for the isomorphism η̇, and their e

is our n/efo. By Theorem 4.10 of [17], if π ∈ E(G) contains (Q̇nj/efo
, χs), then π contains

(J̇ , σ̇). Thus η̇ gives rise to a bijection between the set of (equivalence classes of) π ∈ E(G)
that contain (Q̇nj/efo

, χs) and the set of (equivalence classes of) π̇′ ∈ E(G′) that contain
(Q̇′

nj/efo
, χ′

s). When π and π̇′ correspond to each other via η̇, we write π̇′ = η̇∗(π).
Recall (see § 7) that L′2 = L′(1)n′

, L2 = ξ(L′(1)n′
), qi = bL2,i i ∈ Z, and Qi = BL2,i,

i � 0. Every oE-lattice occurring in L′2 occurs in L′3. This implies that every oF -lattice
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occurring in L2 occurs in L3. Hence q ⊂ q̇. And Qn′j = 1 + �j
Eq ⊂ 1 + �j

E q̇ = Qjn/efo
,

so any representation that contains (Q̇nj/efo
, χs) also contains (Qn′j , χs). Let η : H′ → H

be the Hecke algebra isomorphism of Theorem 7.1.

Proposition 9.2. Suppose that π ∈ E(G) contains (Q̇nj/efo
, χs). Let π′ = η∗(π) and

π̇′ = η̇∗(π). Then π′ � π̇′.

Proof. Let J ′ = Q′
n′j and J̇ ′ = Q̇′

nj/efo
. By above, J ′ ⊂ J̇ ′.

Note that J̇ ′ normalizes J , as J̇ ′ ⊂ Q̇′
1 ⊂ Q′

1 and Q′
1 normalizes J . Set J0 = J̇ ′J .

Let σ be the representation of J defined in § 7. Define an extension σext of σ to J0

by σext(xy) = χ′
s(x)σ(y), x ∈ J̇ ′ and y ∈ J . Next, set J = J̇J . Howe and Moy treat

three separate cases. This is not really necessary, as we can always define J . In the
case where j is even, J is just J̇ . In all cases (see the proof of Theorem 4.9 in [17]),
IndJ

J̇
σ̇ � IndJ

J0
σext. Hence

Ḣ � H(G//J , IndJ
J̇

σ̇) � H(G//J0, σext).

For the remainder of the proof we will identify Ḣ with the subalgebra H(G//J0, σext)
of H.

Given g in the support of H′, let f ′
g be the unique function in H′ such that f ′

g(g) = 1
and f ′

g is supported on J ′gJ ′. Set

Λ′ = υG′(J̇ ′)−1
∑

g∈J̇′/J ′

χ′
s(g)−1f ′

g.

This looks slightly different from the formula of Howe and Moy because we are using
the Hecke algebras with the contragredient representations χ′−1

s , σ̃, etc., and because we
have not assumed that Haar measure on G′ is normalized so that J̇ ′ has volume one.
Since Λ′ is equal to υG′(J̇ ′)−1χ′−1

s on J̇ ′, and zero elsewhere, Λ′ is the identity element
of Ḣ′. Also,

Ḣ′ = {Λ′ ∗ f ′ ∗ Λ′ | f ′ ∈ H′}.

Set Λ = η(Λ′). Let g ∈ J̇ ′. Then η(f ′
g) = υG(J)−1υG′(J ′)fg, where fg ∈ H is such that

fg(g) = 1dim σ̃ and fg is supported on J ′gJ ′ = gJ ′. We remark that the definition of η(f ′
g)

for more general g can be quite complicated (see [15, pp. 42–45]). But J̇ ′ ⊂ Q̇′ ⊂ Q′
1

guarantees that the oscillator representation that normally appears in η(f ′
g) is trivial for

g ∈ J̇ ′, and thus η(f ′
g) is as above. Hence, as J0/J � J̇ ′/J ′,

Λ = υG(J)−1υG′(J ′)υG′(J̇ ′)−1
∑

g∈J̇′/J ′

χ′
s(g)−1fg

= υG(J0)−1
∑

g∈J̇′/J ′

σ̃ext(g)fg

=

{
υG(J0)−1σ̃ext on J0,

0 on G − J0.
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That is, Λ is the identity element of Ḣ. Also, Ḣ = {Λ ∗ f ∗ Λ | f ∈ H} and the Hecke
algebra isomorphism η̇ is the restriction of η to Ḣ.

Let r, ṙ, r′ and ṙ′ be the representations of H, Ḣ, H′ and Ḣ′ associated to π, π̇, π′,
and π̇′, respectively.

Let W̃ be the space of σ̃ext. The spaces of r and ṙ are (Vπ ⊗ W̃ )J � (V (J,σ)
π ⊗ W̃ )J

and (Vπ ⊗ W̃ )J0 � (V (J0,σext)
π ⊗ W̃ )J0 , respectively, where J0 acts via π | J0 on Vπ and

by σ̃ext on W̃ . Furthermore, if f ∈ H, ṙ(Λ ∗ f ∗ Λ) = r(Λ ∗ f ∗ Λ) | (Vπ ⊗ W̃ )J0 .
Let J̇ ′ act on C via χ′−1

s . Then the spaces of r′ and ṙ′ are (Vπ′ ⊗ C)J′ � V
(J′,χ′

s)
π′ and

(Vπ̇′ ⊗ C)J̇′ � V
(J̇′,χ′

s)
π̇′ , respectively.

Since π′ = η∗(π) and π̇′ = η̇∗(π), there exist isomorphisms

T : (Vπ′ ⊗ C)J′ → (Vπ ⊗ W̃ )J such that T ◦ r′(f ′) = r(η(f ′)) ◦ T, f ′ ∈ H′,

Ṫ : (Vπ̇′ ⊗ C)J̇′ → (Vπ ⊗ W̃ )J̇′J such that Ṫ ◦ ṙ′(ḟ ′) = ṙ(η̇(ḟ ′)) ◦ Ṫ , ḟ ′ ∈ Ḣ′.

Set T ′ = Ṫ−1 ◦ T | (Vπ′ ⊗ C)J̇′
. The representation of Ḣ′ associated to π′ is given by

ḟ ′ �→ r′(ḟ ′) | (Vπ′ ⊗ C)J̇′
. To see that this representation is equivalent to ṙ′, it suffices to

show that

T ′ ◦ r′(Λ′ ∗ f ′ ∗ Λ′) | (Vπ′ ⊗ C)J̇′
= ṙ′(Λ′ ∗ f ′ ∗ Λ′) ◦ T ′ ∀f ′ ∈ H′,

and this follows easily from the intertwining properties of T and Ṫ and the relation
between r | Ḣ and ṙ. Thus π′ � π̇′. �

10. Multiplicities of K-types—the depth-zero pure case

Let π ∈ E(G) be such that the depth ρ(π) of π is zero and such that π contains a
pure minimal K-type. In this section, we study the dimension of the subspace V

Bα,1
π of

Bα,1-fixed vectors the space Vπ of π, for α ∈ P0(n). Via a Hecke algebra isomorphism, π

corresponds to a unipotent representation π′ of a general linear group over an unramified
extension of F . In Proposition 10.8, we show that if the dimension of V

Bα,1
π is non-zero,

it is an explicit multiple of the dimension of the space of B′
β,1-fixed vectors in the space

Vπ′ for some β ∈ P0(n′).
There exists a natural number d dividing n, together with an irreducible cuspidal

representation σ0 of GLd(Fq), such that, if n′ = n/d, π contains (B(d)n′ , σ), where σ is
the inflation of the n′-fold tensor product of σ0 to B(d)n′ . As B(n),1 ⊂ B(d)n′ ,1, it follows
that V

B(n),1
π �= 0. Let κ(π, B(n)) denote the representation of B(n) obtained by restricting

the action of π|B(n) to V
B(n),1
π .

Lemma 10.1. The minimal K-type (B(d)n′ , σ) occurs with positive multiplicity in each
irreducible component of κ(π, B(n)).

Proof. Let V = V
B(n),1
π and κ = κ(π, B(n)). Let τ be any irreducible component of κ.

By Theorem 3.5 of [30], τ contains an unrefined minimal K-type of depth zero of a para-
horic subgroup Gx,0 ⊂ B(n). After replacing Gx,0 by a B(n)-conjugate, we may assume
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that Gx,0 = Bα for some α ∈ P(n). Thus τ contains an irreducible representation ξ

of Bα which is trivial on Bα,1 and is the inflation of an irreducible cuspidal represen-
tation of Bα/Bα,1. By Proposition 6.2 of [30], all unrefined minimal K-types occur-
ring in κ are associates of (Bα, ξ). Therefore (see § 4 for the definition of associate),
Bα/Bα,1 � B(d)n′ /B(d)n′ ,1 and ξ and σ are inflations of equivalent cuspidal representa-
tions. This implies that Bα = B(n)d′ and σ � ξ. �

Let E/F be the unramified extension of degree d, embedded in gln(F ) as in § 3.
Let G′ = GLn′(E). In this section, we will be comparing properties of κ(π, B(n)) and
κ(π′, B(n′)) for some irreducible unipotent representation π′ of G′. Set

H = H(G//B(d)n′ , σ̃), H0 = H(B(n)//B(d)n′ , σ̃),

H′ = H(G′//B′
(1)n′ ), H′

0 = H(B′
(n′)//B′

(1)n′ ).

It is clear that H0 and H′
0 are subalgebras of H and H′, respectively. Let P = P(d)n′ ,

G′ = B′
(n′)/B′

(n′),1 � GLn′(Fqd), and B′ = B(1)n′ /B(n′),1. Then B′ is a Borel subgroup of
G′. Note that

H0 � H(G//P, σ̃) and H′
0 � H(G′//B′).

Theorem 10.2 (cf. Theorem 2.1.2 of [15]). There is an isomorphism η : H′ → H
satisfying

supp(η(f ′)) = B(d)n′ supp(f ′)B(d)n′ and supp(η(f ′)) ∩ G′ = supp(f ′)

for f ′ ∈ H′. The isomorphism η is an L2-isometry for the natural L2 structures on H and
H′. Furthermore, the restriction η0 of η to H′

0 is an isomorphism of H′
0 onto H0 which

preserves the natural L2-structures on H′
0 and H0.

Via the Hecke algebra isomorphism η, we obtain a bijection between the set of π ∈ E(G)
that contain (B(d)n′ , σ) and the set of π′ ∈ E(G′) that contain the trivial representation of
the Iwahori subgroup B′

(1)n′ of G′. When π and π′ correspond via η, we write π′ = η∗(π).
Similarly, η0 gives rise to a bijection between the set of representations of G having the
property that every irreducible component contains (P, σ) and the set of representations
of G′ having the property that every irreducible component contains the trivial represen-
tation of B′. When τ and τ ′ correspond via η0, we write τ ′ = η∗

0(τ) or τ = η−1∗
0 (τ ′).

Lemma 10.3. Suppose that π ∈ E(G) contains (B(d)n′ , σ). Let π′ = η∗(π). Then

κ(π′, B′
(n′)) = η∗

0(κ(π, B(n))).

Proof. The representation π corresponds to an irreducible representation of H whose
restriction to H0 corresponds to the representation of B(n) arising via restriction of
κ(π, B(n)) to the (B(d)n′ , σ)-isotypic subspace of V

B(n),1
π . By Lemma 10.1, this iso-

typic subspace is all of V
B(n),1
π . Similarly, the representation of H′

0 obtained by restricting
the representation of H′ coming from π′ corresponds to κ(π′, B′

(n′)). As π′ = η∗(π) and
η0 = η|H′

0
, the lemma follows. �
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As the restriction of κ(π, B(n)) to B(n),1 is iso-trivial and B(n)/B(n),1 � GLn(Fq),
whenever it is convenient, we will view κ(π, B(n)) as a representation of G = GLn(Fq).
Let α ∈ P(n). Then

B(n),1 ⊂ Bα,1 ⊂ Bα ⊂ B(n)

and Pα = Bα/B(n),1 is a standard parabolic subgroup of G with standard Levi compo-
nent Mα � Bα/Bα,1 and unipotent radical Nα � Bα,1/B(n),1. And hence V

Bα,1
π can be

viewed as the space of Nα-invariant vectors in the space of the representation κ(π, B(n))
of G. In view of Lemma 10.3, in order to compare multiplicities of trivial represen-
tations of pro-unipotent radicals of parahoric subgroups in π and η∗(π), it suffices to
compare multiplicities of trivial representations of finite unipotent radicals in κ(π, B(n))
and η∗

0(κ(π, B(n))). Determining the relation between η∗
0 and twisted induction allows us

to carry out the comparison.
Suppose that L = L(Fq) is a subgroup of G such that L is a Levi factor of a parabolic

subgroup of GLn(F̄q) such that L is defined over Fq (the parabolic subgroup need not be
defined over Fq). That is, L is the centralizer of some torus in G. The twisted induction
map RG

L defined in [23] takes virtual representations of L to virtual representations of
G. In the special case where L is a Levi subgroup of a parabolic subgroup of G, RG

L
coincides with parabolic induction (also known as Harish-Chandra induction). If L = T
is a Cartan subgroup of G, then RG

T is known as Deligne–Lusztig induction. Whenever
convenient, we will identify a virtual representation of a finite reductive group with the
corresponding class function.

Recall that an irreducible representation of a finite general linear group is unipotent if
and only if it contains the trivial representation of a Borel subgroup. Let Ĝ′

unip denote the
set of (equivalence classes of) unipotent representations of G′. Any elliptic Cartan sub-
group T0 of GLd(Fq) is isomorphic to F×

qd . As σ0 is an irreducible cuspidal representation
of GLd(Fq), there exists a character ν of T0 � F×

qd , which is not fixed by any non-trivial
element of Gal(Fqd/Fq), such that

σ0 � (−1)d−1R
GLd(Fq)
T0

(ν).

Define a character ν′ of G′ by ν ◦ det′, where det′ is the determinant on G′.

Lemma 10.4. If τ ′ ∈ Ĝ′
unip, then τ ′ = η∗

0((−1)n−n′
RG

G′(ν′ ⊗ τ ′)).

Proof. Given α ∈ P0(n′), let P ′
α be the associated standard parabolic subgroup of G′.

The group W ′ of permutation matrices in G′ is isomorphic to the Weyl group of G′. If
α ∈ P0(n), let W ′

α = W ′ ∩ P ′
α. As shown in [15, Appendix 1], there is a unique bijection

τ ′ ↔ ξ between Ĝ′
unip and the set Ŵ ′ of irreducible representations of W ′, such that

dim(HomG′(τ ′, IndG′

P′
α
(1))) = dim(HomW ′(ξ, IndW ′

W ′
α
(1))) ∀α ∈ P0(n′).
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Similarly (see [15, Chapter 1, § 5]), there is an analogous bijection between the set of
irreducible constituents of IndG

P(σ) and Ŵ ′. The Hecke algebra isomorphism η0 satisfies

dim(HomG(η−1∗
0 (τ ′), η−1∗

0 (IndG′

P′
α
(1)))) = dim(HomG′(τ ′, IndG′

P′
α
(1)))

∀α ∈ P0(n′), τ ′ ∈ Ĝ′
unip, (10.1 a)

dim η−1∗
0 (τ ′) = dimσ[G : P][G′ : B′]−1 dim τ ′ ∀τ ′ ∈ Ĝ′

unip. (10.1 b)

Any map from Ĝ′
unip to the set of irreducible components of IndG

P σ that satisfies (10.1 a)
is a bijection. We will show that the map τ ′ → (−1)n−n′

RG
G′(ν′ ⊗ τ ′) takes elements of

Ĝ′
unip to irreducible components of IndG

P σ and satisfies (10.1) (with η−1∗
0 replaced by

(−1)n−n′
RG

G′(ν′ ⊗ (·))).
If H is a finite group, let 〈·, ·〉H denote the usual inner product on the space of class

functions on H. Given w ∈ W ′, let Tw be the Cartan subgroup of G′ of type w (see [24]
for the definition). Given ξ ∈ Ŵ ′, let

τξ =
∑

w∈W ′

trace ξ(w)RG′

Tw
(1).

By Theorem 2.2 of [24], τξ ∈ Ĝ′
unip. It is well known that

IndG′

P′
α
(1) = |W ′

α|−1
∑

w∈W ′
α

RG′

Tw
(1), α ∈ P0(n′). (10.2)

It follows from (10.2) and the orthogonality relations for the functions RG′

Tw
(1), w ∈ W ′,

that
〈τξ, IndG′

P′
α
(1)〉G′ = 〈ξ, IndW ′

W ′
α
(1)〉W ′ ∀α ∈ P0(n′). (10.3)

Let τ ′ ∈ Ĝ′
unip. By the above, if ξ ∈ Ŵ ′ is the representation corresponding to τ ′ via the

above-mentioned canonical bijection, then τξ = τ ′.
Let νw = ν′|Tw

, w ∈ W ′. Then ν′ ⊗ RG′

Tw
(1) = RG′

Tw
(νw), and we can apply transitivity

of twisted induction and Theorem 3.2 of [24] to conclude that

(−1)n−n′
RG

G′(ν′ ⊗ τ ′) = (−1)n−n′ ∑
w∈W ′

trace ξ(w)RG
Tw

(νw) (10.4)

is an irreducible representation of G. Furthermore, denoting the split Cartan in B′ by T ,
since τ ′ is a component of IndG′

B′(1) = RG′

T (1), (−1)n−n′
RG

G′(ν′ ⊗ τ ′) is a component of

(−1)n−n′
RG

G′(ν′ ⊗ RG′

T (1)) = (−1)n−n′
RG

G′(RG′

T (ν′|T )) = (−1)n−n′
RG

T (ν′|T ) = IndG
P(σ).

Let α ∈ P0(n′). Then, applying (10.2) and transitivity of twisted induction, followed
by (10.4) and the orthogonality relations for the functions RG

Tw
(νw), w ∈ W ′, we obtain

〈RG
G′(ν′ ⊗ τ ′), RG

G′(ν′ ⊗ IndG′

P′
α
(1))〉G = |W ′

α|−1
∑

w∈W ′
α

〈RG
G′(ν′ ⊗ τ ′), RG

Tw
(νw)〉G

= 〈ξ, IndW ′

W ′
α
(1)〉W ′ .
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Comparing this with (10.3) and using τ ′ = τξ results in

dim(HomG((−1)n−n′
RG

G′(ν′ ⊗ τ ′), (−1)n−n′
RG

G′(ν′ ⊗ IndG′

P′
α
(1))))

= dim(HomG′(τ ′, IndG′

P′
α
(1))) ∀α ∈ P0(n′), τ ′ ∈ Ĝ′

unip. (10.5)

We remark that (10.5) can also be obtained as a consequence of general results on twisted
induction (see, for example, Theorem 13.25 of [10]).

Above we have shown that the map τ ′ �→ (−1)n−n′
RG

G′(ν′ ⊗ τ ′) takes elements Ĝ′
unip

to irreducible components of IndG
P(σ) and satisfies (10.5) (which is (10.1 a), with η−1∗

0
replaced by (−1)n−n′

RG
G′(ν′ ⊗ (·))). Also (see [23]),

dim((−1)n−n′
RG

G′(ν′ ⊗ τ ′)) = |G|p′ |G′|−1
p′ dim(ν′ ⊗ τ ′) = |G|p′ |G′|−1

p′ dim τ ′.

Here, if H is a finite group, |H|p′ denotes the part of |H| that is prime to p. Let M be
the standard Levi component of P. Note that [G : P] = |G|p′ |M|−1

p′ , [G′ : B′] = |G′|p′ |T |−1

and
dim σ = dim(−1)n−n′

RM
T (ν′|T ) = |M|p′ |T |−1,

so
dim σ[G : P][G′ : B′]−1 = |G|p′ |G′|−1

p′ .

It follows that (10.1 b) holds if η−1∗
0 (τ ′) is replaced by (−1)n−n′

RG
G′(ν′ ⊗ τ ′).

As a consequence of the above results, the map τ ′ → η∗
0((−1)n−n′

RG
G′(ν′ ⊗ τ ′)) is a

bijection of Ĝ′
unip onto itself. This map induces a bijection bq of Ŵ ′ onto itself. To complete

the proof of the lemma, it suffices to prove that bq(ξ) = ξ for all ξ ∈ Ŵ ′.
Now we will let q vary over positive powers of p, and keep n and d fixed. For each

ξ ∈ Ŵ ′, there exists a polynomial fξ(t) in one variable t such that fξ is independent of
q and the degree of the corresponding unipotent representation τξ of G′ = GLn′(Fqd)
is equal to fξ(qd). This can be seen from the formulae for the degrees of the unipotent
representations of finite general linear groups (see, for example, [37]). As shown above,
the bijection bq has the property that, for each ξ ∈ Ŵ ′, fbq(ξ)(qd) = fξ(qd) for all q. The
Hecke algebra isomorphism η0 has the property that η0 maps the characteristic function
of B′wB′, w ∈ W ′, to a function in H0 that is supported on PwP. In combination with
the fact that the relation RG

G′ ◦ RG′

Tw
= RG

Tw
, w ∈ W ′, determines RG

G′ , this implies that
the bijections bq coincide for all positive powers of p. Denoting the bijection by b, we
have, for ξ ∈ Ŵ ′, fξ(qd) = fb(ξ)(qd) for all q. Hence fξ(t) = fb(ξ)(t). Since fξ1(t) �= fξ2(t)
if ξ1 is not equivalent to ξ2 (see [37]), it follows that b(ξ) = ξ for all ξ ∈ Ŵ ′. �

Let m be a natural number. Recall that if α = (α1, . . . , αr) ∈ P(m), then r(α) = r.
Set

λ(α) =
∏

1�i�r

αi

and let Stab(α) be the stabilizer of α in the symmetric group Sr on r letters. If
α = (α1, . . . , αr) ∈ P(n), fix embeddings of F×

qαi in GLαi(Fq), 1 � i � r. Then the
image Tα of

∏
1�i�r F×

qαi is a Cartan subgroup of the standard Levi subgroup Mα. Also,
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{Tα | α ∈ P0(n)} is a complete set of representatives for the conjugacy classes of Cartan
subgroups of G. Similarly, if α ∈ P(n′), let T ′

α be an elliptic Cartan subgroup of the
standard Levi subgroup M′

α of the parabolic subgroup P ′
α of G′. Note that T ′

α � Tdα.
Given α = (α1, . . . , αr) ∈ P(m), set

R(α) = {δ ∈ P(m) | δ is a rearrangement of α},

S(α) = {δ ∈ P(m) | δ = δ(1) ∪ · · · ∪ δ(r(α)), δ(i) ∈ P0(αi), 1 � i � r(α)}.

When α, β ∈ P(n), the map δ �→ Tδ is a bijection between R(α) ∩ S(β) and the set
of Mβ-conjugacy classes of Cartan subgroups of Mβ that contain a G-conjugate of Tα.
A similar statement holds when α, β ∈ P(n′). Note that if α, β ∈ P(n′), the map δ �→ dδ

from R(α) ∩ S(β) to R(dα) ∩ S(dβ) is a bijection. Let α, β ∈ P(n′). Suppose that
δ = δ(1) ∪ · · · ∪ δ(s) ∈ R(α) ∩ S(β). Let WM′

β
(T ′

δ ) = NormM′
β
(T ′

δ )/T ′
δ denote the Weyl

group of T ′
δ in M′

β . As WM′
β
(T ′

δ ) is the direct product of the Weyl groups of the Cartan
subgroups of GLβi

(Fqd) associated to the δ(i), it follows that

|WM′
β
(T ′

δ )| =
∏

1�i�s

λ(δ(i))|Stab(δi)|.

As λ(dδ(i)) = dr(δ(i))λ(δ(i)), r(dδ(i)) = r(δ(i)) and Stab(dδ(i)) = Stab(δ(i)), it follows that

|WMdβ
(Tdδ)| = d

∑
1�i�s r(δi)|WM′

β
(T ′

δ )| = dr(δ)|WM′
β
(T ′

δ )|, δ ∈ R(α) ∩ S(β).

Let UG be the set of unipotent elements in G. Given α ∈ P(n), the Green function Qα

corresponding to Tα is defined by

Qα(x) =

{
trace RG

Tα
(1)(x) if x ∈ UG ,

0 if otherwise.

Similarly, attached to each α ∈ P(n′), we have a Green function Q′
α on G′.

Lemma 10.5. Let α, β ∈ P(n′). Then

|WM′
β
(T ′

δ )|−1〈Q′
α, Q′

δ〉G′ = |WMdβ
(Tdδ)|−1〈Qdα, Qdδ〉G , δ ∈ R(α) ∩ S(β).

Proof. Let δ ∈ R(α) ∩ S(β). Applying the orthogonality relations for Green functions,
using the fact that T ′

α and T ′
δ are G′-conjugate, and |T ′

δ | = |Tdδ|, results in

|WM′
β
(T ′

δ )|−1〈Q′
α, Q′

δ〉G′ = |WM′
β
(T ′

δ )|−1|WG′(T ′
δ )||T ′

δ |−1

= dr(δ)|WMdβ
(Tdδ)|−1d−r(δ)|WG(Tdδ)||Tdδ|−1

= |WMdβ
(Tdδ)|−1〈Qdα, Qdδ〉G .

�

If L is a finite reductive Fq-group and p is the characteristic of Fq, let |L|p and |L|p′

be the p-part of |L| and the part of |L| prime to p, respectively.
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Lemma 10.6. Let τ be a representation of G on a space V. Then

dim(VNα) = |Mα|p′

∑
δ∈S(α)

(−1)n−r(δ)|WMα
(Tδ)|−1〈τ, Qδ〉G , α ∈ P(n).

Proof. Let 1Nα be the characteristic function of Nα. Then

dim(VNα) = |Nα|−1
∑
x∈G

tr τ(x)1Nα(x)

= |Nα|−1|G|−1
∑
x∈G

tr τ(x)
(∑

y∈G
1Nα

(yxy−1)
)

= |Nα|−1|G|−1
∑
x∈G

tr τ(x)|Pα|RG
Mα

(eMα)(x)

= |Mα|〈τ, RG
Mα

(eMα)〉G .

Here, eMα
denotes the characteristic function of the identity element in Mα. The map

δ �→ Tδ is a bijection of S(α) onto a set of representatives for the conjugacy classes
of Cartan subgroups in Mα. Given δ ∈ S(α), let QMα

δ be the Green function on Mα

attached to the Cartan subgroup Tδ. The Green functions QMα

δ , δ ∈ S(α), form a basis
for the space of class functions on Mα that are supported on the unipotent subset of
Mα. It follows from the orthogonality relations for the Green functions that

eMα = |Mα|−1
p

∑
δ∈S(α)

(−1)n−r(δ)|WMα(Tδ)|−1QMα

δ .

Substituting into the above expression for dim(VNα), we obtain

dim(VNα) = |Mα|p′

∑
δ∈S(α)

(−1)n−r(δ)|WMα(Tδ)|−1〈τ, RG
Mα

(QMα

δ )〉G .

If eTδ
is the characteristic function of the identity in Tδ, then it follows from the

Deligne–Lusztig character formula and the definition of the Green functions that
QMα

δ = RMα

Tδ
(eTδ

). Together with transitivity of twisted induction, this implies

Qδ = RG
Mα

(QMα

δ ).

Substituting this above gives the desired result. �

If β ∈ P(n′), let N ′
β be the unipotent radical of P ′

β .

Lemma 10.7. Suppose that τ ′ ∈ Ĝ′
unip. Let τ = (−1)n−n′

RG
G′(ν′ ⊗ τ ′). Let V ′ and V be

the spaces of τ ′ and τ , respectively. Let α ∈ P(n). Then

dim(VNα) =

{
0 if α /∈ dP(n′),

|Mdβ |p′ |Mβ |−1
p′ dim(V ′N ′

β ) if α = dβ, β ∈ P(n′).
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Proof. Let α ∈ P0(n). Since τ ′ ∈ Ĝ′
unip, there exist scalars aγ , γ ∈ P0(n′), such that

τ ′ =
∑

γ∈P0(n′) aγRG′

T ′
γ
(1). Hence

(ν′ ⊗ τ ′)|UG′ = τ ′|UG′ =
∑

γ∈P0(n′)

aγQ′
γ |UG′ . (10.6)

Hence

τ |UG = (−1)n−n′ ∑
γ∈P0(n′)

aγRG
Tdγ

(1)|UG = (−1)n−n′ ∑
γ∈P0(n′)

aγQdγ |UG .

By Lemma 10.6,

dim(VNα) = |Mα|p′

∑
δ∈S(α)

(−1)n′−r(δ)|WMα(Tδ)|−1
∑

γ∈P0(n′)

aγ〈Qdγ , Qδ〉G . (10.7)

If 〈Qdγ , Qδ〉G �= 0, then Tδ and Tdγ must be conjugate in G. That is, δ ∈ R(dγ). If
δ ∈ R(dγ), then d divides every part of δ, and, as δ ∈ S(α), d also divides every part of
α. Hence (10.7) implies that dim(VNα) = 0 whenever α /∈ dP(n′).

Assume that α = dβ for some β ∈ P(n′). By the above remarks, 〈Qdδ, Qγ〉G = 0 unless
δ ∈ R(dγ), and, in that case, δ = dω for some ω ∈ P(n′). As dω ∈ R(dγ) ∩ S(dβ) is
equivalent to ω ∈ R(γ) ∩ S(β), equation (10.7) can be rewritten as

dim(VNdβ ) = |Mdβ |p′

∑
γ∈P0(n′)

aγ

∑
ω∈R(γ)∩S(β)

(−1)n′−r(ω)|WMdβ
(Tdω)|−1〈Qdγ , Qdω〉G

= |Mdβ |p′

∑
γ∈P0(n′)

aγ

∑
ω∈R(γ)∩S(β)

(−1)n′−r(ω)|WM′
β
(T ′

ω)|−1〈Q′
γ , Q′

ω〉G′

= |Mdβ |p′

∑
ω∈S(β)

(−1)n′−r(ω)|WM′
β
(T ′

ω)|−1
∑

γ∈P0(n′)

aγ〈Q′
γ , Q′

ω〉G′

= |Mdβ |p′

∑
ω∈S(β)

(−1)n′−r(ω)|WM′
β
(T ′

ω)|−1〈τ ′, Q′
ω〉G′ by (10.6)

= |Mdβ |p′ |M′
β |−1

p′ dim(V ′N ′
β ) by Lemma 10.6.

To obtain the second and third equalities above, we used Lemma 10.5 and the fact that
〈Q′

γ , Q′
ω〉G′ = 0 whenever ω /∈ R(γ), respectively. �

Proposition 10.8. Let π ∈ E(G) contain the pure minimal K-type (B(d)n′ , σ). Let
π′ = η∗(π) and let α ∈ P(n). Then

dim(V Bα,1
π ) =

{
0 if α /∈ dP(n′),

udβ(q)uβ(qd)−1 dim(V
B′

β,1
π′ ) if α = dβ, β ∈ P(n′).

Proof. By Lemma 10.3, κ(π′, B′
(n′)) = η∗

0(κ(π, B(n))). Lemma 10.4 extends linearly to
give κ(π, B(n)) = (−1)n−n′

RG
G′(ν′ ⊗ κ(π′, B(n′))). Hence, if V and V ′ are the spaces of

κ(π, B(n)) and κ(π′, B′
(n′)) respectively, the conclusion of Lemma 10.7 is valid for V
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and V ′. As V Bα,1
π = VNα , α ∈ P(n) and V

B′
β,1

π′ = V ′N ′
β , β ∈ P(n′) (see the remarks

following Lemma 10.1), the proposition follows upon observing that |Mdβ |p′ = udβ(q)
and |M′

β |p′ = uβ(qd) (notation as in § 2). �

Fix s ∈ o
×
E whose image in oE/pE � Fqd generates Fqd over Fq. Recall that we are

assuming E is embedded in gln(F ) as in § 3. We will often identify s with its image in
gln(F ). The following lemma will be used in § 13. Recall (see § 2) that Haar measure on
B(d)n′ is normalized, so that B(d)n′ has volume one.

Recall that σ is the inflation to B(d)n′ of the n′-fold tensor product of σ0, where σ0 is
an irreducible cuspidal representation of GLd(Fq).

Lemma 10.9. Suppose that p > d. If h is such that d � h � p, then

χσ

(h−1∑
i=1

Xi

i!

)
= χσ(1)

∫
B

(d)n′

ψ(tr(s Ad k(X))) dk ∀X ∈ b(d)n′ such that Xh ∈ b(d)n′ ,1.

Proof. Given X ∈ b(d)n′ , let X̄i, 1 � i � n′, be the ith component of the image of X

in b(d)n′ /b(d)n′ ,1 � (gld(Fq))n′
. Suppose that Xh ∈ b(d)n′ ,1. Then each X̄i is a nilpotent

element of gld(Fq). This implies that X̄d
i = 0 for all i, and thus Xd ∈ b(d)n′ ,1. Therefore,

χσ

(h−1∑
i=1

Xi

i!

)
=

n′∏
i=1

χσ0(exp X̄i).

By results of [18], viewing the restriction of ψ to oF as a non-trivial character of Fq, and
denoting the image of s in gld(Fq) by s̄,

χσ0(exp X̄i)
χσ0(1)

= |GLd(Fq)|−1
∑

g∈GLd(Fq)

ψ(tr(s̄ Ad g(X̄i))).

To complete the proof, note that

∫
B

(d)n′

ψ(tr s Ad k(X)) dk = |GLd(Fq)|−n′
n′∏

i=1

∑
g∈GLd(Fq)

ψ(tr(s̄ Ad g(X̄i))).

�

11. Homogeneity of orbital integrals and germs of characters

Recall (see § 2) that if s0 ∈ gss, ΩG(s0) denotes the set of G-orbits in g whose closure con-
tains s0. Given a locally integrable G-invariant function D defined on an open subset S of
g and an open subset S0 of S, we say that the restriction of D to S0 is s0-asymptotic, or
D is s0-asymptotic on S0, if D|S0∩greg belongs to the span of {µ̂O|S0∩greg | O ∈ ΩG(s0)}.
The main results of this paper (see § 14) concern s0-asymptotic expansions of germs of
characters. An essential step in the proofs of those results involves the application of
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some important results of DeBacker and Waldspurger concerning homogeneity proper-
ties of invariant distributions and 0-asymptotic expansions of germs of characters. In the
first part of this section, we summarize these homogeneity results. The original version of
this paper relied upon the validity of a hypothesis concerning linear independence of the
restrictions of the nilpotent orbital integrals to certain subspaces of C∞

c (g). The hypoth-
esis is known to hold in some cases, that is, for some subspaces (see Proposition 11.6).
In this newer version of the paper, in order to avoid having to assume validity of the
hypothesis in cases where it has not been proved, we apply a special case of a result
of [22]. Namely, if π ∈ E(G) has positive depth and contains a pure minimal K-type,
then the germ of Θπ is s0-asymptotic on gρ(π) for some semisimple element s0. The pre-
cise statement is given in Theorem 11.8. Finally, the last part of the section concerns
properties of the functions µ̂O, O ∈ ΩG(s0), s0 ∈ gss, which will be used elsewhere in the
paper.

As in § 4, given a point x in the Bruhat–Tits building B(G) of G, gx,r, r ∈ R, denotes
the filtration of g defined by Moy and Prasad [29,30]. For r ∈ R, set

gx,r+ =
⋃
t>r

gx,t, gr =
⋃

x∈B(G)

gx,r, gr+ =
⋃

x∈B(G)

gx,r+ ,

Dr =
∑

x∈B(G)

Cc(g/gx,r).

Above, the sum in the definition of Dr should be interpreted to mean that a function in
Dr is a sum of finitely many functions, each of which lies in Cc(g/gx,r) for some x ∈ B(G).

If S is a subset of g, let J(S) be the set of G-invariant distributions on g with support
in the closure of G ·S. If C is a subspace of C∞

c (g), then resC J(S) denotes the restrictions
of the distributions in J(S) to C. Let gnil be the set of nilpotent elements in g. Versions of
Theorem 11.1 and Corollary 11.4 were first proved by Waldspurger [42] for r integral and
G belonging to a wide class of groups (including classical groups). Recently, DeBacker [9]
proved the theorems for arbitrary r and G, subject to certain hypotheses (which hold for
G = GLn(F ) when p is sufficiently large). We state the theorems for G = GLn(F ). The
reader may refer to [42] and [9] for the general versions.

Theorem 11.1 (cf. [9, 42]). Suppose that p > 2n and r ∈ R. Then resDr J(gr) =
resDr J(gnil).

The map f �→ f̂ maps Dr to C∞
c (g(−r)+) [9]. Thus Theorem 11.1 implies the following.

Corollary 11.2. Assume that p > 2n. Let r ∈ R. If X ∈ gr, then µ̂O(X) is 0-asymptotic
on g(−r)+ .

Remark 11.3. Suppose that s ∈ gr ∩ gss. Note that Ad g(gx,r) = gg·x,r, x ∈ B(G),
g ∈ G, implies that gr is G-invariant. If O ∈ ΩG(s), after conjugation by an element
in the centralizer of its semisimple part, the nilpotent part of any element of O can be
made arbitrarily small. Hence O ⊂ gr, and thus µ̂O is 0-asymptotic on g(−r)+ for all
O ∈ ΩG(s).
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Corollary 11.4. Suppose that s ∈ gr ∩ gss. Then the functions µ̂O, O ∈ ΩG(s), remain
linearly independent upon restriction to any open neighbourhood of zero intersected with
greg if and only if µ̂O|g(−r)+∩greg , O ∈ ΩG(s), are linearly independent.

Proof. This is an immediate consequence of Corollary 11.2, the above remark and the
fact that the restrictions of the Fourier transforms of the nilpotent orbital integrals to
any open neighbourhood of zero intersected with greg are linearly independent (see [11,
Corollary 5.10]). �

Suppose that x ∈ B(G) and X ∈ g0+ . Then, as gx,0+ = gx,r for some r > 0,
Xh ∈ gx,rh for h ∈ N. Hence limh→∞ Xh = 0 for all X ∈ g0+ . By Lemma 2.6 (ii) of [42],
G · b(1)n,1 = {X ∈ g | limh→∞ Xh = 0}. This set is often referred to as the topologically
nilpotent set. Since G · b(1)n,1 ⊂ G · g0+ = g0+ , it follows from the above that

g0+ = G · b(1)n,1 = {X ∈ g | lim
h→∞

Xh = 0}.

Given π ∈ E(G), by results of [11], we can view the character Θπ of π as a locally
integrable function on G that is locally constant on the regular subset of G. Note that
if X ∈ g0+ ∩ greg, then 1 + X is a regular element of G. We will refer to the restriction
of the function X �→ Θπ(1 + X) to the intersection of greg with an open neighbourhood
of zero contained in g0+ as the germ of Θπ. Howe [13] proved that if π is an irreducible
supercuspidal representation of GLn(F ), then the germ of Θπ is 0-asymptotic on some
(unspecified) open neighbourhood of zero. This was later generalized to π ∈ E(G) and
G reductive by Harish-Chandra [11], and Clozel [6], in the connected and disconnected
cases, respectively. The 0-asymptotic expansion of the germ of Θπ is sometimes referred
to as the Harish-Chandra local character expansion. The following theorem (stated for
G = GLn(F )) says that the open neighbourhood of zero can be taken equal to gρ(π)+ ,
where ρ(π) is the depth of π (see § 4).

Theorem 11.5 (cf. [9,42]). Let π ∈ E(G). Assume that p > 2n. Then the germ of Θπ

is 0-asymptotic on gρ(π)+ .

If α ∈ P0(n), let bα be the parahoric o-subalgebra of g defined in § 3.

Proposition 11.6 (cf. [40]). Let F = span{[bα]|α ∈ P0(n)}. Then

dim resF J(gnil) = |ΩG(0)|.

Suppose that n′ is a positive divisor of n, j is a positive integer and E is a tamely
ramified extension of F of degree n/n′. Set e = e(E/F ). Let s ∈ p

−j
E − p

−j+1
E be such

that �j
F se generates oE/pE over oF /pF . It is easy to show that such an element s is a

good element in the sense of [22, § 2.3].

Lemma 11.7. Suppose that p > 2n. Let s be as above, and let g′ be the Lie algebra of
CG(s). If X ∈ g′

(−j)+ , and O = OG(s + X), then µ̂O is s-asymptotic on gj/e.

Proof. The lemma is an immediate consequence of Lemma 3.1.5 and Theorem 3.1.7
of [22]. �
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Let s be as above. Define the pure minimal K-type (Qn′j , χs) as in § 6.

Theorem 11.8. Assume that p > 2n. Suppose that π ∈ E(G) contains (Qn′j , χs). Then
the germ of Θπ is s-asymptotic on gj/e = gρ(π).

Proof. According to Remark 5.3.3 of [22], if p > 2n, then Theorem 5.3.1 of [22] can
be applied with the exponential map replaced by the map X �→ 1 + X. Thus it suffices
to prove that (Qn′j , χs) is a good minimal K-type in the sense of [22, § 2.3]. This is
equivalent to s being a good element in the sense of [22, § 2.3], which, as remarked
above, is easy to check. �

If s0 ∈ g belongs to some elliptic Cartan subalgebra of g, then s0 generates a finite
extension E0 of F . Let b = [E0 : F ]. The centralizer G0 of s0 in G is isomorphic
to GLn/b(E0). The Jordan decomposition defines a natural bijection between ΩG(s0)
and ΩG0(0). Given β ∈ P0(n/b), let Xβ be the nilpotent element in the Lie algebra
g0 � gln/b(E0) of G0 which corresponds to the element Yβ of gln/b(E0) defined at the
end of § 2. Then the orbit in ΩG(s0) that corresponds to OG0(Xβ) is OG(s0 + Xβ).

For each α ∈ P0(n), let Oα ∈ ΩG(0) be the corresponding nilpotent G-orbit (as
discussed at the end of § 2). Given β ∈ P0(n/b), let βb ∈ P(n) be as defined in § 2 and
let β̇b be the unique element of P0(n) that is a rearrangement of βb.

Lemma 11.9. Assume that p > 2n. Suppose that s0 ∈ g belongs to an elliptic Cartan
subalgebra of g. Let β ∈ P0(n/b) and let Xβ be as above. For each α ∈ P0(n), let
cα(s0, β) be the coefficient of µ̂Oα

in the 0-asymptotic expansion of µ̂OG(s0+Xβ). Then
the following hold.

(1) cα(s0, β) = 0 unless α � β̇b.

(2) cβ̇b(s0, β) > 0.

Proof. Let i � 1. There exists a k � 0 such that �kso ∈ b(n),i. Let β ∈ P0(n/b).
By the remark following Corollary 11.2, OG(�k(s0 + Xβ)) = OG(�ks0 + Xβ) ⊂ gi. By
Corollary 11.2, µ̂OG(ks0+Xβ) is 0-asymptotic on g(−i)+ . Let cα(�ks0, β) be the coeffi-
cient of µ̂Oα in the corresponding 0-asymptotic expansion. As b(n),−i+1 ⊂ g(−i)+ , and
f ∈ Cc(g/b(n),i) if and only if f̂ is supported on b(n),−i+1, we have

µOG(ks0+Xβ)(f) =
∑

α∈P0(n)

cα(�ks0, β)µOα(f), f ∈ Cc(g/b(n),i).

If α ∈ P0(n), let Yα ∈ Oα be the nilpotent element defined at the end of § 2. Note that
if α, γ ∈ P0(n), (Yα + b(n),i) ∩ Oγ �= ∅ implies γ � α. Hence, given α ∈ P0(n), there
exists a function fα ∈ C∞

c (g) that is a linear combination of the characteristic functions
[Yγ + b(n),i], γ ∈ P0(n) such that γ � α, and is such that µOα(fα) = 1 and µOγ (fα) = 0
whenever γ �= α. Suppose that α ∈ P0(n), β ∈ P0(n/b), and cα(�ks0, β) �= 0. Then
µOG(ks0+Xβ)(fα) �= 0, which implies that OG(�ks0 + Xβ) ∩ (Yγ + b(n),i) �= ∅ for some
γ � α. By the Lie algebra version of Proposition 6.8 (1) of [31], there exists i � 1 such
that

OG(�ks0 + Xβ) ∩ (Yγ + b(n),i) = ∅ unless β̇b � γ.
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Hence β̇b � γ for some γ � α. This implies that β̇b � α, and part (1) holds with �ks0

replacing s0.
By the Lie algebra version of Proposition 6.8 (2) of [31], if k is sufficiently large, then

OG(�ks0 + Xβ) ∩ (Yβ̇b + b(n),i) �= ∅.

It follows from the above that

µOG(ks0+Xβ)([Yβ̇b + b(n),i]) = cβ̇b(�ks0, β) > 0.

To show that the lemma holds for s0, note that

µ̂OG(k(s0+Xβ))(X) = µ̂OG(s0+Xβ)(�kX), X ∈ greg.

As µ̂Oα(�kX) is a positive multiple of µ̂Oα(X) for X ∈ greg, cα(�ks0, β) is a positive
multiple of cα(s0, β) for all α ∈ P0(n) and β ∈ P0(n/b). �

Remark 11.10. The results of [31] give a more precise range of α for which cα(s0, β)
can be non-zero, but Lemma 11.9 (1) suffices for our purposes.

Corollary 11.11. Suppose that s0 ∈ g belongs to an elliptic Cartan subalgebra of g.
Then the functions µ̂O, O ∈ ΩG(s0), remain linearly independent upon restriction to any
open neighbourhood of zero in g.

Proof. Let the notation be as in Lemma 11.9. As the restrictions of µ̂Oα , α ∈ P0(n),
are linearly independent upon restriction to any open neighbourhood of zero (see [11,
Corollary 5.10]), it suffices to show that the matrix (aα,β)β,α∈P0(n/b), aα,β = cβ̇b(s0, α)
is invertible. This is immediate from Lemma 11.9, as aα,α �= 0, and aα,β �= 0 implies
β̇b � α̇b, which implies β � α. �

We remark that if s0 ∈ gss does not belong to an elliptic Cartan subalgebra of g, then
the Fourier transforms µ̂O, O ∈ ΩG(s0), might become linearly dependent on sufficiently
small neighbourhoods of zero. For example, let s0 ∈ gl4(F ) be a diagonal matrix with two
diagonal entries equal to 1 and the other two equal to −1. Then there are two nilpotent
orbits in the Lie algebra of CG(s0) that are neither trivial nor regular. Let Y1 and Y2 be
representatives for these orbits. It is easy to check (see Lemma 17.1) that

µ̂O(s0+Y1)|g0+∩greg = µ̂O(s0+Y2)|g0+∩greg = µ̂O(3,1) |g0+∩greg .

12. Asymptotic expansions of germs of characters: the pure case

In this section, we study the relation between asymptotic expansions of the germ of Θπ

and asymptotic expansions of the germ of Θπ′ in the case where π contains a pure minimal
K-type, and π′ is a representation corresponding to π via the associated Hecke algebra
isomorphism. The proofs involve applying several results. Namely, results of DeBacker
and Waldspurger concerning homogeneity properties of germs of characters and of Fourier
transforms of orbital integrals (as discussed in § 11), results comparing multiplicities of
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certain K-types contained in π and π′ (Propositions 8.6 and 10.8), descent properties
of orbital integrals (Proposition 5.6) and a result from [22] (see Theorem 11.6). The
results of this section are applied later in the paper (see the proofs of Theorem 14.1,
Corollary 14.3 and Theorem 14.5).

When comparing germs of characters, it is convenient to impose some compatibility
conditions on invariant measures on orbits. If s0 ∈ gss and H = CG(s0), there is a natural
bijection OH �→ G · OH between ΩH(0) and ΩG(s0). Fix Haar measures on G and H.
For each OH ∈ ΩH(0), fix a nilpotent element Y ∈ OH and choose a left Haar measure
on the centralizer CH(Y ). These Haar measures induce G-invariant measures on the
orbits OG(s0 + Y ) � G/CH(Y ) and OH(Y ) � H/CH(Y ). Throughout this paper, we
assume that the measures on the orbits in ΩG(s0) and ΩH(0) are compatible in this
sense. Furthermore, the map OH(Y ) �→ s0 + OH(Y ) induces a bijection between ΩH(0)
and ΩH(s0), and OH(s0 + Y ) � H/CH(Y ). Thus the H-invariant measure on the orbit
OH(s0 + Y ) will be taken to be the one induced by the above H-invariant measure on
H/CH(Y ). Note that since we can choose left Haar measures on H and on each CH(Y )
freely, we may use any normalizations of measures on the orbits in ΩH(0) (or ΩH(s0)).
However, having made these choices, the G-invariant measures on the orbits in ΩG(s0)
are all determined up to the same positive constant depending on the choice of Haar
measure on G. Conversely, we may take any normalization of measures on the orbits in
ΩG(s0), and this then determines the measures on orbits in ΩH(0) and ΩH(s0) up to a
positive constant depending on choice of Haar measure on H.

Let π ∈ E(G). Suppose that π contains a pure minimal K-type. As usual, ρ(π) denotes
the depth of π (see § 4). If ρ(π) > 0, then ρ(π) = j/e for some divisor e of n and a positive
integer j which is prime to e, and π contains some (Qn′j , χs), where s is as in § 6. We
continue to use the notation of §§ 3–8. If ρ(π) = 0, then π contains (B(d)n′ , σ), where σ

and s are as in § 10, E = F (s), d = [E : F ], n′ = n/d and e = e(E/F ) = 1. In this case,
setting j = 0, we also have ρ(π) = j/e.

Suppose that s′ ∈ g′
ss ∩ g′

(−j)+ . As g′
0+ = G′ · b′

(1)n′ ,1 (see § 11), s′ ∈ G′ · b′
(1)n′ ,−n′j+1,

so Lemma 5.5 implies CG(s + s′) = CG′(s′). We will be comparing (s + s′)-asymptotic
expansions on g and s + s′ or s′-asymptotic expansions on g′, so we require compatibility
conditions on the measures on the orbits in ΩG(s + s′) and ΩG′(s′) or ΩG′(0). Consider
the bijection between ΩG(s + s′) and ΩG′(s′) arising from the above-mentioned bijections
of ΩG(s + s′) with ΩCG′ (s′)(0) and ΩG′(s′) with ΩCG′ (s′)(0). Fix Haar measures on G and
G′. Choosing a representative Y for an orbit in ΩCG′ (s′)(0), fix a left Haar measure on
CCG′ (s′)(Y ). This results in a G-invariant measure on OG(s + s′ + Y ) � G/CCG′ (s′)(Y )
an a G′-invariant measure on the corresponding orbit OG′(s′ + Y ) � G′/CCG′ (s′)(Y ). We
will assume that measures on the orbits in ΩG(s+ s′) and ΩG′(s′) are chosen so as to be
compatible in this sense. And the measures on the orbits in ΩG′(s + s′) will be chosen
to correspond to those on the orbits in ΩG′(s′) in the obvious way.

Let η : H′ → H be the Hecke algebra isomorphism of Howe and Moy associated to
the above pure minimal K-type (see Theorems 7.1 and 10.2). Recall that, if α ∈ P0(n)
and i ∈ Z, [bα,i] is the characteristic function of bα,i. Let uα(q) be defined as in § 2. Set
e1(X) = 1 + X for X ∈ g0+ . Let e′

1 be the restriction of e1 to g′
0+ .
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Proposition 12.1. Let π′ = η∗(π). Suppose that there exists an s′ ∈ g′
ss ∩ g′

(−j)+ such
that Θπ′ ◦ e′

1 is s′-asymptotic on g′
j+ . Let cO′(π′), O′ ∈ ΩG′(s′), be the coefficients in

some s′-asymptotic expansion of Θπ′ ◦ e′
1. Given O ∈ ΩG(s + s′), let O′ ∈ ΩG′(s′) be

such that O = G · (s + O′), and set

λO = υG(B(n))−1υG′(B′
(n′))q

fn′((n−n′)j−e+1)/2un(q)un′(qf )−1cO′(π′).

Define D =
∑

O∈ΩG(s+s′) λOµ̂O. Then (Θπ ◦ e1 − D)([bα,�jr(α)/e	+1]) = 0 for every
α ∈ P(n).

Proof. First we note that, as g′
0+ = G′ · b′

(1)n′,1 , there is no loss of generality in assuming
that s′ ∈ �−j

E b′
(1)n′ ,1 = q′

−n′j+1.
As e1(bα,�jr(α)/e	+1) = Bα,�jr(α)/e	+1,

(Θπ ◦ e1)([bα,�jr(α)/e	+1]) = υg(bα,�jr(α)/e	+1) dim(V Bα,�jr(α)/e�+1
π ), α ∈ P(n). (12.1)

By Propositions 8.6 (j > 0) and 10.8 (j = 0), the right-hand side of (12.1) is zero unless
α = (fβ)e for some β ∈ P(n′). Note that the Fourier transform of [bα,�jr(α)/e	+1] is equal
to υg(bα,�jr(α)/e	+1)[bα,−�jr(α)/e	]. Hence, by Proposition 5.6 (1), D([bα,�jr(α)/e	+1]) = 0
unless α = (fβ)e for some β ∈ P(n′). Thus it suffices to consider α = (fβ)e, β ∈ P(n′).

By Propositions 8.6 and 10.8, if α = (fβ)e, β ∈ P(n′), equation (12.1) can be rewritten
as

υg(b(fβ)e,jr(β)+1)−1(Θπ ◦ e1)([b(fβ)e,jr(β)+1])

= qfn′((n−n′)j−e+1)/2u(fβ)e(q)uβ(qf )−1 dim(V
B′

β,jr(β)+1

π′ ),

which, by the analogue of (12.1) for π′, is equal to

qfn′((n−n′)j−e+1)/2u(fβ)e(q)uβ(qf )−1υg′(b′
β,jr(β)+1)

−1(Θπ′ ◦ e
′
1)([b

′
β,jr(β)+1]),

which, since Θπ′ ◦ e′
1 is s′-asymptotic on g′

j+ , b′
jr(β)+1 = �j

Eb′
β,1 ⊂ �j

Eb′
(1)n′ ,1 ⊂ g′

j+ and
[b′

β,jr(β)+1 ]̂ = υg′(b′
β,jr(β)+1)[b

′
β,−jr(β)], equals

qfn′((n−n′)j−e+1)/2u(fβ)e(q)uβ(qf )−1
∑

O′∈ΩG′ (s′)

cO′(π′)µO′([b′
β,−jr(β)]),

which, by Proposition 5.6 and the definition of λO, O ∈ ΩG(s + s′), and D, can be
rewritten as

υG(B(n))−1υG′(B′
(n′))q

fn′((n−n′)j−e+1)/2un(q)un′(qf )−1

×
∑

O′∈ΩG′ (s′)

cO′(π′)µG·(s+O′)([b(fβ)e,−jr(β)])

=
∑

O∈ΩG(s+s′)

λOµO([b(fβ)e,−jr(β)])

= υg(b(fβ)e,jr(β)+1)−1D([b(fβ)e,jr(β)+1]).

�
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Remark 12.2. Suppose that j > 0 and there exists s′ as in Proposition 12.1 such that
Θπ′ is (s + s′)-asymptotic on g′

j . Then the (s + s′)-asymptotic expansion restricts to an
s′-asymptotic expansion on g′

j+ , and if O′ ∈ ΩG′(s′), the coefficient cs+O′(π′) of µ̂s+O′

in the (s + s′)-asymptotic expansion equals the coefficient cO′(π′) in the s′-asymptotic
expansion of Θπ′ ◦ e′

1.

Theorem 12.3. Assume that p > 2n. Let π′ = η∗(π).

(1) Suppose that j = 0. Then Θπ ◦ e1 is s-asymptotic on g0+ . Furthermore, given a
0-asymptotic expansion of Θπ′ ◦ e′

1 with coefficients cO′(π′), O′ ∈ ΩG′(0), there
exists a unique s-asymptotic expansion of Θπ ◦ e1 with coefficients given by

cG·(s+O′)(π) = υG(B(n))−1υG′(B′
(n′))un(q)un′(qn/n′

)−1cO′(π′), O′ ∈ ΩG′(0′).

(2) Suppose that j > 0 and that Θπ′ ◦ e′
1 is (s + s′)-asymptotic on g′

j , for some
s′ ∈ g′

ss ∩ g′
(−j)+ . Then Θπ ◦e1 is (s+s′)-asymptotic on gj/e. Furthermore, given an

(s+s′)-asymptotic expansion of Θπ′ ◦e′
1 with coefficients cO′(π′), O′ ∈ ΩG′(s + s′),

there exists an (s + s′)-asymptotic expansion of Θπ ◦ e1 with coefficients given by

cG·O′(π) = υG(B(n))−1υG′(B′
(n′))q

fn′((n−n′)j−e+1)/2un(q)un′(qf )−1cO′(π′),

O′ ∈ ΩG′(s + s′).

Proof. Let D be as in Proposition 12.1. We must show that Θπ ◦ e1 − D vanishes on
g0+ ∩ greg (respectively, gj/e ∩ greg) if j = 0 (respectively, j > 0) (see the remark above).

First, suppose that j = 0. By Corollary 11.2 and Theorem 11.5, Θπ ◦ e1 − D

is 0-asymptotic on g0+ . As bα,1 ⊂ g0+ , Propositions 11.6 and 12.1 imply that
(Θπ ◦ e1 − D) | g0+ ∩ greg ≡ 0. Hence, by definition of D, Θπ ◦ e1 is s-asymptotic on g0+ ,
and the coefficients cO(π), O ∈ ΩG(s), can be chosen as given in (1). Furthermore, the
linear independence of the restrictions of the Fourier transforms µ̂O, O ∈ ΩG(s), to
g0+ ∩ greg (see Corollary 11.11) guarantee uniqueness of the coefficients cO(π).

Next, suppose that j > 0. Since π contains (Qn′j , χs), we may apply Theorem 11.8 to
conclude that Θπ ◦ e1 is s-asymptotic on gj/e. Then, combining this with Lemma 11.7,
Θπ ◦ e1 −D is s-asymptotic on gj/e. By Corollary 11.11, {µ̂ξ | ξ ∈ ΩG(s)} remain linearly
independent upon restriction to any open neighbourhood of zero in g. Therefore, to
prove that Θπ ◦ e1 − D vanishes on gj/e ∩ greg, it suffices to find a set of functions
supported in gj/e having the properties that on the span of this set of functions Θπ ◦
e1 − D vanishes, and the restrictions of the µ̂ξ, ξ ∈ ΩG(s), to this span are linearly
independent. By Proposition 12.1, (Θπ ◦ e1 − D)([b(fβ)e,−jr(β)+1]) = 0 for all β ∈ P(n′).
By Proposition 5.6 (2), Proposition 11.6 and homogeneity properties of nilpotent orbital
integrals, the restrictions of µ̂ξ, ξ ∈ ΩG(s), are linearly independent on the span of the
functions [b(fβ)e,−jr(β)+1], β ∈ P(n′). �

Remark 12.4. If π and π′ are as above and j > 0, then an (s+s′)-asymptotic expansion
of Θπ′ ◦ e′

1 might not be unique (see comments at the end of § 11). Clearly, in that case,
an (s + s′)-asymptotic expansion of Θπ ◦ e1 will not be unique. However, if s′ = 0, then
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because of the linear independence of the restrictions of µ̂O, O ∈ ΩG(s), to any open
neighbourhood of zero in g (Corollary 11.11), the s-asymptotic expansion of Θπ ◦ e1 is
unique.

13. Characters of refined minimal K-types

We assume throughout this section that p > n. In [17], Howe and Moy show that
there exist families of irreducible representations of parahoric subgroups, called refined
minimal K-types. Via a Hecke algebra isomorphism attached to some refined minimal
K-type, each π ∈ E(G) corresponds to a unipotent representation of a direct product of
general linear groups over finite extensions of F . (Recall that an irreducible admissible
representation of a general linear group is unipotent if it has non-zero Iwahori-invariant
vectors).

Theorem 13.1 (cf. Theorem 5.6 of [17]).

(1) Every π ∈ E(G) contains a refined minimal K-type.

(2) Let (B, τ) be a refined minimal K-type. Then there exist extensions Ei/F and
ni ∈ N, 1 � i � u, such that n =

∑
1�i�u ni[Ei : F ], B′′ = B ∩ G′′ is an Iwahori

subgroup of G′′ =
∏u

i=1 GLni
(Ei), and there exists a Hecke algebra isomorphism

ι : H′′ = H(G′′//B′′) → H(τ) = H(G//B, τ̃)

such that

supp(ι(f)) = B supp(f)B and supp(ι(f)) ∩ G′′ = supp(f), f ∈ H′′.

Furthermore, ι is an L2-isometry for the natural L2-structures on H(τ) and H′′.

We will say that a refined minimal K-type τ is totally pure if u = 1, that is, if
there exists an extension L/F of degree dividing n such that G′′ � GLa(L), where
a = n/[L : F ]. In this case, letting eo = e(L/F ) and fo = f(L/F ), B is conjugate
to B(fo)aeo = B(fo)n/fo . The totally pure refined minimal K-types are described in the
proof of Theorem 5.4 of [17] (see below for a summary). We are using the terminol-
ogy totally pure because it is possible to show that each such K-type is attached to a
finite sequence of pure unrefined minimal K-types for general linear groups arising as
centralizers of elements of L. The totally pure K-types are the refined minimal K-types
that are contained in the discrete series representations. If τ is trivial, then G = G′′

and τ is the trivial representation of the standard Iwahori subgroup B = B(1)n . For the
remainder of this section, we fix a totally pure refined minimal K-type (B, τ). Let t be
the smallest non-negative integer such that the space of τ contains non-zero Bt+1-fixed
vectors. Set ρ(τ) = t/aeo = fot/n. Recall that if π ∈ E(G), then ρ(π) denotes the depth
of π (see § 11). We are using the notation ρ(τ) because ρ(π) = ρ(τ) for all π ∈ E(G) that
contain (B, τ).

https://doi.org/10.1017/S1474748003000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000124


Germs of characters of admissible representations 457

Let h be an integer such that n � h < p. Set

eh(X) =
∑

0�u�h−1

Xu

u!
, X ∈ g0+. (13.1)

This section is devoted to proving that the character χτ of a totally pure refined
minimal K-type satisfies a Kirillov-type character formula (Theorem 13.2). For each h

as above, there exists sτ,h ∈ L such that, on an open subset of B, χτ ◦ eh coincides with
a multiple of the AdB-orbit of the linear functional ψ(tr(sτ,h·)).

Theorem 13.2. Let (B, τ) be a totally pure refined minimal K-type. Then, for each h

as above, there exists sτ,h ∈ L such that the following hold.

(1) νL(sτ,h) = −eoρ(τ) and the centralizer of sτ,h in G is equal to G′′.

(2)

χτ (eh(X)) = dim τ

∫
B

ψ(tr(sτ,h Ad k(X))) dk

for all X ∈ b such that Xh ∈ b(nρ(τ)/fo)+1 = �
eoρ(τ)
L b1.

The proof of the theorem will be given later in the section. Next we outline the con-
struction (given in the proof of Theorem 5.4 of [17]) of the non-trivial totally pure
minimal K-types.

If ρ(τ) = 0, then there exists a divisor d of n such that B = B(d)n′ and τ = σ

is as in § 10. In this case, L = E is the unramified extension of F of degree d and
G′′ � G′ � GLn′(E).

Suppose that ρ(τ) > 0. Let π be a discrete series representation of G that contains
(B, τ). As shown in [17], there exists a pure unrefined minimal K-type (Qn′j , χs) (nota-
tion as in § 6) contained in π. Let E, d, n′, e, f , G′, etc., be as in § 6. Then L is an
extension of E and τ contains (Bnj/efo

, χs). By definition of ρ(τ), we have ρ(τ) = j/e.
In § 6, we saw that ρ(π) = j/e. Hence

ρ(τ) = ρ(π) =
j

e
= −νE(s)

e
= −νL(s)

eo
.

As E ⊂ L, f divides fo and fo divides n/e, so we can define parahoric filtrations
q̇i, i ∈ Z, and Q̇i, i � 0, as in § 9. Let σ̇ be the irreducible representation of the
compact open subgroup J̇ that appears in § 9. The parahoric Q̇ has the property
that B = Q̇ and B′′ = Q̇ ∩ G′′. Setting b′ = q̇′ and B′ = Q̇′, we have b′

i = bi ∩ g′

for all i ∈ Z. The K-type (B, τ) is defined inductively, using a totally pure refined
minimal K-type (B′, τ ′) for G′ and an extension of the representation σ̇ to B′J̇ . Let
η̇ : H(G′//B′

nj/efo
, χ′

s) � H(G//J̇, σ̇) be the Hecke algebra isomorphism attached to the
unrefined minimal K-type (Bnj/efo

, χs) (as in Theorem 9.1). Fix a quasi-character θ of
E× such that (denoting the determinant on G′ � GLn′(E) by det′) θ◦det′ is an extension
of the character χ′

s of B′
nρ(τ)/fo

. Set π̇ = η̇∗(π). As π̇|B′
nρ(τ)/fo

contains χ′
s and π̇ belongs

to the discrete series, the representation (θ−1 ◦ det′)π̇ is a discrete series representation
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of G′ such that ρ((θ−1 ◦ det′)π̇) < ρ(π̇) = j. There exists a totally pure refined minimal
K-type (B′, τ ′) contained in (θ−1 ◦ det′)π̇, and ρ(τ ′) = ρ((θ−1 ◦ det′)π̇). Hence

ρ(τ ′)/e < ρ(τ). (13.2)

This inequality is essential for the induction step in the proof of Theorem 13.2.
There exists a uniquely defined extension σ̇ext of σ̇ from J̇ to B′J̇ which is obtained

from σ̇ using the character θ ◦ det′ |B′ , and possibly also a Weil representation over Fp

(depending on the parity of nj/efo). This extension σ̇ext is described in more detail in
the proof of Proposition 13.7. The representation τ ′ extends trivially across J̇ to give a
representation of B′J̇ , also denoted by τ ′. Also (see [17, p. 422]),

τ = IndB
B′J̇

(τ ′ ⊗ σ̇ext). (13.3)

Fix an integer h such that n � h � p. Define sh ∈ E as follows. First, in the case j = 0,
set sh = s. Otherwise, let θ be as above. As θ is trivial on 1 + p

j+1
E and non-trivial on

1 + p
j
E , the map x �→ θ(

∑h−1
i=1 xi/i!) is a character of p

�j/h	+1
E . Thus there exists sh ∈ E

such that

θ

(h−1∑
i=0

xi

i!

)
= ψ(trE/F (shx)), x ∈ p

�j/h	+1
E . (13.4)

Note that if x ∈ p
j
E , then

ψ(trE/F (shx)) = θ

(h−1∑
i=0

xi

i!

)
= θ(1 + x) = χ′

s(1 + x) = ψ(trE/F (sx)).

This implies sh − s ∈ p
−j+1
E . In fact, s is the unique element of the subgroup of E× gen-

erated by �E and the roots of unity in E× of order prime to p such that |sh − s|E < |sh|.
Hence (see the remarks following Lemma 8 of [14]), F (s) ⊂ F (sh). But E = F (s), so
E = F (sh).

Given v ∈ Z, let b′⊥
v = bv ∩ g′⊥, where g′⊥ is the orthogonal complement of g′ relative

to trace. Recall that b′
v = bv ∩ g′ and, if v � 0, B′

v = Bv ∩ G′.

Lemma 13.3.

(1) bv = b′
v ⊕ b′⊥

v , v ∈ Z.

(2) B′(1 + b′⊥
v ) = B′Bv if v � 1.

(3) [s, b′⊥
v − b′⊥

v+1] = b′⊥
v−nj/efo

− b′⊥
v−nj/efo+1.

(4) If v � 1 and X ∈ b is such that Xh ∈ bv, then

eh(X) ∈ B′Bv ⇔ X ∈ b
′ + bv.

(5) If X = X ′ + X⊥ where X ′ ∈ b′, X⊥ ∈ bv and Xh ∈ bv+r for some r such that
0 � r � v, then eh(X) ∈ eh(X ′)(1 + b′⊥

v + b2v) and X ′h ∈ b′
v+r.
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(6) Let X ′, v and r be as in (5). Then

(tr′ X ′)h ∈ p
�(v+r−1)efo/n	+1
E

and

det′(eh(X ′)) ∈
(h−1∑

i=0

(tr′ X ′)i

i!

)
(1 + p

�(v+r−1)efo/n	+1
E ).

Proof. Parts (1)–(3) are restatements of parts (1)–(3) of Lemma 5.1.
For (4), let X ∈ b be such that Xh ∈ bv. Then the image X̄ of X in b/b1 is nilpotent.

This implies that eh(X) = exp(X̄) is unipotent. Hence eh(X) ∈ b× = B. Suppose that
X ∈ b′ + bv. Then Xi/i! ∈ b′ + bv for i � h − 1, so eh(X) ∈ (b′ + bv) ∩ B = B′Bv.
Conversely, if eh(X) ∈ B′Bv, then eh(X) − 1 ∈ b′ + bv. Hence, since Xh ∈ bv,

X ∈
h−1∑
i=1

(−1)i(eh(X) − 1)i

i
+ bv ⊂ b

′ + bv.

For (5), note that g′⊥ is stable under left and right multiplication by elements of
g′. Fixing k � h, any monomial of the form X ′iX⊥X ′k−i, 0 � i � k − 1, belongs to
g′⊥ ∩ bv = b′⊥

v . If X⊥ occurs at least twice in a monomial involving X ′ and X⊥, then,
since X ′ ∈ b′ and X⊥ ∈ bv, that monomial lies in b2v. Writing Xk as a sum of momomials
involving products of powers of X ′ and X⊥, and decomposing the monomials into sums
of elements in g′ and g′⊥, we see that the g′-component of Xk belongs to X ′k + b′

2v.
Since Xh ∈ bv+r, part (1) implies that the g′-component of Xh belongs to b′

v+r. Thus,
in view of the above, and b2v ⊂ bv+r, X ′h ∈ br+v.

Since h − 1 < p,
Xk

k!
∈ X ′k

k!
+ b

′⊥
v + b2v, 1 � k � h − 1.

Therefore, x = eh(X) ∈ eh(X ′) + b′⊥
v + b2v. By arguing as in the proof of (4),

X ′h ∈ b′
1 implies eh(X ′) ∈ (b′)× = B′. Thus, as b′⊥

v and b2v are both left B′-stable,
x ∈ eh(X ′)(1 + b′⊥

v + b2v).

For (6), E′ be a finite extension of E containing the eigenvalues λi, 1 � i � n′, of

X ′. Let | · | be an extension of | · |E from E to E′. By (5), X ′nh/efo ∈ b(v+r)n/efo
. As

�k
Eb = bkn/efo

, k ∈ Z, we have �
−(v+r)
E X ′h ∈ b′. This implies |�−(v+r)

E λi|nh/efo � 1

for all i. Thus | tr′ X ′|hE � q
−(v+r)efo/n
E . Equivalently, (tr′ X ′)h ∈ p

�(v+r−1)efo/n	+1
E . Any

multinomial occurring in

det′(eh(X ′)) −
h−1∑
k=0

(trX ′)k

k!
=

n′∏
i=1

(h−1∑
k=0

λk
i

k!

)
−

h−1∑
k=0

( n′∑
i=1

λi

)k

/k!

is of the form
∏n′

i=1 λ
n′

i
i , where h �

∑n′

i=1 n′
i. And∣∣∣∣ n′∏

i=1

λ
n′

i
i

∣∣∣∣ � q
−(v+r)efo/n
E .
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Thus

det′(eh(X ′)) ∈
(h−1∑

k=0

(tr′ X ′)k

k!

)
(1 + p

�(v+r−1)efo/n	+1
E ).

�

Recall from § 9 that �o = � 1
2 ((nj/efo) + 1)� and mo = �nj/2efo� + 1.

Lemma 13.4. Suppose that ρ(τ) = j/e > 0. Fix t ∈ {�o, mo}. Assume that X ∈ b′ + bt

is such that Xh ∈ b(nρ(τ)/fo)+1 = b(nj/efo)+1. Write X = Y +Z, with Y ∈ b′ and Z ∈ bt.
Set x = eh(X), y = eh(Y ), and z = y−1x. Then we have the following.

(1) Y h ∈ b�o+t.

(2) If t = mo, then θ(det′ y) = ψ(tr(shY )) and ψ(tr(sh(z − 1))) = 1.

Proof. Note that �o + mo = (nj/efo) + 1. For (1), if t = �o (respectively, t = mo) apply
Lemma 13.3 (5) with v = r = �o (respectively, v = mo) and r = �o. For (2), applying
Lemma 13.3 (6) with v = t = mo and r = �o, we have

(tr′ Y )h ∈ p
j+1
E and θ(det′y) = θ

(h−1∑
i=1

(tr′ Y )i

i!

)
,

which, by (13.4), implies

θ(det′y) = ψ(trE/F sh tr′ Y ) = ψ(trE/F tr′(shY )) = ψ(tr(shY )).

By Lemma 13.3 (5), z ∈ 1 + b′⊥
mo

+ b2mo , so, since sh ∈ b′
−nj/efo

,

tr(sh(z − 1)) ∈ tr(b−(nj/efo)+2mo
) ⊂ tr(b1) ⊂ pF .

Thus ψ(tr(sh(z − 1))) = 1. �

Lemma 13.5. Suppose that ρ(τ) > 0. Let sh be as above. Let X ∈ b and s′ ∈ �−j+1
E b′.

Then the following hold.

(1) We have ∫
Bmo

ψ(tr((sh + s′) Ad k(X))) dk = 0 if X /∈ b
′ + b�o .

(2) If X ∈ b1, then ∫
B�o

ψ(tr(sh Ad k(X))) dk = 0 if X /∈ b
′ + bmo

.

Proof. Since sh + s′ = s + (sh − s) + s′ ∈ s + p
−j+1
E + �−j+1

E ∈ s + �−j+1
E b′, it suffices

to prove the lemma with sh replaced by s.
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For (1), given k ∈ Bmo
, let Y = k − 1 ∈ bmo

. Then

Ad k(X) ∈ X + [Y, X] + b2mo ⊂ X + [Y, X] + b(nj/efo)+1.

Combining this with s + s′ ∈ �−j
E b′ ⊂ b−nj/efo

= b∗
(nj/efo)+1, we have∫

Bmo

ψ(tr(s + s′) Ad k(X)) dk = ψ(tr(s + s′)X)
∫

bmo

ψ(tr(s + s′)[Y, X]) dY

= ψ(tr(s + s′)X)
∫

bmo

ψ(tr([X, s + s′]Y )) dY.

Assume that the above integral is non-zero. Then [X, s + s′] ∈ b∗
mo

= b−mo+1. There
exists a unique i � 0 such that X ∈ bi − bi+1. By Lemma 13.3, X = X ′ + X⊥ for some
X ′ ∈ b′

i and X⊥ ∈ b′⊥
i . As s + s′ ∈ g′, and both g′ and g′⊥ are ad g′-stable, it follows

from Lemma 13.3 that

[s + s′, X] ∈ b−mo+1 ⇒ [s + s′, X ′] ∈ b
′
−mo+1 and [s + s′, X⊥] ∈ b

′⊥
−mo+1.

Let v be such that X⊥ ∈ b′⊥
v − b′⊥

v+1. By Lemma 13.3,

[s, X⊥] ∈ b
′⊥
−(nj/efo)+v − b

′⊥
−(nj/efo)+v+1.

As
s′ ∈ �−j+1

E b
′ = b

′
n(−j+1)/efo

, [s′, X⊥] ∈ b
′⊥
(n(−j+1)/efo)+v.

Therefore,
[s + s′, X⊥] ∈ b

′⊥
−(nj/efo)+v − b

′⊥
−(nj/efo)+v+1.

Hence, if the above integral is non-vanishing, −(nj/efo) + v � −mo + 1. That is,

v � (nj/efo) + 1 − mo = �o + mo − mo = �o.

This implies X = X ′ + X⊥ ∈ b′ + b′⊥
�o

= b′ + b�o
.

The proof of part (2) is omitted as it is very similar to that of (1). �

If S is a subset of g, let [S] be the characteristic function of S.

Corollary 13.6. If ρ(τ) > 0, s′ ∈ p
−j+1
E b′ and X ∈ b, then∫

B

ψ(tr((sh + s′) Ad k(X))) dk =
∫

B

[b′ + b�o
](Ad k(X))ψ(tr((sh + s′) Ad k(X))) dk.

Proposition 13.7. Suppose that ρ(τ) > 0. Let sh be as in (13.4). Then

χσ̇ext(eh(X)) = (dim σ̇ext)
∫

B�o

ψ(tr(sh Ad k(X))) dk

for all X ∈ b′ + b�o such that Xh ∈ b(nρ(τ)/fo)+1 = b(nj/efo)+1.
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Proof. Given X as in the statement of the proposition, let Y ∈ b′, Z ∈ b�o
be such that

X = Y + Z. Let x = eh(X), y = eh(Y ), and z = x−1y. Note that, by Lemma 13.3 (2),
B′J̇ = B′B�o and B′J̇+ = B′Bmo . Define a character ϕ of B′J̇+ by

ϕ|B′ = θ ◦ det′|B′ , ϕ(w) = ψ(tr(sh(w − 1))) = ψ(tr(s(w − 1))), w ∈ J̇+.

If �o = mo, then σ̇ext = ϕ. As shown in Lemma 13.4 (2),

ϕ(x) = ϕ(y)ϕ(z) = θ(det′y)ψ(tr(sh(z − 1))) = ψ(tr(shY )) = ψ(tr(shX)).

As �o = mo, the function X �→ ψ(tr(shX)) is Ad B�o-invariant. The proposition now
follows.

For the remainder of the proof, assume that mo = �o + 1. The representation σ̇ext can
be described as follows. Let N = 1 + q̇(nj/efo)+1 + q̇′⊥

m . Then J̇/N is isomorphic to the
direct product of finitely many Heisenberg groups Hi. (This is discussed in [17, pp. 413,
414] in the description of σ—the idea is the same for σ̇.) Let ϕi be the restriction of ϕ to
the centre of Hi. Attached to each Hi, there is a natural finite symplectic vector space
Vi. Let Sp(Vi) be the corresponding symplectic group. The Weil representation ωϕi is a
uniquely defined irreducible representation of Sp(Vi) � Hi. One of its properties is that
ωϕi |Hi

is the Heisenberg representation of Hi with central character ϕi. The conjugation
action of B′ on J̇ induces a homomorphism B′ � J̇ →

∏
i Sp(Vi) � Hi. We can view the

restriction of ωϕ =
⊗

i ωϕi to the image of B′ � J̇/N as a representation of B′ � J̇ , also
denoted by ωϕ. Let inf(ϕ) be the representation of B′ � J̇ which is equal to ϕ on B′

and trivial on J̇ . Then ωϕ ⊗ inf(ϕ) factors through the natural map B′ � J̇ → B′J̇ . The
resulting representation of B′J̇ = B′B�o

is σ̇ext.
Note that σ̇ext|J̇ = ωϕ|J̇ is the inflation of the tensor products of the Heisenberg rep-

resentations of the Hi with central characters ϕi. This implies that σ̇ext|J̇ is the unique
irreducible component of IndJ̇

J̇+
(ϕ|J̇+

), which is, by definition, σ̇.

Case 1. Suppose that X ∈ b′
1 + b�o . Then x ∈ B′

1B�o
. Because ωϕ|B′

1
is a multiple

of the trivial representation, it follows that σ̇ext|B′
1

is a multiple of ϕ. As remarked
above, σ̇ext|J̇ = σ̇. It follows that σ̇ext|B′

1B�o
is the unique irreducible component of

IndB′
1J̇

B′
1J̇+

ϕ = IndB′
1B�o

B′
1Bmo

ϕ. As B′
1Bmo is normal in B′

1B�o ,

χσ̇ext(x)
dim σ̇ext

=

{
ϕ(x) if x ∈ B′

1Bmo ,

0 if x /∈ B′
1Bmo .

If Z /∈ bmo
, then X /∈ b′

1 + bmo
, so x /∈ B′

1Bmo
(Lemma 13.3 (4)) and hence χσ̇ext(x) = 0.

Also, by Lemma 13.5 (2),
∫

B�o
ψ(tr(sh Ad k(X))) dk = 0. If Z ∈ bmo and k ∈ B�o , then,

by Lemma 13.4 (2),

ψ(tr(sh(Ad k(X)))) = ψ(tr(shX)) = ψ(tr(shY )) = θ(det′y)ψ(tr(sh(z − 1))) = ϕ(x).

Hence the right-hand side of the above-displayed formula is equal to∫
B�o

ψ(tr(sh Ad k(X))) dk for all X ∈ b
′
1 + b�o

.

That is, the proposition holds when X ∈ b′
1 + b�o .
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Case 2. Suppose that X ∈ (b′ + b�o
) − (b′

1 + b�o
). Then Y ∈ b′ − b′

1 and x /∈ B′
1B�o

.
Let U be the subgroup of B′ generated by y and B′

1. The image of U in the direct
products of the symplectic groups Sp(Vi) (see the comments preceding the discussion of
Case 1) is contained in the direct product of the cyclic group generated by the image of
the element y. Remarks in [12, p. 295] imply that

σ̇ext|UB�o
= IndUB�o

UK (ϕ̄),

where K is a subgroup of B�o
containing Bmo

having the property that the image of B′
1K

in B′
1B�o

/ ker(ϕ|B′
1Bmo

) is a maximal abelian subgroup fixed under the action induced
by conjugation by y. Here, ϕ̄ is any character of UB�o that coincides with ϕ on UBmo .
We shall take ϕ̄ given by

ϕ̄|U = θ ◦ det′ and ϕ̄(1 + W ) = ψ(tr(sh(W − 1
2W 2))), W ∈ K − 1.

It is a simple matter to check that ϕ̄ is a well-defined representation of UK. (The argu-
ment is the same as that in [33, p. 441].)

Let F(x) = {w ∈ UB�o | w−1xw ∈ UK}. Then it follows from the Frobenius formula
for characters of induced representations that

χσ̇ext(x)
dim σ̇ext

=
∫

F(x)
ϕ̄(w−1xw) dw.

Conjugation by U fixes ϕ̄, and U normalizes B�o , so F(x) may be replaced by
F1(x) = F(x) ∩ B�o . Since χσ̇ext is supported on the set of conjugacy classes in UB�o

that intersect UBmo
, after replacing x by w−1xw, w ∈ F1(x), if necessary, we assume

that x ∈ UBmo . As will be shown in Lemma 13.9 (1),

ϕ̄(w−1xw) = ϕ̄(x)ψ(tr(sh(Adw−1(X) − X))), w ∈ F1(x).

It follows that

χσ̇ext(x)
dim σ̇ext

= ϕ̄(x)ψ(− tr(shX))
∫

F1(x)
ψ(tr(sh Adw−1(X))) dw.

Recall that ϕ̄|UBmo
= ϕ|UBmo

. As x ∈ UBmo and U ∈ B′, we have X ∈ b′ + bmo . By
Lemma 13.4 (2) and the definition of ϕ, ϕ̄(x) = ϕ(x) = ψ(tr(shX)). Hence

χσ̇ext(x)
dim σ̇ext

=
∫

F1(x)
ψ(tr(sh Adw−1(X))) dw.

Together with Lemma 13.9 (2), this completes the proof. �

The proof of the following lemma is omitted as it is very similar to that of Lemma 3.17
of [33].
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Lemma 13.8. Let X, Z, x and z be as in Lemma 13.4. Then the following hold.

(1) Adx−1(T ) ∈
h−1∑
i=0

(−1)i

i!
(adX)i(T ) + bmo , T ∈ b�o .

(2) [X, T ] ∈
h−1∑
i=1

(−1)i

i
(Adx−1 − 1)i(T ) + bmo

, T ∈ b�o
.

(3) z ∈ 1 +
h−2∑
i=0

(−1)i

(i + 1)!
(adX)i(Z) + bmo

.

(4) Z ∈
h−2∑
i=0

(−1)i

i + 1
(Adx−1 − 1)i(z − 1) + bmo

.

Lemma 13.9. Suppose that ρ(τ) > 0, X ∈ (b′ + b�o) − (b′
1 + b�o) and Xh ∈ b(nj/efo)+1.

Let the notation be as in the proof of Proposition 13.7. Assume that x = eh(X) ∈ UK.
Then the following hold.

(1) ϕ̄(w−1xw) = ϕ̄(x)ψ(tr(sh(Adw−1(X) − X))), w ∈ F1(x).

(2)
∫

B�o

ψ(tr(sh Adw−1(X))) dX =
∫

F1(x)
ψ(tr(sh Adw−1(X))) dw.

Proof. As B′
1 ⊂ U ⊂ B′ and K ⊂ B�o , it follows that (UK) ∩ B�o = B′

�o
K. Since y

normalizes B′
�o

K, x ∈ yB′
1B�o

, x normalizes B′
�o

K. This implies that

Adx−1(b′
�o

+ K − 1) ⊂ b
′
�o

+ K − 1. (13.5)

Combining this with Lemma 13.8 (2) results in

[X, b′
�o

+ K − 1] ⊂ b
′
�o

+ K − 1. (13.6)

Let w ∈ F1(x). As x ∈ UK, x−1w−1xw ∈ (UK) ∩ B�o = B′
�o

K. This implies, setting
W = w − 1, that W − Adx−1(W ) ∈ b′

�o
+ K − 1. Hence, by (13.5) and Lemma 13.8 (2),

[X, W ] ∈ b
′
�o

+ K − 1, W ∈ F1(x) − 1.

Using (13.6) and the fact that, as B′
1K is abelian modulo ker(ϕ|B′

1Bmo
), ψ(tr(sh(·))) is

trivial on the commutator of b′
�o

+ K − 1, it is possible to show that (for details, see the
proof of (8.12) in [34, p. 91]),

ψ(tr(sh([(adX)i(T ), W ]))) = 1, i � 1, T ∈ b
′
�o

+ K − 1, W ∈ F1(x) − 1. (13.7)

From z = y−1x ∈ (UK) ∩ B�o = B′
�o

K, it follows that z − 1 ∈ b′
�o

+ K − 1. By (13.5)
and Lemma 13.8 (4),

Z ∈ b
′
�o

+ K − 1. (13.8)
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Let w = 1 + W ∈ F1(x). As y ∈ G′, y commutes with sh, tr(sh(W − Adx−1(W ))) =
tr(sh(Ad z(W ) − W )). Furthermore, Ad z(W ) − W ∈ [z − 1, W ] + b(nj/efo)+1. Using
Lemma 13.8 (3) and [bmo , W ] ∈ b(nj/efo)+1, we can show that

ψ(tr(sh(W − Adx−1(W )))) =
h−2∏
i=0

ψ

(
tr
(

sh

[
(−1)i(adX)i(Z)

(i + 1)!
, W

]))
.

By (13.8), we may apply (13.7) with T = (−1)iZ/(i + 1)! and i � 1. This results in

ψ(tr(sh(W − Adx−1(W )))) = ψ(tr(sh[Z, W ])) = ψ(tr(sh[X, W ])). (13.9)

By Lemma 13.8 (1),

ψ(tr(sh[Adx−1(W ), W ])) = ψ(tr(sh[Adx−1(W ) − W, W ]))

=
h−1∏
i=1

ψ

(
tr
(

sh

[
(−1)i(adX)i(W )

i!
, W

]))
.

By (13.6), T = (adX)i(W )/i! ∈ b′
�o

+ K − 1. Applying (13.7) with i − 1 instead of i, we
see that the terms corresponding to 2 � i � h − 1 in the above product are equal to one.
Thus

ψ(tr(sh[Adx−1(W ), W ])) = ψ(tr(sh[W, [X, W ]])). (13.10)

Proof of (1). A straightforward argument shows that

ϕ̄(x−1w−1xw) = ψ(tr(sh(W − Adx−1(W ) − 1
2 [Adx−1(W ), W ])))

= ψ(tr(sh([X, W ] − 1
2 [W, [X, W ]]))) by (13.9) and (13.10).

It is easy to see that ψ(tr(sh(Adw−1(X)))) = ψ(tr(sh(X + [X, W ] − 1
2 [W, [X, W ]]))), so

part (1) follows. �

Proof of (2). Introducing an extra integration over K, we have∫
B�o

ψ(tr(sh Ad k(X))) dk =
∫

B�o

(∫
K

ψ(tr(sh Adwk(X))) dw

)
dk.

Fix k ∈ B�o
. Set X̃ = Ad k(X). To prove (2), it suffices to prove that if the inner integral

above, which we will denote by I(X̃), is non-zero, then k ∈ F1(x).
Note that I(X̃) can be rewritten as

I(X̃) = ψ(tr(shX̃))
∫

K−1
ψ(tr(sh([X̃, W ] + 1

2 [W, [W, X̃]]))) dW.

As X̃ ∈ X + b�o
, it follows from (13.6) and the fact that ψ(tr(sh·)) is trivial on the

commutator of b′
�o

+ K − 1 that

ψ(tr(sh[W, [W, X̃]])) = ψ(tr(sh[W, [W, X]])) = 1 ∀W ∈ K − 1.
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Applying Lemma 13.4, write X̃ = Ỹ + Z̃, x̃ = eh(X̃), ỹ = eh(Ỹ ), z̃ = ỹ−1x̃. Then

I(X̃) = ψ(tr(shX̃))
∫

K−1
ψ(tr(sh[Z̃, W ])) dW.

Suppose that I(X̃) �= 0. Then ψ(tr(sh[Z̃, W ])) = 1 for all W ∈ K − 1. However, we can
easily check that ϕ((1 + Z̃)−1w−1(1 + Z̃)w) = ψ(tr(sh[Z̃, W ])). As B′

1K is a maximal
abelian subgroup modulo the kernel of ϕ, it follows that 1 + Z̃ ∈ (B′

1K) ∩ B�o
= B′

�o
K.

Equivalently, Z̃ ∈ b′
1 + K − 1. By (13.6) and Lemma 13.8 (3), it follows that z̃ ∈ B′

�o
K.

From
ỹ = x̃z̃−1 = y(y−1kyk−1)(kzk−1)z̃−1 ∈ yB�o

and y, ỹ ∈ G′, we get ỹ ∈ yB′
�o

⊂ U . Thus, if I(X̃) �= 0, then kxk−1 = x̃ = ỹz̃ ∈ UK.
That is, k ∈ F1(x). �

Proof of Theorem 13.2. First suppose that ρ(τ) = 0. In this case, τ = σ, where σ is
as in § 10, and Theorem 13.2 is equivalent to Lemma 10.9. (We remark that if τ is trivial,
then sτ,h = 0.)

Now suppose that ρ(τ) > 0. Assume that the theorem holds for those totally pure
refined minimal K-types (B∗, τ∗) of groups G∗ � GLn/[E∗:F ](E∗), where E∗/F is an
extension of degree dividing n, having the property that ρ(τ∗)/e(E∗/F ) < ρ(τ). Let χ̇τ ′

(respectively, χ̇σ̇ext) be the function on B given by χτ ′ (respectively, χσ̇ext) on B′J̇ , and
zero elsewhere. We have

χτ (eh(X))
dim τ

= (dim τ ′)−1(dim σ̇ext)−1
∫

B

χ̇τ ′(keh(X)k−1)χ̇σ̇ext(keh(X)k−1) dk

= (dim τ ′)−1(dim σ̇ext)−1
∫

B

χ̇τ ′(eh(Ad k(X)))χ̇σ̇ext(eh(Ad k(X))) dk

= (dim τ ′)−1[b′ + b�o ](Ad k(X))

×
∫

B

χ̇τ ′(eh(Ad k(X)))
(∫

B�o

ψ(tr(sh Ad(yk)(X))) dy

)
dk

= (dim τ ′)−1
∫

B

∫
B�o

χ̇τ ′(eh(Ad yk(X)))[b′ + b�o
]

× (Ad yk(X))ψ(tr(sh Ad yk(X))) dy dk

= (dim τ ′)−1
∫

B

χ̇τ ′(eh(Ad k(X)))[b′ + b�o ](Ad k(X))ψ(tr(sh Ad k(X))) dk.

(13.11)

The first equality above follows from (13.3), and the second follows from keh(X)k−1 =
eh(Ad k(X)). By parts (2) and (4) of Lemma 13.3,

eh(Ad k(X)) ∈ B′J̇ = B′B�o ⇔ Ad k(X) ∈ b
′ + b�o .

Combining this with Proposition 13.7 results in the third equality. For the fourth equality,
note that the function [b′ + b�o ] is AdB�o-invariant, and, as τ ′ is a representation of B′Bl,

https://doi.org/10.1017/S1474748003000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000124


Germs of characters of admissible representations 467

the function χ̇τ ′ is invariant under conjugation by B�o
. Finally, the order of integration

is reversed and the B�o-integral disappears.
If τ ′ is the trivial representation of B′J̇ , then (13.11) can be rewritten as

χτ (eh(X))
dim τ

=
∫

B

[b′ + b�o
](Ad k(X))ψ(tr(sh Ad k(X))) dk

=
∫

B

ψ(tr(sh Ad k(X))) dk by Corollary 13.6 (with s′ = 0).

When τ ′ is trivial, we have G′ = G′′ and L = E. We know that sh generates E over F ,
so its centralizer in G′ is G′. Hence Theorem 13.2 holds with sτ,h = sh.

Next, assume that τ ′ is non-trivial. Suppose that eh(Ad k(X)) ∈ B′J̇ . Then, by
Lemma 13.4 (applied to Ad k(X)), Ad k(X) = Y + Z with Y ∈ b′, Z ∈ b′⊥

�o
, and

eh(Ad k(X)) ∈ eh(Y ′)J̇ . As τ ′ is trivial on J̇ , we have χτ ′(eh(Ad k(X))) = χτ ′(eh(Y )).
By Lemma 13.4 (1) and (13.2),

Y h ∈ b
′
2�o

⊂ b
′
nρ(τ)/fo

⊂ b
′
(njρ(τ ′)/(efo))+1.

By (13.2) and our inductive assumption, there exists sτ ′,h ∈ L such that νL(sτ ′,h) =
−e(L/E)ρ(τ ′) = −(e0/e)ρ(τ ′), the centralizer of sτ ′,h in G′ is equal to G′′, and

χτ ′(eh(Ad k(X)))
dim τ ′ =

χτ ′(eh(Y ))
dim τ ′ =

∫
B′

ψ(tr(sτ ′,h Ad k′(Y ))) dk′. (13.12)

Note that we have taken ψ ◦ trE/F for our non-trivial character ψE of E, so that
ψE ◦ tr′ = ψ ◦ tr. As AdB′(b′⊥

�o
) = b′⊥

�o
and sτ ′,h ∈ E ⊂ g′, we have tr(sτ ′,h Ad k′(Z)) = 0.

This allows us to replace Y by Y + Z = Ad k(X) in the right-hand side of (13.12). Com-
bining (13.12) with (13.11) results in

χτ (eh(X))
dim τ

=
∫

B

[b′ + b�o ](Ad k(X))

×
(∫

B′
ψ(tr(sτ ′,h Ad k′k(X))) dk′

)
ψ(tr(sh Ad k(X))) dk

=
∫

B

∫
B′

[b′ + b�o
](Ad k′k(X))ψ(tr(sτ ′,h Ad k′k(X)))ψ(sh Ad k′k(X)) dk′ dk

=
∫

B

[b′ + b�o
](Ad k(X))ψ(tr(sh + sτ ′,h) Ad k(X)) dk

=
∫

B

ψ(tr(sh + sτ ′,h) Ad k(X)) dk.

For the second equality above note that [b′ + b�o ] is AdB′-invariant, and sτ ′,h ∈ E so
belongs to centre of g′ and

tr(sτ ′,h Ad k′k(X)) = tr(Ad k′−1(sτ ′,h) Ad k(X)) = tr(sτ ′,h Ad k(X)).

The same statement holds if sτ ′,h is replaced by sh. For the third equality, reverse the
order of integration and then absorb the B�o

-integration. The final equality follows after
an application of Corollary 13.6 with s′ = sh + sτ ′,h.
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Set sτ,h = sh + sτ ′,h. To complete the proof, it remains to show that sτ,h generates
L/F . Since sτ ′,h ∈ �−j+1

E b′, by Lemma 5.5, the centralizer of sτ,h in G is contained in
G′. As sh is in the centre of G′, and sτ ′,h generates L over E, the centralizer of sτ,h in
G′ is equal to G′′. Hence the centralizer of sτ,h in G is G′′. Since sτ,h ∈ L, it follows that
this element generates L over F . �

The following result will be needed for the proof of Theorem 14.1.

Lemma 13.10. Let (B, τ) be as in Theorem 13.2.

(1) If ρ(τ) = 0, then dim τ = ud(q)n′
u1(qd)−n′

.

(2) If ρ(τ) > 0, then dim τ = (dim τ ′)ufo(q)
n/foufo/f (qf )−n/efoq(n/2e)((n−n′)j−e+1).

Proof. For (1), recall that τ = σ, where σ is as in § 10. Thus dim τ = (dimσ0)n′
, where

σ0 is the inflation to GLd(oF ) of an irreducible cuspidal representation of GLd(Fq). As
shown in Appendix 3 of [17], dimσ0 = ud(q)u1(qd)−1.

Suppose that ρ(τ) > 0. By (13.3),

dim τ = [B : B′J̇ ](dim τ ′)(dim σ̇ext) = (dim τ ′)[B : B′B�o ](dim σ̇).

Arguing as in the proof of Proposition 8.4, except with σ̇, B�o , J̇ in place of σ, Q�, J ,
etc., we see that

[B1 : B�o ][B
′
1 : B′

�o
]−1 dim σ = q(fo/2)(n−n/(ef))((nj/efo)−1).

Hence

[B : B′B�o ] dim σ̇ = [B : B1][B′ : B′
1]

−1q(fo/2)(n−n/(ef))((nj/efo)−1)

= ufo(q)
n/foufo/f (qf )−n/efoq(n/2e)((n−n′)j−e+1).

Here we have used (3.1) to compute various group indices. �

14. Reduction to germs of unipotent characters

Throughout this section, in order to be able to apply Theorems 11.5 and 12.3, we assume
that p > 2n. Proofs of the results stated in this section appear in §§ 15–17.

One of our main results (Theorem 14.1) concerns the germs of characters of those
representations π ∈ E(G) that contain totally pure refined minimal K-types. As discussed
in § 13 (see Theorem 13.1), Howe and Moy [17] showed that there exist families of K-
types, called refined minimal K-types, having the property that every π ∈ E(G) contains
some refined minimal K-type. Furthermore, the Hecke algebra attached to a refined
minimal K-type is naturally isomorphic to the Iwahori Hecke algebra of a direct product
of general linear groups over finite extensions of F . Recall that we have defined a pure
refined minimal K-type (B, τ) to be totally pure if the Hecke algebra isomorphism of
Howe and Moy is of the form

ι : H′′ = H(G′′//B′′) → H(τ) = H(G//B, τ̃),
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where G′′ � GLa(L) for some positive divisor a of n and some extension L/F such that
a[L : F ] = n, and B′′ = B ∩ G is an Iwahori subgroup of G′′. The totally pure refined
minimal K-types are the ones that are contained in the essentially square integrable rep-
resentations (although they are also contained in many other representations). If (B, τ)
is a totally pure refined minimal K-type, let ρ(τ) be the rational number defined in § 13.
Recall that the depth ρ(π) of any π ∈ E(G) that contains (B, τ) is equal to ρ(τ).

Before stating Theorem 14.1, we remind the reader of some of our notation. Given
r ∈ R, let gr+ be as in § 11. If s0 is a semisimple element in g, ΩG(s0) denotes the set of
G-orbits in g whose closures contain s0. If O is a G-orbit in g, µ̂O is the locally integrable
function on g that represents the Fourier transform of the distribution µO given by
integration over the orbit O relative to a G-invariant measure on O. We say that a locally
integrable G-invariant function D defined on an open subset S of g is s0-asymptotic on
an open subset S0 of S if D|S0∩greg belongs to the span of {µ̂O|S0∩greg | O ∈ ΩG(s0)}.
The resulting linear combination of the functions µ̂O, O ∈ ΩG(s0), is referred to as an
s0-asymptotic expansion of D (on S0). Recall (Corollary 11.11) that if s0 belongs to
an elliptic Cartan subalgebra of g, then the functions µ̂O, O ∈ ΩG(s0), remain linearly
independent upon restriction to any open neighbourhood of zero intersected with greg. If
π ∈ E(G), and Θπ is the character of π, the function X �→ Θπ(1 + X), which we refer to
as the germ of Θπ, is locally integrable on g0+ . If s0 ∈ g is semisimple and if the germ
of Θπ is s0-asymptotic on some open neighbourhood of zero, then, for each O ∈ ΩG(s0),
we denote the coefficient of µ̂O in the s0-asymptotic expansion by cO(π).

If B is a parahoric subgroup of G, let bi, i ∈ Z, be the filtration of g given by powers
of the nilradical of the associated parahoric oF -subalgebra of g (see § 3). Given S ⊂ G,
υG(S) denotes the measure of S with respect to some fixed Haar measure on G.

Theorem 14.1. Let (B, τ) be a totally pure refined minimal K-type. Let L be as above.
Set fo = f(L/F ). Suppose that n � h � p. Let eh be the truncated exponential of (13.1).
Then the following hold.

(1) There exists sτ,h ∈ L such that the centralizer of sτ,h in G equals G′′ and

χτ (eh(X)) = dim τ

∫
B

ψ(tr(sτ,h Ad k(X))) dk

∀X ∈ b such that Xh ∈ b(nρ(τ)/fo)+1.

(2) There exist coefficients cO(π), one for each O ∈ ΩG(sτ,h), such that

Θπ(1 + X) =
∑

O∈ΩG(sτ,h)

cO(π)µ̂O(X), X ∈
{

gρ(τ) ∩ greg if ρ(τ) > 0,

g0+ ∩ greg otherwise.

(3) Assume that the measures on the orbits in ΩG(sτ,h) and ΩG′′(0) are compatible in
the sense described in § 12. Let π′′ be the irreducible unipotent representation of G′′

that corresponds to π via the Hecke algebra isomorphism ι. Given O′′ ∈ ΩG′′(0),
let O = G · (sτ,h + O′′). Then

cO(π) = υG(B)−1υG′′(B′′)(dim τ)cO′′(π′′).
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Remarks 14.2.

(1) If ρ(τ) = 0, then sτ,h is independent of the choice of h such that n � h � p

(see the proof of Theorem 14.1). Suppose that ρ(τ) > 0 and n � h, � � p.
Given Oh ∈ ΩG(sτ,h), if Oh = G · (sτ,h + O′′), then Oh ∩ g′′ = sτ,h + O′′. The
map Oh → O� = G · (sτ,� + O′′) is a bijection from ΩG(sτ,h) to ΩG(sτ,�). By (3),
cOh

(π) = cO�
(π). It can be shown by a straightforward inductive argument using

descent properties of orbital integrals (see § 5) that µ̂Oh
and µ̂O�

coincide on
gρ(τ) ∩ greg. Hence the expression in Theorem 14.1 (2) for the germ of Θπ is inde-
pendent of the choice of h. (We allow h to vary because it is convenient for the
induction step in the proof of Theorem 14.1 (1) (Theorem 13.2).)

(2) Suppose that π is essentially square integrable and contains (B, τ). Let d(π) be the
formal degree of π, and let StG be the Steinberg representation of G. It is easy to
show, using the fact that ι(π) is a twist of StG′′ , together with the relation between
d(π) and d(ι(π)) arising via ι (see [17, § 5] and the discussion in [7, § 2]) that

d(π)
d(StG)

= fo(qn − 1)(qfo − 1)a(qafo − 1)−1ufo(q)
−n/a dim τ.

Here, we have divided by d(StG) on the left-hand side in order to remove depen-
dence on measures. In Theorem 2.4.7 of [7], d(π)/d(StG) is expressed in terms of
data involved in the supercuspidal support of π.

Suppose that π ∈ E(G) is supercuspidal. Then π contains a totally pure refined minimal
K-type such that [L : F ] = n and G′′ = L×. In this case, an analogue of Theorem 14.1
was proved in [33]. There exists a compact open mod centre subgroup H of L×B and
a representation κ of H such that π = IndG

H κ. Let τ0 = IndL×B
H κ. Then π = IndG

L×B τ0

and τ = τ0 | B is a refined minimal K-type contained in π. Proposition 3.10 of [33] is
essentially Theorem 14.1 (1) for h = n. This implies that the sπ of [33] is the sτ,n of The-
orem 13.2. Taking h = n, parts (2) and (3) of Theorem 14.1 are analogues of Theorem 4.3
of [33], with one important difference. In [33], we do not specify the neighbourhood on
which the sπ-asymptotic expansion holds. Recently, Adler and DeBacker [2] have shown,
by refinements of the methods of [33], that the sπ-asymptotic expansion holds on gρ(π)+ .
In [33], the Kirillov-type character formula of Proposition 3.10 was proved via methods
similar to those used here to prove Theorem 13.2. But the analogues of (2) and (3) were
proved differently in [33], via a comparison of Harish-Chandra’s integral formulae for
Θπ ◦ exp and the Fourier transform µ̂O(sπ).

Given π ∈ E(G), the wavefront set WF (π) of π is

WF (π) =
⋃

{O∈ΩG(0)|cO(π) �=0}
Ō.

As shown in Proposition II.2 of [25], there exists a unique O ∈ ΩG(0) such that
WF (π) = Ō. If α ∈ P0(n/a), let αn/a ∈ P(n) be as defined in § 2. Let α̇n/a be the
unique element of P0(n) that is a rearrangement of αn/a.
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Corollary 14.3. Let π ∈ E(G) and π′′ ∈ E(G′′) be as in Theorem 14.1. If β ∈ P0(a) is
such that WF (π′′) = Ōβ , then WF (π) = Ōβ̇n/a .

Recall that π ∈ E(G) is said to be essentially square integrable if some twist of π

by a linear character of G belongs to the discrete series. Next, we give the coefficients
in the sτ,h-asymptotic expansion of the germ of Θπ for essentially square integrable π.
Let α �→ O′′

α be the bijection between P0(a) and ΩG′′(0) discussed in § 2. As shown by
Howe [13], given α ∈ P0(a), there exists a parabolic subgroup Pα of G′′ such that the
germ of ΘIndG′′

Pα
1 coincides with λαµ̂O′′

α
for some positive constant λα depending on the

normalization of measure on O′′
α. For the next result, we will assume that the measure

on O′′
α has been normalized so that λα = 1. If r = r(α) is the length of α, let |Stabα| be

the cardinality of the stabilizer of α in the symmetric group on r letters.

Theorem 14.4. Suppose that π ∈ E(G) is essentially square integrable. Then the fol-
lowing hold.

(1) π contains a totally pure refined minimal K-type τ .

(2) Let sτ,h, G′′ and π′′ be as in Theorem 14.1. Assume that the measures on the
orbits in ΩG(sτ,h) and ΩG′′(0) are compatible in the sense described in § 12. Let
α ∈ P0(a). If O = G · (sτ,h + O′′

α), then

cO(π) = υG(B)−1υG′′(B′′)(dim τ)cO′′
α
(StG′′)

= υG(B)−1υG′′(B′′)(dim τ)
(−1)a−r(α)r(α)!

|Stabα| .

It follows from Theorem 14.4 that if π is essentially square integrable, in order to com-
pute the coefficients in the 0-asymptotic expansion of the germ of Θπ, it suffices to com-
pute the coefficients in the 0-asymptotic expansions of the functions µ̂O, O ∈ ΩG(sτ,h).
It is not known how to do this in general. In a separate paper [36], the coefficients in
the 0-asymptotic expansions of the germs of characters of certain discrete series rep-
resentations are computed, via a slightly different approach, using some results of this
paper.

If π ∈ E(G) contains a refined minimal K-type τ that is not totally pure, then Howe
and Moy do not give an explicit construction of τ , so we do not have an analogue of
Theorem 14.1 (1) (Theorem 13.2). However, we can relate the germ of Θπ to the germ of
the character of a unipotent representation of the centralizer of some semisimple element.

Theorem 14.5. Let π ∈ E(G). Then there exists sπ ∈ gss ∩ g−ρ(π) and an irreducible
unipotent representation πu of H = CG(sπ) such that the following hold.

(1) The germ of Θπ is sπ-asymptotic on gρ(π) (respectively, g0+) if ρ(π) > 0 (respec-
tively, ρ(π) = 0).

(2) Assume that the measures on the orbits in ΩG(sπ) and ΩH(0) are compatible in
the sense described in § 12. Then there exists an sπ-asymptotic expansion of the
germ of Θπ such that the coefficients are given by

cG·(sπ+OH)(π) = λcOH
(πu), OH ∈ ΩH(0),

for some positive constant λ.
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The constant λ has the property that υG(K)−1υH(KH)λ is independent of measures
for any open compact sugroups K and KH of G and H, respectively. In order to relate
sπ to the character of a refined minimal K-type contained in π (as was done for those
π containing a totally pure refined minimal K-type), it would be necessary to derive
a precise relation between the characters of the refined minimal K-types contained in
representations which are related via parabolic induction.

15. Proof of Theorem 14.1

Assume that p > 2n. Let (B, τ) be a totally pure refined minimal K-type. Let
ι : H′′ → H(τ) be the associated Hecke algebra isomorphism (see Theorem 13.1). Given
π ∈ E(G), which contains (B, τ), let ι∗(π) ∈ E(G′′) denote the representation correspond-
ing to π via ι. Let L be the extension of F such that G′′ � GLa(L), and let fo = f(L/F ).

Proof of Theorem 14.1. Note that part (1) is Theorem 13.2. Hence we need only
prove parts (2) and (3). Suppose that π ∈ E(G) contains (B, τ). Let h and sτ,h be as in
part (1). Let e1(X) = 1 + X, X ∈ g0+ .

We start with the case ρ(τ) = 0. Let E = L, d = fo and n′ = n/d. In this case,
B = B(d)n′ and τ is the representation σ of B defined in § 10. Define s, H, H′, G′, η,
etc, as in § 10. Then G′′ = G′, H′′ = H′ and ι = η, so ι∗(π) = η∗(π) = π′. Note that
e = e(E/F ) = 1, f = f(E/F ) = d and j = eρ(τ) = eρ(π) = 0.

By Lemma 10.9, the element sτ,h of part (1) is equal to s. By Theorem 12.3 (1), Θπ ◦e1

is s-asymptotic on g0+ and, given O′ ∈ ΩG′(0),

cG·(s+O′)(π) = υG(B(n))−1υG′(B′
(n′))un(q)un′(qd)−1cO′(ι∗(π)).

After expressing υG(B(n)) and υG′(B′
(n′)) in terms of υG(B) and υG(B′) (B′ = B′

(1)n′ )
with the help of (3.1), we obtain

cG·(s+O′)(π) = υG(B)−1υG′(B′)ud(q)n′
u1(qd)−n′

cO′(ι∗(π))

= υG(B)−1υG′(B′)(dim τ)cO′(ι∗(π))

for O′ ∈ ΩG′(0). Above, we have applied Lemma 13.10 to get the second equality. Hence
Theorem 14.1 holds in the case ρ(τ) = 0.

For the rest of the proof, we assume that ρ(τ) > 0. As discussed in § 13 (following the
statement of Theorem 13.2), there exists a pure unrefined minimal K-type (Qn′j , χs) such
that τ contains (Bnj/efo

, χs) and ρ(τ) = j/e. Here, s is as in § 5 and Qn′j is as defined
in § 6. Recall that E = F (s) is an extension of F of degree d = n/n′, e = e(E/F ) and
s ∈ p

−j
E − p

−j+1
E . The extension E is embedded in g as in § 3, G′ = CG(s) � GLn′(E),

and g′ denotes the Lie algebra of g.
Let η be the Hecke algebra isomorphism attached to the K-type (Qn′j , χs) (see

Theorem 7.1). Set π′ = η∗(π). Let θ and sh be as in § 13 (see (13.4)). Recall that
θ | 1 + p

j
E = χs | 1 + p

j
E .

For a description of the construction of τ , the reader may refer to the discussion
following the statement of Theorem 13.2. The field E is a subfield of L.
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First we consider the case E = L. In this case, G′′ = G′, B′′ = B′ = Q′ = Q ∩ G′

(see § 6) and ι∗(π) is a twist of π′ by some linear character of G′. Replacing θ by another
quasi-character of E× that agrees with χs on 1 + p

j
E , if necessary, we may assume that

ι∗(π) = (θ−1 ◦ det′)π′ = (θ−1 ◦ det′)η∗(π).

Let e′
1 = e1|g′

0+
. Note that if X ∈ g′

j = 1 + �j
Eg′

0, then θ(e′
1(X)) = ψ(tr′(shX)). Thus,

because π′ contains the standard unrefined minimal K-type (Q′
n′j , χ

′
s) = (Q′

n′j , χ
′
sh

),
ι∗(π) must contain the trivial representation of Q′

n′j . Hence ρ(ι∗(π)) < j and, by Theo-
rem 11.5, Θι∗(π) ◦ e′

1 is 0-asymptotic on g′
ρ(ι∗(π))+ ⊃ g′

j . It follows from the above relation
between ι∗(π) and π′ that Θι∗(π)(e′

1(X)) = ψ(tr′(−shX))Θπ′(e′
1(X)) for all X ∈ g′

j ∩ g′
reg.

Also, for each O′ ∈ ΩG′(0),

µ̂(sh+O′)(X) = ψ(tr′(shX))µ̂O′(X), X ∈ g
′
j ∩ g

′
reg.

Thus Θπ′ ◦ e′
1 is sh-asymptotic on g′

j , with

csh+O′(π′) = cO′(ι∗(π)), O′ ∈ ΩG′(0).

Applying Theorem 12.3 (2) with s′ = s − sh, we see that Θπ ◦ e1 is sh-asymptotic on
gj/e. After expressing υG(B(n)) and υG′(B(n′)) in terms of υG(B) and υG′(B′) (recall
that B is conjugate to B(f)n/f and B′ is conjugate to B(1)n′ ) with the help of (3.1), the
relation between cG·(sh+O′)(π) and csh+O′(π′) = cO′(ι∗(π)) given in Theorem 12.3 (2) can
be rewritten in the form

cG·(sh+O′)(π) = υG(B)−1υG′(B′)uf (q)n/fu1(qf )−n′
qfn′((n−n′)j−e+1)/2cO′(ι∗(π))

= υG(B)−1υG′(B′)(dim τ)cO′(ι∗(π)), O′ ∈ ΩG′(0).

Here we have used Lemma 13.10 for the second equality. This completes the proof in the
case E = L.

Now suppose that E � L. Then G′′ is a proper subgroup of G′. Assume that
the theorem holds for those totally pure refined minimal K-types (B∗, τ∗) of groups
G∗ � GLn/[E∗:F ](E∗), where E∗/F is an extension of degree dividing n, having the prop-
erty that ρ(τ∗)/e(E∗/F ) < ρ(τ).

Let σ̇ be the irreducible representation of the compact open subgroup J̇ defined in § 9,
and let η̇ : Ḣ′ → Ḣ be the associated Hecke algebra isomorphism. As discussed in § 13,
there exists a totally pure unrefined minimal K-type (B′, τ ′) of G′ such that (13.2)
ρ(τ ′)/e < ρ(τ) and (13.3) τ = IndB

B′J̇
(τ ′ ⊗ σ̇ext), where σ̇ext is a uniquely defined exten-

sion of σ̇ to B′J̇ . Let H(τ ′) = H(G′//B′, τ̃ ′). As follows from remarks in the proof of The-
orem 5.4 of [17], the Hecke algebra isomorphism attached to (B′, τ ′) is an isomorphism
ι′ : H′′ → H(τ ′). Let ι′θ be the composition of ι′ and the map which to each f ∈ H(τ ′)
attaches the function (θ−1 ◦ det′)f . Then, setting τ ′

θ = (θ ◦ det′)τ ′, ι′θ : H′′ → H(τ ′
θ) is

an isomorphism of Hecke algebras. Also (see [17]), H(τ ′
θ) is a subalgebra of Ḣ′ whose

image under the isomorphism η̇ : Ḣ′ → Ḣ is equal to H(τ), and ι = η̇ ◦ ι′θ. Hence, setting
π̇ = η̇∗(π) and π̇′

θ = (θ−1 ◦ det′)π̇′,

ι∗(π) = ι′∗((θ−1 ◦ det′)η̇∗(π)) = ι′∗((θ−1 ◦ det′)π̇′) = ι′∗(π̇′
θ). (15.1)
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As π̇′
θ contains (B′, τ ′) and ρ(τ ′)/e < ρ(τ), the theorem holds for π̇′

θ, with sτ ′,h ∈ L

as in Theorem 13.2 (applied to (B′, τ ′)). Note that g′
j = g′

ρ(τ)e ⊂ g′
ρ(τ ′)+ . Thus Θπ̇′

θ
◦ e′

1
is sτ ′,h-asymptotic on g′

j . If O′′ ∈ ΩG′′(0) and O′ = G′ · (sτ ′,h + O′′), then

cO′(π̇′
θ) = υG′(B′)−1υG′′(B′′)(dim τ ′)cO′′(ι′∗(π̇′

θ)). (15.2)

In addition, arguing as in the case E = L, we can see that, for X ∈ g′
j ∩ g′

reg,

Θπ̇′(e′
1(X)) = ψ(tr′(shX))Θπ̇′

θ
(e′

1(X)),

µ̂(sh+O′)(X) = ψ(tr′(shX))µ̂O′(X), O′ ∈ ΩG′(sτ ′,h).

Hence Θπ̇′ ◦ e′
1 is (sh + sτ ′,h)-asymptotic on g′

j , with

csh+O′(π̇′) = cO′(π̇′
θ), O′ ∈ ΩG′(sτ ′,h). (15.3)

Recall from Proposition 9.2 that π′ = η∗(π) � π̇. By Theorem 12.3 (2), applied with
s′ = sh − s + sτ ′,h, Θπ ◦e1 is (sh + sτ ′,h)-asymptotic on gj/e and, if O′ ∈ ΩG′(sh + sτ ′,h),

cG·O′(π) = υG(B(n))−1υG′(B′
(n′))un(q)un′(qf )−1qfn′((n−n′)j−e+1)/2cO′(π̇′)

= υG(B)−1υG′(B′)ufo(q)
n/foufo/f (qf )−n′f/foqfn′((n−n′)j−e+1)/2cO′(π̇′).

(15.4)

Note that the second equality follows from (3.1) and the fact that B is conjugate to
B(fo)n/fo and B′ is conjugate to B′

(fo/f)n′fo/f .
As shown in the proof of Theorem 13.2, Theorem 14.1 (1) holds with sτ,h = sh + sτ ′,h.

It follows from (15.1)–(15.4) and Lemma 13.10 that

cG·(sτ,h+O′′)(π)

= υG(B)−1υG′(B′)ufo(q)
n/foufo/f (qf )−n′f/foqfn′((n−n′)j−e+1)/2(dim τ ′)cO′′(ι∗(π))

= υG(B)−1υG′(B′)(dim τ)cO′′(ι∗(π)), O′′ ∈ ΩG′′(0).

�

16. Proofs of Corollary 14.3 and Theorem 14.4

Proof of Corollary 14.3. Let π and π′′ be as in Theorem 14.1. Let notation be as
in § 14 and Lemma 11.9 (with s0 = sτ,h).

Let α ∈ P0(n). By Theorem 14.1 (2), the coefficient cOα
(π) of µ̂Oα

in the 0-asymptotic
expansion of Θπ ◦ e1 on gρ(π)+ is equal to the coefficient of µ̂Oα in the 0-asymptotic
expansion of ∑

γ∈P0(a)

cG·(sτ,h+Oγ)(π)µ̂G·(sτ,h+Oγ).

There exists a unique β ∈ P0(a) such that WF (π′′) = Ōβ . By Theorem 14.1 (3) and the
definition of WF (π′′),

cOα(π) = υG(B)−1υG′′(B′′)(dim τ)
∑

{γ∈P0(a)|γ�β}
cOγ (π′′)cα(sτ,h, γ),
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where cα(sτ,h, γ) is the coefficient of µ̂Oα
in the 0-asymptotic expansion of µ̂OG(sτ,h+Oγ).

By Lemma 11.9 (1), cα(sτ,h, γ) �= 0 implies α � γ̇n/a. Note that γ � β implies
γ̇n/a � β̇n/a. Hence

cOα
(π) = υG(B)−1vG′′(B′′)(dim τ)

∑
{γ∈P0(a)|α�γ̇n/a�β̇n/a}

cOγ
(π′′)cα(sτ,h, γ).

Thus cOα
(π) �= 0 implies α � β̇n/a. To complete the proof, it suffices to show that

cO
β̇n/a

(π) �= 0. By the above,

cO
β̇n/a

(π) = υG(B)−1υG′′(B′′)(dim τ)cOβ
(π′′)cβ̇n/a(sτ,h, β).

As WF (π′′) = Ōβ , cOβ
(π′′) �= 0. By Lemma 11.9 (2), cβ̇n/a(sτ,h, β) > 0. �

Proof of Theorem 14.4. Part (1) is Theorem 5.4 of [17]. For (2), by Theorem 5.4
of [17], π′′ is essentially square integrable and unipotent, hence is a twist of the Stein-
berg representation StG′′ of G′′. Thus cO′′(π′′) = cO′′(StG′′) for all O′′ ∈ ΩG′′(0). The
character of StG′′ is expressed in terms of characters of representations parabolically
induced from one-dimensional representations of Levi subgroups (see [5]). Using Howe’s
result concerning µ̂O′′

α
(see above), it is straightforward to show that (if the measure on

O′′
α is normalized as in § 14) cO′′

α
(StG′′) = (−1)a−r(α)r(α)!/|Stabα| for α ∈ P0(a). �

17. Proof of Theorem 14.5

Before proving the theorem, we need a result relating germs of characters and parabolic
induction, as well as a refinement of Proposition 4.3.

Let P be a parabolic subgroup of G, with Levi component M and unipotent radical N .
Let m and n be the Lie algebras of M and N , respectively. Normalize Haar measures on
K = B(n) and n so that υK(K) = vn(n ∩ b(n)) = 1. Given f ∈ C∞

c (g), let fP ∈ C∞
c (m)

be defined by

fP (X) =
∫

K

∫
n

f(Ad k(X + Z)) dk dZ, X ∈ m.

If s0 ∈ mss is such that CM (s0) = CG(s0), then the map OM �→ G · OM is a bijection
from ΩM (s0) to ΩG(s0). If Y ∈ mnil and OM = OM (s0 +Y ) � M/CM (s0 +Y ), then left
Haar measures on M on CM (s0 +Y ) determine an M -invariant measure on OM , and we
will take the G-invariant measure on G · OM � G/CM (s0 + Y ) determined by the above
Haar measure on CM (s0 + Y ) and Haar measure on G.

Lemma 17.1. Let P be as above. Suppose that s0 ∈ mss is such that CM (s0) = CG(s0).
Let OM ∈ ΩM (s0). Then

µG·OM
(f) = υG(K)−1vM (K ∩ M)|det(ad s0)n|−1µOM

(fP ), f ∈ C∞
c (g).

Proof. Note that CM (s0) = CG(s0) guarantees that (ad s0)n is invertible. If Y ∈ mnil,
then (ad s0)n and (adY )n are the semisimple and nilpotent parts of (ad(s0 +Y ))n. Hence
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det(ad s0)n = det(ad(s0 + Y ))n. If OM = OM (s0 + Y ), arguing as in [11, § 1.2], but
without discriminants, results in

µG·OM
(f) = υG(K)−1vM (K ∩ M)|det(ad(s0 + Y ))n|−1µOM

(fP ), f ∈ C∞
c (g).

�

Lemma 17.2. Let π ∈ E(G). Suppose that π = IndG
P πM for some πM ∈ E(M) and

the germ of ΘπM
is s0-asymptotic on mρ(πM ) ∩ m0+ for some s0 ∈ mss such that

CM (s0) = CG(s0). Let K = B(n) and let n be the Lie algebra of the unipotent radi-
cal of a parabolic subgroup with Levi component M . Let cOM

(πM ), OM ∈ ΩM (s0), be
the coefficients in some s0-asymptotic expansion of the germ of ΘπM

. Then there exists
an s0-asymptotic expansion of the germ of Θπ on gρ(π) ∩ g0+ for which the coefficients
cG·OM

(π) of the Fourier transforms µ̂G·OM
are given by

cG·OM
(π) = υG(K)−1υM (K ∩ M)|det(ad s0)n|−1cOM

(πM ), OM ∈ ΩM (s0).

Proof. If f ∈ C∞(g0+), define f̃ ∈ C∞(G0+) by f̃(x) = f(x − 1), x ∈ G0+ . Suppose that
f ∈ C∞

c (g) is supported on gρ(π) ∩ g0+ . Then, if P is a parabolic subgroup with Levi
component M and fP ∈ C∞

c (m) is as defined in § 11, fP is supported on mρ(π) ∩ m0+

(see Remark 4.2.10 of [1]). By Theorem 5.2 of [30], ρ(πM ) = ρ(π). Hence, if f is supported
on gρ(π) ∩ g0+ ,

ΘπM
((fP )̃ ) =

∑
OM ∈ΩM (s0)

cOM
(πM )µ̂OM

(fP )

= υG(K)−1υM (K ∩ M)|det(ad s0)n|−1
∑

OM ∈ΩG(s0)

cOM
(πM )µ̂G·OM

(f).

To obtain the second equality, we have used Lemma 17.1 and (fP )̂ = (f̂)P (see Lemma 1.7
of [11]). It follows from [38, § 5] that Θπ(f̃) = ΘπM

((fP )̃ ) for f ∈ C∞(g0+).
Hence the function

υG(K)−1υM (K ∩ M)|det(ad s0)n|−1
∑

OM ∈ΩM (s0)

cOM
(πM )µ̂G·OM

and the germ of Θπ agree on gρ(π) ∩ g0+ ∩ greg. �

If M is the Levi component of a parabolic subgroup P of G, there exists a
partition (n1, . . . , nr) of n such that M �

∏r
i=1 GLni(F ). Set G(i) = GLni(F ). Let

πM =
⊗r

i=1 π
(i)
M , where π

(i)
M ∈ E(G(i)), 1 � i � r. Suppose that π

(i)
M contains a pure

minimal K-type. If ρ(π(i)
M ) > 0, then, by Lemma 6.1, π

(i)
M contains a pure minimal K-

type (B(i)
n′

iji
, χsi), where si is a semisimple element in g(i) that generates an extension

Ei of F , si ∈ p
−ji

Ei
− p

−ji+1
Ei

, n′
i = ni/[Ei : F ], fi = f(Ei/F ), and B

(i)
m = B

(i)
(fi)ni/fi ,m

,
m � 0, where B

(i)
(fi)ni/fi

is the parahoric subgroup of G(i) corresponding to the partition
(fi)ni/fi of ni, as defined in § 3. The parahoric filtration that appears in the statement
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of Lemma 6.1 is actually a conjugate of B
(i)
m , but we are replacing it by B

(i)
m as it is

convenient for the proof of the next result.
If ρ(π(i)

M ) = 0, then (see § 10) π
(i)
M contains(

B
(i)

(di)
n′

i
, σ(i)

)
,

where di is a positive divisor of ni, n′
i = ni/di, and σ(i) is the inflation to B

(i)

(di)
n′

i
of

the n′
i-fold tensor product of an irreducible cuspidal representation of GLdi

(Fq). In this
case, define si relative to σ(i) as s was defined relative to the representation σ of § 10.
Let Ei = F (si).

Proposition 17.3. Let π ∈ E(G). Then there exists a parabolic subgroup P = MN of
G and πM ∈ E(M) such that, with notation as above, the following hold.

(1) π = IndG
P πM .

(2) Each π
(i)
M , 1 � i � r, contains a pure minimal K-type.

(3) If s = (s1, . . . , sr), where si ∈ Ei is as above, then CM (s) = CG(s).

Proof. After repeated applications of Proposition 4.3 and transitivity of induction, we
may assume that there exists P = MN and πM ∈ E(M) such that (1) and (2) are
satisfied. As there is nothing to show otherwise, we assume that P �= G.

First, consider the case where ρ(π(i)
M ) > 0 for 1 � i � r. Suppose that CM (s) �= CG(s).

After renumbering the ni if necessary, we can assume that

CGLn1+n2 (F )(s1, s2) � CG(1)(s1) × CG(2)(s2) � GLn′
1
(E1) × GLn′

2
(E2).

It follows that E1 � E2, j1 = j2, and CGLn1+n2 (F )(s1, s2) � GLn′
1+n′

2
(E1). After replac-

ing s2 by a conjugate, we may (and will) assume that E1 = E2.

Let B∗
m = B(f1)(n1+n2)/f1 ,m, m � 0, be the parahoric filtration associated to the par-

tition (f1)(n1+n2)/f1 . Set s∗ = (s1, s2) in g∗ = gln1+n2(F ). Then (B∗
(n′

1+n′
2)j1

, χs∗) is a

pure minimal K-type. Let P ∗ = M∗N∗ be an upper triangular parabolic subgroup of

G∗ = GLn1+n2(F ) with standard Levi component M∗ = GLn1(F ) × GLn2(F ). If m is a

positive integer and N∗− is the unipotent radical of the parabolic subgroup opposite to

P ∗, then

B∗
m = (B∗

m ∩ N∗−)(B∗
m ∩ M∗)(B∗

m ∩ N∗).

Furthermore, B∗
(n′

1+n′
2)j1

∩ M∗ = B
(1)
n′

1j1
× B

(2)
n′

2j1
. Observe that the character χs∗ is

equal to χs1 ⊗ χs2 extended trivially across B∗
(n′

1+n′
2)j1

∩ N∗− and B∗
(n′

1+n′
2)j1

∩ N∗.

Hence, since (B(1)
n′

1j1
× B

(2)
n′

2j1
, χs1 ⊗ χs2) is an unrefined minimal K-type contained in

π
(1)
M ⊗ π

(2)
M , it follows from Theorem 4.5 of [30] that (B∗

(n′
1+n′

2)j1
, χs∗) is contained in

π∗
M = IndG∗

P ∗(π(1)
M ⊗ π

(2)
M ). Note that G∗P is a parabolic subgroup of G with Levi com-

ponent G∗ ×
∏r

i=3 G(i). By transitivity of induction, π � IndG
G∗P (π∗

M ⊗
⊗r

i=3 πi
M ), so
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we may replace M by G∗ ×
∏r

i=3 G(i) and πM by π∗
M ⊗

⊗r
i=3 π

(i)
M . Continuing in this

manner, after a finite number of steps, part (3) is satisfied.

Next, we turn to the case where ρ(π(i)
M ) = 0 for 1 � i � r. Recall that σ(i) is the inflation

of the n′
i-fold tensor product of σ

(i)
0 , where σ

(i)
0 is an irreducible cuspidal representation

of GLdi(Fq), 1 � i � r.

Suppose that r � 2, d1 = d2, and σ
(1)
0 � σ

(2)
0 . As shown in § 10, si can be any element

of o
×
Ei

whose image s̄i in oEi
/pEi

� Fqdi generates Fqdi over Fq. So we can (and will)

take s1 = s2. Set d = d1. Let G∗, P ∗ and M∗ be as above. It is easy to see from the

definitions of the parahorics that

B
(d)n′

1+n′
2

∩ M∗ = B
(d)n′

1
× B

(d)n′
2
,

(B
(d)n′

1
× B

(d)n′
2
)/(B

(d)n′
1 ,1

× B
(d)n′

2 ,1
) � B

(d)n′
1+n′

2
/B

(d)n′
1+n′

2 ,1
.

Let σ∗ be the lift of σ(1) ⊗ σ(2) to B
(d)n′

1+n′
2
. As σ

(1)
0 � σ

(2)
0 , (B

(d)n′
1+n′

2
, σ∗) is a

pure minimal K-type. By Theorem 5.2 (2) of [30], (B
(d)n′

1+n′
2
, σ∗) is contained in

π∗
M = IndG∗

P ∗(π(1)
M ⊗ π

(2)
M ). Arguing as in the positive depth case using transitivity of

induction, after a finite number of steps we are reduced to considering the case where
σ

(i)
0 �� σ

(j)
0 whenever di = dj and i �= j.

Let d be a positive integer. There is a bijection between the set of equivalence classes
of irreducible cuspidal representations of GLd(Fq) and the set of Gal(Fqd/Fq)-orbits of
characters of F×

qd that are not fixed by any non-trivial element of Gal(Fqd/Fq). This
second set is in bijection with the Gal(Fqd/Fq)-orbits of elements of Fqd that generate
Fqd over Fq. Hence the number of distinct possible choices for σ

(i)
0 , up to equivalence,

is equal to the number of distinct possible choices for s̄i, up to Gal(Fqd/Fq)-conjugacy.
Thus, assuming that σ

(i)
0 �� σ

(j)
0 whenever di = dj and i �= j, we can (and will) arrange

for the si to be chosen so that whenever di = dj , and i �= j, s̄i and s̄j belong to distinct
Gal(Fqdi /Fq) orbits. This guarantees that CM (s) = CG(s).

The general case can be dealt with by writing πM = π0
M ⊗π+

M , where π0
M is the tensor

product of those π
(i)
M that have depth zero, and π+

M is the tensor product of the π
(i)
M that

have positive depth, and treating π0
M and π+

M as above. �

Proof of Theorem 14.5. Let π ∈ E(G). Let P = MN and πM =
⊗r

i=1 π
(i)
M ,

π
(i)
M ∈ E(G(i)), si ∈ Ei, 1 � i � r, be as in Proposition 17.3. Let G(i)′ = CG(i)(si).

Suppose that the following holds for 1 � i � r.

There exists s′
i ∈ g

(i)′ ∩ g
(i)

−ρ(π(i)
M )

such that the theorem holds for π
(i)
M ,

with s
π

(i)
M

= si + s′
i. (17.1)
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Let π
(i)
u be the corresponding irreducible unipotent representation of H(i) = CG(i)(si +

s′
i). Set

s(i) = si + s′
i, sπ = (s(1), . . . , s(r)), H =

r∏
i=1

H(i) and πu =
r⊗

i=1

π(i)
u .

Note that s′
i ⊂ g

(i)′
(−ji)+

= G(i)′ · b
(1)n′

i ,−n′
iji+1

, so CG(i)(s(i)) = CG(i)′(s′
i) by Lemma 5.5.

This combines with CM (s) = CG(s) (s = (s1, . . . , sr)) to give CM (sπ) = CG(sπ).

Since ρ(πM ) is the maximum of the ρ(π(i)
M ), and ρ(π) = ρ(πM ) (see Theorem 5.2

of [30]), sπ ∈ g−ρ(π). Assuming that (17.1) holds for each i, the theorem now follows

from Lemma 17.2.
It remains to show (17.1). Without loss of generality, we may assume that M = G.

First, if ρ(π) = 0, equation (17.1) holds with s′ = 0, by Theorem 14.1. Next, assume that
ρ(π) > 0. By induction, we may assume that the theorem holds for π∗ ∈ E(G∗), where
G∗ � GLm(E∗), m � n, E∗/F is a finite extension, and ρ(π∗)/e(E∗/F ) < ρ(π). By
Lemma 6.1, π contains a pure minimal K-type (Qn′j , χs). Let η be the associated Hecke
algebra isomorphism (see § 7). Set G′ = CG(s), π′ = η∗(π) and π′

θ = (θ−1 ◦ det′)π′,
where θ is as in § 13. By the same argument used in the proof of Theorem 14.1,
ρ(π′

θ) < ρ(π′). As ρ(π′) = ρ(π)/e(F (s)/F ) (see Lemma 4.2 (2)), by induction, the theo-
rem holds for π′

θ. Let H = CG′(sπ′
θ
) and sπ = s + sπ′

θ
. By Lemma 5.5, as sπ′

θ
∈ g′

(−j)+,
CG(sπ) = CG′(sπ′

θ
) = H. An application of Theorem 12.3 (2) yields (17.1). �
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