Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T21:28:27.462Z Has data issue: false hasContentIssue false

GEOMETRIC ANOSOV FLOWS OF DIMENSION FIVE WITH SMOOTH DISTRIBUTIONS

Published online by Cambridge University Press:  15 April 2005

Yong Fang
Affiliation:
Laboratoire de Mathématique d’Orsay, UMR 8628 du CNRS, Université Paris-Sud, France (fangyong1@yahoo.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify the five-dimensional $C^\infty$ Anosov flows which have $C^\infty$-Anosov splitting and preserve a smooth pseudo-Riemannian metric. Up to a special time change and finite covers, such a flow is $C^\infty$ flow equivalent either to the suspension of a symplectic hyperbolic automorphism of $\mathbb{T}^{4}$, or to the geodesic flow on a three-dimensional hyperbolic manifold.

AMS 2000 Mathematics subject classification: Primary 34Cxx; 34Dxx; 37-XX

Type
Research Article
Copyright
2005 Cambridge University Press