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Abstract We classify the five-dimensional C∞ Anosov flows which have C∞-Anosov splitting and
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1. Introduction

Let M be a C∞-closed manifold. A C∞-flow, φt, generated by the non-singular vector
field X is called an Anosov flow if there exists a φt-invariant splitting of the tangent
bundle

TM = RX ⊕ E+ ⊕ E−,

a Riemannian metric on M and two positive numbers a and b, such that

∀u± ∈ E±, ∀t � 0, ‖Dφ∓t(u±)‖ � ae−bt‖u±‖,

where E− and E+ are called the strong stable and strong unstable distributions of the
flow.

In general, E− and E+ are only continuous. If they are both C∞ subbundles of TM ,
then the Anosov flow is said to have smooth distributions. This case is rather rare (see,
for example, [14], [11] and [6]). Although the smoothness of these two distributions is
dynamically so strong a condition, it is still quite weak geometrically. So to arrive at a
classification result, one has to suppose in addition the existence of a smooth invariant
geometric structure. For example, in [6], the existence of an invariant contact form is
assumed.

If an Anosov flow preserves a C∞ pseudo-Riemannian metric, then by definition, this
flow is called geometric. In this paper, we consider the geometric Anosov flows with
smooth distributions.
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The classical examples of such flows are the suspensions of symplectic hyperbolic
infranilautomorphisms and the geodesic flows on locally symmetric spaces of rank one.
There exist also lots of non-classical algebraic models (see [19]), which makes a possible
classification of such flows quite interesting. In this paper, we obtain the classification in
dimension five.

In general, given an Anosov flow with C∞ distributions φt, one gets a smooth 1-form
λ, such that

λ(E±) = 0, λ(X) = 1.

It is called the canonical 1-form of the flow, which is easily seen to be φt-invariant.

Definition 1.1. rank(φt) := 2(max{k � 0 | ∧kdλ �≡ 0}).

We call this even number the rank of φt. Here ∧kdλ denotes the exterior kth power of
dλ, and by convention, ∧0dλ := 1. Note that rank(φt) is just the rank of the 2-form dλ

(see [16]). If φt is topologically transitive and its rank is 2k, then ∧kdλ vanishes nowhere
on an open-dense subset of M .

For all a ∈ R, denote by [a] the biggest integer, which is smaller than a. If the dimension
of M is m, then the degree of ∧[m/2]+1dλ will be bigger than m. So we have

rank(φt) � 2[m/2].

In § 2, we characterize the classical homogeneous models above by their ranks. More
precisely, we prove the following theorem.

Theorem 1.2. Let M be a C∞ closed manifold of dimension m and φt be a geometric
Anosov flow with C∞ distributions on M , we have

(i) if rank(φt) = 0, then up to a constant change of time-scale, φt is C∞ flow equivalent
to the suspension of a hyperbolic infranilautomorphism;

(ii) if rank(φt) = 2[m/2], then up to finite covers, φt is C∞ flow equivalent to a canonical
perturbation of the geodesic flow on a locally symmetric Riemannian manifold of
strictly negative curvature.

A canonical perturbation of a smooth flow with generator X is (by definition) the flow
of the field X/(1 + α(X)), where α is a C∞ closed 1-form such that 1 + α(X) > 0. It
should be mentioned that Theorem 1.2 is just a more or less direct reformulation of the
results of [6], [4] and [17].

Although there exist algebraic models of geometric Anosov flows with rank between 0
and 2[m/2], none of them is of dimension five. In fact, the principal results of this paper
is the following theorem.

Theorem 1.3. Let M be a closed manifold of dimension five and φt be a geometric
Anosov flow with C∞ distributions on M , then

(i) either, up to a constant change of time-scale and finite covers, φt is C∞ flow equiv-
alent to the suspension of a symplectic hyperbolic automorphism of T4;
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(ii) or, up to finite covers, φt is C∞ flow equivalent to a canonical perturbation of the
geodesic flow on a three-dimensional Riemannian manifold of constant negative
curvature.

In the appendix, two lemmas are proved, which are used in the proof of Theorem 1.3.
Lemma A.1 is about the completeness of a linear connection and Lemma A.2 is about
the time change of an Anosov flow with C∞ distributions.

If M admits a geometric Anosov flow, then the dimension of M must be odd (see § 2).
In dimension three, an Anosov flow with C∞ distributions is geometric if and only if
it preserves a volume form (see [13]). Such flows are classified by Ghys (see [9]). Here
Theorem 1.3 gives a classification for the case of dimension five. We should mention that
such five-dimensional flows are also studied in [11] with the purpose to understand the
contact case.

Beginning with dimension seven, we can find many algebraic models of geometric
Anosov flows, which are neither contact nor suspensions (see [19]). The situation will
then become much more complex and a classification is still out of reach at the moment.
Indeed, our proof of Theorem 1.3 is quite specific to the case of dimension five.

2. Preliminaries

2.1. Some generalities

Let φt be an Anosov flow with C∞ distributions on a C∞ closed manifold M . Denote by
X the generator of this flow. For each C∞ 2-form ω on M , denote by Kerω the kernel
of ω, i.e. Kerω := {y ∈ TM | iyω = 0}. Let us first prove the following lemma.

Lemma 2.1. Under the above notation, φt is geometric, if and only if it preserves a C∞

2-form with RX as kernel.

Proof. Suppose that φt is geometric. Denote by g a C∞ φt-invariant pseudo-Riemannian
metric. Then by the Anosov property of φt, we get

g(X, E±) = 0, g(E±, E±) = 0.

Let J be the section of T ∗M ⊗ TM , such that

J(X) = 0, J(u±) = ±u±, ∀u± ∈ E±.

Then g(J ·, ·) is easily seen to be a C∞ φt-invariant 2-form, denoted by ω. Since g is
non-degenerate, then so is ω|E+⊕E− . Again by the Anosov property, we get iXω = 0. So
the kernel of ω is RX.

Suppose that φt preserves a C∞ 2-form Θ, such that KerΘ = RX. Then there exists
a unique φt-invariant symmetric (0, 2)-tensor g, such that

g(X, X) = 1, g(X, u±) = 0,

g(u+, u−) = g(u−, u+) = Θ(u+, u−),

g(u±, v±) = 0, ∀u±, v± ∈ E±.

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083


336 Y. Fang

Since Ker Θ = RX, then g is non-degenerate. So g is a pseudo-Riemannian metric. Thus
φt is geometric. �

We deduce that the following Anosov flows with C∞ distributions are geometric.

(i) Contact Anosov flows with C∞ distributions.

(ii) Suspensions of symplectic hyperbolic infranilautomorphisms.

(iii) Three-dimensional volume preserving Anosov flows with C∞ distributions (see
[13]).

In [19], Tomter constructed explicitly a seven-dimensional Anosov flow, which is indeed
geometric. By generalizing his ideas, we can then construct many non-usual algebraic
models of geometric Anosov flows. The following lemma gives another way to construct
such flows.

Lemma 2.2. Under the above notation, if φt is geometric, then for each C∞ 1-form β,
such that LX dβ = 0 and β(X) > 0, the flow of X/β(X) is also a geometric Anosov flow
with C∞ distributions.

Proof. Denoted by φβ
t the flow of X/β(X). Then by Lemma A.2 proved in the appendix,

φβ
t is also an Anosov flow with C∞ distributions.
Since φt is geometric, then by Lemma 2.1, it preserves a C∞ 2-form ω, such that

Ker ω = RX. In particular, we have iXω = 0. Then

iX dω = LXω − diXω = 0.

Thus

LXβ
ω = iXβ

dω + diXβ
ω = 0.

So φβ
t preserves also ω and Kerω = RXβ . Then by Lemma 2.1, φβ

t is also geometric. �

Let φt be as above and geometric. Since φt preserves a C∞ 2-form ω, such that Kerω =
RX, then ω|E+⊕E− is non-degenerate. By the Anosov property of φt, we get ω(E±, E±) =
0. So E+ and E− are both Lagrangian subspaces of ω|E+⊕E− . We deduce that E+ and
E− have the same dimension, denoted by n. So the dimension of M is odd.

It is easily seen that λ ∧ (∧nω) is a φt-invariant volume form. So φt is topologically
transitive (see [12]). Denote by ν the probability defined by this volume form. Then
by the Multiplicative Ergodic Theorem of Oseledec, there exists a ν-conull φt-invariant
subset Λ of M and a decomposition of TM |Λ into φt-invariant measurable subbundles,

TM |Λ =
⊕

0�i�k

Li,

such that for all ui ∈ Li,
lim

t→±∞
t−1 log ‖Dφt(ui)‖ = χi,
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where Li is called a Lyapunov subbundle and χi its Lyapunov exponent. Li is also denoted
by Lχi

.
The following lemma is due to Feres and Katok (see [11]).

Lemma 2.3. Under the above notation, if τ is a C∞ φt-invariant tensor field of type
(0, r) and

∑
1�l�r χil

�= 0, then τ(Li1 , . . . , Lir ) = 0.

2.2. Proof of Theorem 1.2

Let φt be a geometric Anosov flow with C∞ distributions and suppose that E+ is of
dimension n. Then by the previous subsection, we have m = 2n + 1, where m is the
dimension of M .

If rank(φt) = 2[m/2](= 2n), then ∧ndλ �≡ 0. So the φt-invariant C∞ m-form λ ∧
(∧ndλ) is not identically zero. Since φt is topologically transitive, then ∃c �= 0, such
that λ ∧ (∧ndλ) = c · λ ∧ (∧nω). We deduce that λ∧ (∧ndλ) vanishes nowhere, i.e. λ is a
contact form. Then by the classification of contact Anosov flows with C∞ distributions
(see [6]), case (ii) of Theorem 1.2 is true.

If rank(φt) = 0, then dλ ≡ 0. So E+ ⊕ E− is integrable. By Theorem 3.1 of [17], φt

admits a global section Σ (a global section is by definition a connected closed submanifold
of codimension one which intersects each orbit transversally). Denote by τ the first return
time function of Σ. Then the Poincaré map of Σ is by definition ψ := φτ(·)(·). For the
sake of completeness, we prove in detail the following lemma.

Lemma 2.4. The previous Poincaré map ψ is a C∞ Anosov diffeomorphism with C∞

distributions, topologically transitive and preserving a C∞ linear connection.

Proof. Recall that E+ ⊕ RX and E− ⊕ RX are called the unstable and stable dis-
tributions of φt. They are both integrable (see [12]). Denote by F+,0 and F−,0 their
corresponding foliations. Since Σ is transversal to X, then F+,0 ∩ Σ gives a C∞ folia-
tion on Σ. Denote by E+

Σ its C∞ tangent distribution. Similarly we denote by E−
Σ the

tangent distribution of F−,0 ∩ Σ.
Since F+,0 is φt-invariant, then the foliation F+,0 ∩ Σ is ψ-invariant. We deduce that

E+
Σ is ψ-invariant. Similarly E−

Σ is also ψ-invariant.
Fix a Riemannian metric on M . Since E+|Σ and E+

Σ are both transversal to RX (along
Σ), then we can project E+

Σ onto E+|Σ with respect to RX. Denote this projection by
P+. Since Σ is compact, then we can find two positive constants M1 and M2, such that

M1‖u‖ � ‖P+u‖ � M2‖u‖, ∀u ∈ E+
Σ .

For all x ∈ Σ, take, u ∈ (E+
Σ)x. Then u splits uniquely as

u = P+
x (u) + aXx, a ∈ R.

We have

(Dxψ)(u) = (Dxτ(u) + a)Xψ(x) + (Dxφτ(x))(P+
x u).
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Thus

(Dxψ)(u) = (P+
ψ(x))

−1[(Dxφτ(x))(P+
x u)].

So for all n ∈ N,

(Dxψn)(u) = (P+
ψn(x))

−1(Dxφτ(x)+···+τ(ψn−1(x)))(P+
x u).

We have a similar formula for E−
Σ . Now a simple estimation shows that ψ is an Anosov

diffeomorphism with C∞ distributions, E+
Σ and E−

Σ .
Since φt is geometric, then it preserves a C∞ 2-form ω whose kernel is RX. Restrict

ω to a C∞ 2-form ωΣ on Σ. Then using the fact that iXω = 0, ωΣ is seen to be
ψ-invariant. Since ωΣ is non-degenerate, then ψ preserves a volume form. We deduce
that ψ is topological transitive.

Now a direct calculation shows the existence of a C∞ ψ-invariant connection ∇ on Σ,
such that

∇ωΣ = 0, ∇E±
Σ ⊆ E±

Σ ,

∇Y ±Y ∓ = P∓
Σ [Y ±, Y ∓], ∀Y ± ⊆ E±

Σ .

�

By [4] and the previous lemma, ψ is seen to be C∞-conjugate to a hyperbolic infrani-
lautomorphism. Then by Corollary 3.5 of [17], the integral manifolds of E+ ⊕ E− are
compact. So we can take a leaf of E+ ⊕ E− as Σ. With respect to this section, the first
return time function is constant. Then Theorem 1.2 follows.

3. Homogeneity in dimension five

3.1. Remarks about rank 0 and 4

Now we begin to prove Theorem 1.3. Suppose that φt satisfies the conditions in The-
orem 1.3. Denote by X the generator of φt and by ν its invariant volume form. By
Lemma 2.1, φt preserves a C∞ 2-form ω, such that Kerω = RX, i.e. ω|E+⊕E− is non-
degenerate. Thus by Lemma 2.3, if a is a Lyapunov exponent of φt with respect to ν,
then so is −a. Since M is of dimension five, then there exist only two possibilities for the
Lyapunov exponents of φt:

(i) −a < 0 < a, and

(ii) −a < −b < 0 < b < a.

Lemma 3.1. Under the above notation, we have dω ≡ 0.

Proof. Since ω is φt-invariant, then

LXω = 0, iXω = 0.
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So
iX dω = LXω − diXω = 0,

i.e.
dω(X, ·, ·) ≡ 0.

If φt has only one positive Lyapunov exponent, i.e. case (i) above is true, then by
Lemma 2.3, dω ≡ 0.

If case (ii) above is verified, then the Lyapunov subbundles are all of dimension one.
Again by Lemma 2.3, dω ≡ 0. �

The rank of φt can only be 0, 2 or 4. If rank(φt) = 4, then by Theorem 1.2, φt is finitely
covered by a canonical perturbation of the geodesic flow on a three-dimensional locally
symmetric space of strictly negative curvature. But such a Riemannian space must have
constant negative curvature. So Theorem 1.3 is true in this case.

If rank(φt) = 0, then by Theorem 1.2, up to a constant change of time-scale, φt is
finitely covered by the suspension of a four-dimensional hyperbolic nilautomorphism.
But in dimension four, such a hyperbolic nilautomorphism must be (T4, Ā), where Ā is
the induced application of an invertible hyperbolic matrix A in GL(4, Z). By Lemma 3.1,
Ā is in addition symplectic. So Theorem 1.3 is true in this case.

So to prove Theorem 1.3, we need only prove the non-existence of the case of rank 2.
In the following, we suppose on the contrary that there exists a rank 2 geometric Anosov
flow φt with C∞ distributions on a closed five-dimensional manifold M . In § 3.2 below,
this flow φt is proved to be homogeneous. Then in §§ 4–6, all the possible homogeneous
models are eliminated by some dynamical and Lie theoretical arguments.

3.2. Homogeneity in rank 2

Denote by λ the canonical 1-form of φt. Since rank(φt) = 2, then

dλ �≡ 0, dλ ∧ dλ ≡ 0.

Define U := {x ∈ M | (dλ)x �= 0}. Since φt is topologically transitive and preserves dλ,
then U is a φt-invariant open-dense subset of M . Denote by π the projection of TM

onto M . We define

E1 := {y ∈ E+ ⊕ E− | iy dλ = 0, π(y) ∈ U}

and
E±

1 := E1 ∩ E±.

Since φt preserves dλ, E+ and E−, then E1, E+
1 and E−

1 are all φt-invariant.

Lemma 3.2. E1 is a two-dimensional C∞ subbundle of TM |U . E+
1 and E−

1 are both
one-dimensional C∞ subbundles of TM |U . In addition, E1 = E+

1 ⊕ E−
1 .
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Proof. Since dλ(X, ·) ≡ 0, then we view dλ as a section of (E+ ⊕ E−)∗. For all x ∈ U ,
we have (dλ)x �= 0. So near x, we can find C∞ local sections of E+ ⊕ E−, V1 and V2,
such that

dλ(V1, V2) ≡ 1.

Denote by V the C∞ local distribution spanned by V1 and V2 and denote by V ⊥ the
orthogonal of V with respect to dλ|E+⊕E− .

Since dλ|V is non-degenerate, then

V ∩ V ⊥ = {0}.

For all u ∈ E+ ⊕ E−, such that π(u) near x, the following vector is contained in V ⊥:

P (u) := u − dλ(u, V2(π(u))) · V1(π(u)) − dλ(V1(π(u)), u) · V2(π(u)).

So we deduce that locally
E+ ⊕ E− = V ⊕ V ⊥.

In addition, we see that the projection of E+ ⊕ E− onto V ⊥ with respect to this direct
sum decomposition is C∞. So V ⊥ must be also C∞.

Since dλ|V is non-degenerate and dλ ∧ dλ ≡ 0, then

dλ|V ⊥ ≡ 0.

Thus locally
E1 = V ⊥.

In particular, E1 is C∞ and two dimensional. Since dλ(E±, E±) ≡ 0, then for all u ∈ E1,
its projections to E+ and E− are also contained in E1. Thus

E1 = E+
1 ⊕ E−

1 .

If for some x in U , (E+
1 )x is of dimension two, then (dλ)x will be zero, which contradicts

our assumption. Thus E+
1 and E−

1 are both of dimension one. In addition, they are
evidently C∞. �

Lemma 3.3. Under the above notation, the Lyapunov decomposition of φt is smooth.

Proof. By definition, the Lyapunov decomposition of φt is called smooth, if there exists
a C∞ decomposition of TM and a φt-invariant ν-conull subset Λ̄ of M , such that the
Lyapunov decomposition is defined on Λ̄ and coincides on Λ̄ with this C∞ decomposition.

If φt has only one positive Lyapunov exponent, then its Lyapunov decomposition is
just the restriction of that of Anosov onto a ν-conull subset of M . Since φt has C∞

distributions, then the lemma is true in this case.
Suppose that φt has two positive Lyapunov exponents b < a. Then there exists a

ν-conull subset Λ of M , such that

TM |Λ = L+
1 ⊕ L−

1 ⊕ L+
2 ⊕ L+

2 ⊕ RX,
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where L±
1 and L±

2 are the Lyapunov subbundles with exponents ±b and ±a (see §§ 2.1
and 3.1).

Since U is a φt-invariant open-dense subset and the flow is ν-ergodic, then U is ν-conull.
So ν(U ∩ Λ) = 1.

Take x ∈ U ∩ Λ and l±i ∈ (L±
i )x, i = 1, 2. By Lemma 2.3, we have

dλ(l+1 , l−2 ) = 0, dλ(l−1 , l+2 ) = 0.

Since (dλ)x �= 0, then we must have dλ(l+1 , l−1 ) �= 0 or dλ(l+2 , l−2 ) �= 0.
Suppose that dλ(l+2 , l−2 ) �= 0. Since dλ ∧ dλ ≡ 0, then we must have dλ(l+1 , l−1 ) = 0. So

l+1 ∈ (E+
1 )x, i.e. (L+

1 )x = (E+
1 )x. Similarly, we get (L−

1 )x = (E−
1 )x.

Since ω|E+⊕E− is non-degenerate and ω(l+1 , l−2 ) = 0, then ω(l+1 , l−1 ) �= 0. We deduce
that (dλ ∧ ω)x �= 0. So λ ∧ dλ ∧ ω is not identically zero. Then by the topological
transitivity of φt, ∃c �= 0, such that

λ ∧ dλ ∧ ω = c · λ ∧ ω ∧ ω.

So λ ∧ dλ ∧ ω is nowhere zero. We deduce that dλ vanishes nowhere and U = M . In
particular, E1 and E±

1 are all C∞ subbundles of TM .
So, by the arguments above, for all x ∈ Λ, (E±

1 )x = (L±
1 )x or (L±

2 )x. Define

Λi := {y ∈ Λ | E±
1 (y) = L±

i (y)}, i = 1, 2.

Then Λ1 and Λ2 are both measurable and φt-invariant. So one of them is ν-conull.
Suppose that ν(Λ1) = 1. Then we have E±

1 |Λ1 = L±
1 |Λ1 .

By Lemma 2.3, we have on Λ1,

L±
2 = [Ker(v 
→ ω(L∓

1 , v))] ∩ E±.

Define two φt-invariant C∞ subbundles of TM as follows,

E±
2 := [Ker(v 
→ ω(E∓

1 , v))] ∩ E±.

Then we have E±
2 |Λ1 = L±

2 |Λ1 . So the Lyapunov decomposition coincides on a conull set
with a C∞ decomposition of TM .

If ν(Λ2) = 1, then a similar argument works. �

Remark 3.4. If φt has two positive Lyapunov exponents, then by the proof of
Lemma 3.3, we have four C∞ line bundles on M , E±

1 and E±
2 . We shall call

TM = RX ⊕ E+
1 ⊕ E−

1 ⊕ E+
2 ⊕ E−

2

the C∞ Lyapunov decomposition of φt. The Lyapunov of the corresponding Lyapunov
subbundles of E±

1,2 are called, respectively, the Lyapunov exponents of E±
1,2. E±

i are also
denoted by Ea±

i
, where a±

i are the Lyapunov exponents of E±
i . If a is not a Lyapunov

exponent of φt, then by convention, Ea := {0}.
If φt has only one positive Lyapunov exponent, then the C∞ Lyapunov decomposition

of φt means TM = RX ⊕ E+ ⊕ E−.
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Now we can construct a C∞ connection ∇, adapted to our situation.
If the flow has two positive Lyapunov exponents, then there exists a unique C∞ con-

nection ∇ on M , such that

∇X = 0, ∇ω = 0, ∇E±
i ⊆ E±

i ,

∇Y ±
j

Y ∓
i = P∓

i [Y ±
j , Y ∓

i ], ∀i, j ∈ {1, 2},

∇XY ±
i := [X, Y ±

i ] ± aiY
±
i , ∀Y ±

i ⊆ E±
i ,

where ai denotes the Lyapunov exponent of E+
i and P±

i represent the projections of TM

onto E±
i .

If φt has only one positive Lyapunov exponent a, then we get a similar C∞ connection
∇, such that

∇X = 0, ∇ω = 0, ∇E± ⊆ E±,

∇Y ±Y ∓ = P∓[Y ±, Y ∓],

∇XY ± = [X, Y ±] ± aY ±, ∀Y ± ⊆ E±,

where P± represent the projections of TM onto E±.
If a transformation of M preserves X, ω, and the C∞ Lyapunov decomposition, then

it preserves also ∇. In particular, ∇ is φt-invariant.

Lemma 3.5. Under the above notation, if K be a C∞ φt-invariant tensor field of type
(1, l) on M , then K(Ea1 , . . . , Eal

) ⊆ Ea1+···+al
, where a1, . . . , al are arbitrary Lyapunov

exponents of φt. In addition, we have ∇K = 0.

Proof. By the same arguments as in Lemma 2.5 of [5], we get for arbitrary Lyapunov
exponents, a1, . . . , al,

K(Ea1 , . . . , Eal
) ⊆ Ea1+···+al

.

Now let Z1, . . . , Zl be the sections of the smooth subbundles, Ea1 , . . . , Eal
. We have

(∇XK)(Z1, . . . , Zl)

= ∇X(K(Z1, . . . , Zl)) −
∑

1�i�l

K(Z1, . . . ,∇XZi, . . . , Zl)

= [X, K(Z1, . . . , Zl)] +
( ∑

1�i�l

ai

)
K(Z1, . . . , Zl) − K([X, Z1] + a1Z1, . . . ) + · · ·

= [X, K(Z1, . . . , Zl)] −
∑

1�i�l

K(Z1, . . . , [X, Zi], . . . , Zl)

= (LXK)(Z1, . . . , Zl) = 0.

So ∇XK = 0. Since ∇K is a φt-invariant tensor of type (1, l + 1), then we have

(∇Ea0
K)(Ea1 , . . . , Eal

) ⊆ Ea0+···+al
.
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Since for all a ∈ R, ∇Ea ⊆ Ea, then

(∇Ea0
K)(Ea1 , . . . , Eal

) ⊆ Ea1+···+al
.

So if a0 �= 0, we have ∇Ea0
K = 0. We deduce that ∇K = 0. �

Denote by T the torsion of ∇ and by R its curvature tensor. Then by the previous
lemma, we have

∇T = 0, ∇R = 0, T (Ea1 , Ea2) ⊆ Ea1+a2 .

If a1 + a2 �= 0, then
R(Ea1 , Ea2) = 0.

Denote by M̃ the universal cover of M and by ∇̃ the lifted connection of ∇. Then we
have the following lemma.

Lemma 3.6. Under the above notation, the group of ∇̃-affine transformations of M̃ ,
which preserve X̃, ω̃, and the lifted C∞ Lyapunov decomposition, is a Lie group acting
transitively on M̃ .

Proof. By Proposition 2.7 of [5], the ∇-geodesics, tangent to E+ or E−, are complete,
i.e. defined on R. Since ∇T = 0 and ∇R = 0, then by Lemma A.1 proved in the appendix,
∇ is complete. So ∇̃ is also complete.

Recall that Ea := {0}, if a is not a Lyapunov exponent of φt. For all a ∈ R, denote
by P̃a the projection of TM̃ onto Ẽa. Since ∇Ea ⊆ Ea, then P̃a is ∇̃-parallel. Thus
{X̃, ω̃, P̃a}a∈R is a family of ∇̃-parallel tensor fields. In addition, an application preserves
{P̃a}a∈R, if and only if it preserves the lifted C∞ Lyapunov decomposition. So the lemma
follows from the following classical result (see [15]).

Let N be a simply connected manifold, ∇1 be a complete connection on N and S be a
family of parallel tensor fields. If ∇1R

∇1 = 0 and ∇1T
∇1 = 0, then the group of ∇1-affine

transformations which preserve S is a Lie group and acts transitively on N . �

In the sense of the previous lemma, φt is called homogeneous. In particular, we deduce
that dλ vanishes nowhere. So on M , we have always two C∞ φt-invariant line bundles
E+

1 and E−
1 , which are quite essential for the following discussions.

4. The case of two positive Lyapunov exponents

4.1. Preparations

Now we begin to eliminate the possible homogeneous models. In this section, we suppose
that φt has two positive Lyapunov exponents. Then by Remark 3.4, we have

TM = RX ⊕ E+
1 ⊕ E+

2 ⊕ E−
1 ⊕ E−

2 .

Up to a constant change of time-scale, we suppose that the Lyapunov exponents of E+
1

and E+
2 are, respectively, 1 and a.
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In this case, the underlying geometric structure of our system is

g1 := (X, E+
1 , E+

2 , E−
1 , E−

2 , ω).

Let G′ be the isometry group of g̃1 and Γ be the fundamental group of M . By Lemma 3.6,
G′ acts transitively on M̃ . The group Γ is contained as a discrete subgroup in G′. Fix
x ∈ M̃ and denote by H ′ the isotropy subgroup of x. Let H ′

e be the identity component
of H ′. Then we have the linear isotropy representation

H ′
e

i
↪→ GL(TxM̃)

h 
→ Dxh.

Since each element of H ′ preserves ∇, then i is injective. For all h ∈ H ′
e,

Dxh(X̃x) = X̃x, Dxh(Ẽ±
x ) ⊆ Ẽ±

x .

So in the following, we identify i(h) with its restriction to (Ẽ+ ⊕ Ẽ−)x.
Take a basis (l+2 , l+1 , l−2 , l−1 ) of (Ẽ+ ⊕ Ẽ−)x, such that l±1,2 ∈ (Ẽ±

1,2)x. Since each element
h of H ′

e preserves g̃1, then we have

Dxh =

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 1/λ1 0
0 0 0 1/λ2

⎞
⎟⎟⎟⎠ .

So i(H ′
e) is contained in a closed subgroup of GL(TxM̃), which is isomorphic to R2. So

we can identify H ′
e with i(H ′

e) and we deduce that H ′
e is isomorphic to 0, R or R2. In

any case, we have π1(H ′
e) = 0.

Let G′
e be the connected component of the identity of G′. Then it acts also transitively

on M̃ . Using the long exact sequence of homotopy, we get easily

H ′
e = H ′ ∩ G′

e, π1(G′
e) = 0.

Since M̃ ∼= G′/H ′, then M̃ admits naturally a real analytic structure. Since the geo-
metric structure g̃1 is G′-invariant, then g̃1 is real analytic. Thus by [1] (see also [7]), the
local Killing fields of g̃1 can be extended to global ones. Since ∇ is in addition complete,
then H ′ is easily seen to have finitely many connected components. We deduce that G′

has also finitely many connected components. So up to finite covers, we can suppose that
Γ ⊆ G′

e.
Denote by g′ and h′ the Lie algebras of G′ and H ′. For all u ∈ g′, we have an induced

C∞ Killing field on M̃ ,

Y u : M̃ → TM̃,

a → d
dt

∣∣∣∣
t=0

etua.
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Since ∇ is complete, ∇R = 0 and ∇T = 0, then we have the following classical identifi-
cation of vector spaces (see Theorem 28 of [15, Chapter X])

j : g
′ ∼
→ TxM̃ ⊕ h

′

u 
→ (Y u(x), (∇̃Y u − LY u)|x),

where h′ has been identified with Di(h′) under Di.
Pushing forward by j the Lie algebra structure of g′ onto TxM̃ ⊕ h′, we have for all

u, v ∈ TxM̃ and A, B ∈ h′,

[u, v] = −T ∇̃(u, v) − R∇̃(u, v),

[A, u] = Au,

[A, B] = A ◦ B − B ◦ A.

Denote by u the generating vector of the 1-parameter subgroup {φ̃t}t∈R of G′. Then
Y u = X̃. Under the identification j, we have

u = X̃x + (P+
1 − P−

1 + aP+
2 − aP−

2 ) ∈ TxM̃ ⊕ h
′.

If L0 := u − X̃x, then L0 ∈ h′. We deduce that h′ ∼= R or R2.

Lemma 4.1. Under the above notation, E+
1 ⊕E−

1 and E+
2 ⊕E−

2 ⊕RX are both integrable.

Proof. Let Y , Z be two C∞ sections of E+
1 ⊕ E−

1 , then

0 = dλ(Y, Z) = −λ([Y, Z]).

So [Y, Z] is a section of E+ ⊕ E−.

i[Y,Z]dλ = (LY iZ − iZLY ) dλ

= −iZ(diY + iY d) dλ

= 0.

So [Y, Z] is also a section of E+
1 ⊕ E−

1 . Thus E+
1 ⊕ E−

1 is integrable.
Since E+

2 and E−
2 are both φt-invariant, then [X, E±

2 ] ⊆ E±
2 . Define two tensor fields

K± of type (1, 2) on M , such that

K±(Y, Z) = P±
1 [P+

2 (Y ), P−
2 (Z)], ∀Y, Z ⊆ TM.

Then K± are both φt-invariant. By Lemma 3.5, K±(E+
2 , E−

2 ) ⊆ RX. So we have

[E+
2 , E−

2 ] ⊆ E+
2 ⊕ E−

2 ⊕ RX.

Thus E+
2 ⊕ E−

2 ⊕ RX is integrable. �

Up to finite covers, we suppose that E+ and E− are both orientable. The connection
∇ induces a connection ∇+ on ∧2E+. Denote by Ω+ its curvature form and by β+ its
connection form. Then we have

Ω+(·, ·) = Tr(R(·, ·)|E+), dβ+ = Ω+.
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Lemma 4.2. dλ ∧ Ω+ = 0, Ω+ ∧ Ω+ = 0, Ω+ ∧ ω = 0.

Proof. Since Ω+ is φt-invariant and the flow is topologically transitive, then there exists
a constant c, such that

λ ∧ dλ ∧ Ω+ = c · λ ∧ ω ∧ ω.

So

c

∫
M

λ ∧ ω ∧ ω =
∫

M

λ ∧ dλ ∧ Ω+

= −
∫

M

d(λ ∧ dλ ∧ β+)

=
∫

∂M

λ ∧ dλ ∧ β+

= 0.

So c = 0. We deduce that

dλ ∧ Ω+ = iX(λ ∧ dλ ∧ Ω+) = 0.

In the same way, we get Ω+ ∧ Ω+ = 0.
If λ ∧ Ω+ ∧ ω = s · λ ∧ ω ∧ ω, then

s

∫
M

λ ∧ ω ∧ ω =
∫

M

β+ ∧ dλ ∧ ω.

If λ ∧ dλ ∧ ω = δ · λ ∧ ω ∧ ω, then

β+ ∧ dλ ∧ ω = δ · β+ ∧ ω ∧ ω

= δ · β+(X)λ ∧ ω ∧ ω.

By the same argument as in Lemma 2.3.3 of [6], we get∫
M

β+(X)λ ∧ ω ∧ ω = 0.

So s = 0, i.e. Ω+ ∧ ω = 0. �

Lemma 4.3. Under the above notation, we have Ω+ = 0.

Proof. In the direction of X, the situation is always clear. So in the following, we
consider only the restrictions onto E+ ⊕ E− of the forms and endomorphisms.

Since ω|E+⊕E− is non-degenerate, then we can find a section ψ of End(E+ ⊕E−), such
that

Ω+(·, ·) = ω(ψ(·), ·).

For all y ∈ M , take l±1,2 ∈ (E±
1,2)y such that (l+2 , l+1 , l−2 , l−1 ) forms a dual basis of ωy, i.e.

ω(l+2 , l−2 ) = ω(l+1 , l−1 ) = 1, ω(l+2 , l−1 ) = ω(l+1 , l−2 ) = 0.
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If ψy(l+1 ) = 0, then in this basis, we get

ψy =

⎛
⎜⎜⎜⎝

A 0 0 0
B 0 0 0
0 0 A B

0 0 0 0

⎞
⎟⎟⎟⎠ .

Since Ω+ ∧ ω = 0, then Trψ = 2A = 0. By Lemma 2.3,

0 = Ω+
y (l+2 , l−1 )

= ω(ψl+2 , l−1 )

= B · ω(l+1 , l−1 ).

So B = 0. Thus ψy = 0.
Now suppose that ψy(l+1 ) �= 0. Since Ω+ ∧ Ω+ = 0, then det(ψy) = 0. So

∃y+
1 = αl+2 + δl+1 , α �= 0,

such that ψy(y+
1 ) = 0. Then in a dual basis with respect to ωy, (y+

1 , l+1 , y−
1 , z−), we have

ψy =

⎛
⎜⎜⎜⎝

0 A 0 0
0 B 0 0
0 0 0 0
0 0 A B

⎞
⎟⎟⎟⎠ .

As above, we have Tr(ψy) = 2B = 0. By Lemma 2.3,

0 = Ω+
y (l+1 , l−2 )

= ω(Ay+
1 , l−2 )

= A · α · ω(l+2 , l−2 )

= A · α.

So A = 0. We deduce that ψ ≡ 0, i.e. Ω+ ≡ 0. �

Define the following map

g
′ χ
→ R,

u + A 
→ Tr(A|Ẽ+
x
).

Since Ω+ ≡ 0, then χ is a character of g′. So the kernel of χ is an ideal of g′, denoted
by g,

We have seen that h′ is isomorphic to R or R2. In the following, these two cases are
considered separately.
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4.2. dim h′ = 1

In this subsection, we suppose that dim h′ = 1. To prove the non-existence of such a
flow, we shall at first calculate explicitly g′ using the lemmas established in the previous
subsection. Then we shall get a contradiction via the non-existence of co-compact lattice
in R2 � ˜SL(2, R).

Since L0 ∈ h′ (see § 4.1), then h′ = RL0. To simplify the notation, we identify TxM̃

with TxM . Thus we have
g

′ = TxM ⊕ h
′.

Denote by g the kernel of χ (see § 4.1). Then g is an ideal of g′. Since χ(L0) = 1 + a > 0,
then we have g = TxM . Recall that the Lyapunov exponents of E+

1 and E+
2 are 1 and a.

Now we can find explicitly g as follows.
Since g (= TxM) is an ideal of g′, then for all u, v ∈ TxM ,

[u, v] = −T (u, v) − R(u, v) ∈ TxM.

Thus R(u, v) = 0 and [u, v] = −T (u, v).
Take a basis of TxM , (Xx, l+2 , l+1 , l−2 , l−1 ), such that l±1,2 ∈ (E±

1,2)x and dλ(l+2 , l−2 ) = −1.
Extend l±1,2 to local sections of E±

1,2, denoted by l̄±1,2. By the definition of ∇, we get

[Xx, l±1 ] = −T (Xx, l±1 ) = ∓l±1 .

Similarly,
[Xx, l±2 ] = ∓al±2 .

Since E+
1 ⊕ E−

1 is integrable by Lemma 4.1, then we get

[l+1 , l−1 ] = −T (l+1 , l−1 )

= −(P−
1 [l̄+1 , l̄−1 ] + P+

1 [l̄+1 , l̄−1 ] − [l̄+1 , l̄−1 ])

= 0.

Similarly, we get
[l+2 , l−2 ] = Xx.

Lemma 4.4. Under the above notation, we have 1 < a.

Proof. Suppose that 1 > a. Then by Lemma 3.5, we have

T (E+
1 , E−

2 ) ⊆ E1−a.

If 1 − a �= a, then [l+1 , l−2 ] = −T (l+1 , l−2 ) = 0. If 1 − a = a, then ∃b ∈ R, such that

[l+1 , l−2 ] = b · l+2 .

So in any case, ∃c ∈ R, such that [l+1 , l−2 ] = c · l+2 .
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Since T (E+
1 , E+

2 ) ⊆ E1+a = {0}, then [l+1 , l+2 ] = 0. By the Jacobi identity of l+1 , l+2 and
l−2 , we get

0 = [l+2 , [l+1 , l−2 ]] + [l+1 , [l−2 , l+2 ]] + [l−2 , [l+2 , l+1 ]]

= [l+2 , c · l+2 ] + [l+1 ,−Xx]

= −l+1 ,

which is absurd. �

Since a > 1, then we can suppose that [l+1 , l−2 ] = c · l−1 and [l−1 , l+2 ] = d · l+1 . Again by
the Jacobi identity of l+1 , l+2 and l−2 , we have

0 = [l+2 , [l+1 , l−2 ]] + [l+1 , [l−2 , l+2 ]] = −(1 + c · d)l+1 .

So c · d = −1. Now replacing l−2 by (1/c)l−2 and l+2 by c · l+2 , we get the following bracket
relations of g:

[Xx, l±1 ] = ∓l±1 , [Xx, l±2 ] = ∓al±2 ,

[l+1 , l−1 ] = 0, [l+1 , l−2 ] = l−1 ,

[l−1 , l+2 ] = −l+1 , [l+2 , l−2 ] = Xx.

The brackets, which have not appeared in these bracket relations, vanish by Lemma 3.5.
Since [l+1 , l−2 ] = l−1 , then E1−a �= {0}. We deduce that a = 2. Thus by the bracket

relations above, we get clearly
g ∼= R2 � sl(2, R),

where the semi-direct product is given by matrix multiplication.
It is easily seen that the centre of g′ is R(Xx + L0). Thus we have the following direct

product decomposition
g

′ ∼= g ⊕ R(Xx + L0).

Let G be the connected subgroup of G′
e integrating g. Since G′

e is simply connected
(see § 4.1), then G is also simply connected and G′

e = G×R, where R integrates R(Xx+L0)
in G′

e. Thus we get

G ∼= R2 � ˜SL(2, R).

It is easily seen that G acts transitively on M̃ . Then by the long exact sequence of
homotopy, G ∩ H ′

e is seen to be connected. So G ∩ H ′
e = {e}, i.e. G acts freely on M̃ .

Thus G is identified to M̃ .
Up to finite covers, we have Γ ⊆ G′

e (see § 4.1). Let Γ1 be the projection of Γ into
G, with respect to the direct product G′

e = G × R. Since Ω+ = 0, then by the general
arguments of § 5 of [5], Γ1 is seen to be a co-compact lattice of G. Now we eliminate this
case by proving the following lemma.

Lemma 4.5. R2 � ˜SL(2, R) has no co-compact lattice.

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083


350 Y. Fang

Proof. Suppose that there exists a co-compact lattice, denoted by ∆. Define ∆1 :=
∆∩R2 and denote by ∆2 the projection of ∆ to ˜SL(2, R). Then by Corollary 8.28 of [18],
∆1 is a co-compact lattice of R2 and ∆2 is a lattice of ˜SL(2, R).

Denote by π the natural projection of ˜SL(2, R) onto SL(2, R). Then π(∆2) preserves
the lattice ∆1 for the linear action. So π(∆2) is conjugate to a subgroup of SL(2, Z).

Since ∆ is co-compact, then π(∆2) is also co-compact. We deduce that SL(2, Z) is
co-compact in SL(2, R), which is absurd. �

4.3. dim h′ = 2

In this subsection, we suppose that dim h′ = 2. To prove the non-existence of such a
flow, we shall at first find g′. Then we shall study the action of the fundamental group
of M on the space of lifted weak unstable leaves to deduce a dynamical contradiction.

Define S := P+
2 − P+

1 − P−
2 + P−

1 . Then h′ is generated by S and L0 (see § 4.1). Since
χ(S) = 0, then we have g = RS ⊕ TxM .

As in the previous subsection, we suppose that the Lyapunov exponents of E+
1 and

E+
2 are 1 and a. Take a basis of TxM , (Xx, l+2 , l+1 , l−2 , l−1 ), such that l±1,2 ∈ E±

1,2 and
dλ(l+2 , l−2 ) = −1. Suppose at first that a > 1. Then by the same argument as in
Lemma 4.4, we can find c and d, such that

[l+1 , l−2 ] = c · l−1 , [l−1 , l+2 ] = d · l+1 .

By the Jacobi identity of S, l+1 and l−2 , we get

0 = [S, [l+1 , l−2 ]] + [l+1 , [l−2 , S]] + [l−2 , [S, l+1 ]]

= c · l−1 + [l+1 , l−2 ] + [l−2 ,−l+1 ]

= 3c · l−1 .

Thus c = 0. Similarly we get d = 0. If a < 1, then we can find c′ and d′, such that

[l+1 , l−2 ] = c′ · l+2 , [l−1 , l+2 ] = d′ · l−2 .

Thus by the Jacobi identities, we get as above c′ = d′ = 0. We deduce that

[l+1 , l−2 ] = 0, [l−1 , l+2 ] = 0.

Now by similar arguments as in the previous subsection, we get the following bracket
relations,

[S, l±1 ] = ∓l±1 , [S, l±2 ] = ±l±2 ,

[L0, l
±
1 ] = ±l±1 , [L0, l

±
2 ] = ±al±2 ,

[Xx, l±1 ] = ∓l±1 , [Xx, l±2 ] = ∓al±2 ,

[l+2 , l−2 ] = Xx − S.

The brackets, which have not appeared in these bracket relations, vanish. Define three
elements:

α :=
L0 + S

a + 1
, β :=

L0 − aS

a + 1
, δ :=

Xx − S

a + 1
.
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Then g′ is decomposed as a direct product of three ideals,

g
′ ∼= (Rl+1 ⊕ Rl−1 ⊕ Rβ) ⊕ (Rl+2 ⊕ Rl−2 ⊕ Rδ) ⊕ R(δ + α).

Then by the bracket relations above, we get

g
′ ∼= (R2 � R) × sl(2, R) × R,

where the semi-direct product, R2�R, is given by the linear action on R2 of the order-two
diagonal matrices of trace zero. Since G′

e is simply connected, then we have

G′
e

∼= (R2 � R) × ˜SL(2, R) × R.

Now we begin to study the action of Γ on the space of lifted weak unstable leaves. Let
us recall at first some notation.

Let ψt be a C∞ Anosov flow on a closed manifold N . Denote by ψ̃t its lifted flow
on the universal covering space Ñ . Denote by F̃+,0 the lifted foliation of F+,0 and by
Ñ/F̃+,0 the space of lifted weak unstable leaves with the quotient topology. Thus the
fundamental group π1(N) acts naturally on Ñ/F̃+,0. The following lemma has appeared
in some special contexts (see, for example, [6] and [3]). For the sake of completeness, we
prove it in detail.

Lemma 4.6. Under the above notation, if γ ∈ π1(N) and γ �= e, then each γ-fixed point
of Ñ/F̃+,0 is either contractive or repulsive.

Proof. Suppose that W̃+,0
x is fixed by γ. Then ∃t ∈ R, such that

γW̃+
x = φ̃tW̃

+
x .

If t = 0, then we can take a curve l in W̃+
x , such that l(0) = x and l(1) = γx. If s � 0,

then φs(π(l)) will be tiny, where π denotes the projection of Ñ onto N . Thus φs(π(l)) is
homotopically trivial. We deduce that π(l) is also homotopically trivial, i.e. γ = e, which
is a contradiction. So t �= 0.

By replacing γ by γ−1 if necessary, we suppose that t < 0. We can see as follows that
W̃+,0

x is γ-contractive.
Fix a C∞ Riemannian metric g on N . Denote by g̃ the lifted metric on Ñ . By [2], the

induced metrics on the leaves of F+,0 are all complete. Thus with its induced metric, W̃+
x

is a complete metric space. Since γ acts isometrically, then γ−n ◦ φ̃nt is a contraction of
W̃+

x , if n � 1. Thus it admits a unique fixed point in W̃+
x , denoted again by x. So we

get
γx = φ̃tx,

i.e. the orbit of x is fixed by γ.
Denote by Ū the saturated set of W̃−

x with respect to F̃+,0. Then by the local prod-
uct structure of φ̃t, Ū is open. Thus the projection of W̃−

x into Ñ/F+,0 is an open
neighbourhood of W̃+,0

x , denoted by U . For all y ∈ W̃−
x , we have

γnW̃+,0
y = W̃+,0

(φ̃−nt◦γn)(y)
.

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083


352 Y. Fang

Since γx = φ̃tx, then (φ̃−nt ◦ γn)(x) = x. So

(φ̃−nt ◦ γn)(y) −−−−−→
n→+∞

x.

We deduce that
γnW̃+,0

y −−−−−→
n→+∞

W̃+,0
x .

So γ contracts on U . �

Now return to our geometric Anosov flow φt. Denote by P ′
e the stabilizer of W̃+

x in G′
e.

Then H ′
e ⊆ P ′

e and P ′
e is easily seen to be connected. So G′

e/P ′
e is identified to M̃/F̃+,0.

Define
p
+ := RXx ⊕ h

′ ⊕ Rl+1 ⊕ Rl+2 .

Then p+ is the Lie algebra of P ′
e and P ′

e is seen to be closed in G′
e. Since G′

e is simply
connected (see § 4.1), then by the long exact sequence of homotopy, we get π1(G′

e/P ′
e) = 0.

Define G1
e := (R2 � R) × SL(2, R) × R and denote by P 1

e the connected Lie subgroup
of G1

e with Lie algebra p+. Then G1
e/P 1

e is naturally identified to R1 × S1. Denote by π

the projection of G′
e onto G1

e and by P ′′
e the group π−1(P 1

e ). Then we get

G′
e/P ′′

e
∼= G1

e/P 1
e

∼= R1 × S1.

We deduce that G′
e/P ′

e
∼= R1 × R1.

Since φt preserves a volume form, then the periodic points of φt is dense in M . Take
gH ′

e ∈ G′
e/H ′

e (∼= M̃), such that its projection in M is of period T . If φ̃T (gH ′
e) = gH ′

e,
then each orbit of φ̃t is periodic by the homogeneity of φ̃t. We deduce that each φt-orbit
is periodic, which contradicts the topological transitivity of φt. So φ̃T (gH ′

e) �= gH ′
e.

Now take γ ∈ Γ (⊆ G′
e), such that γ(gH ′

e) = φ̃T (gH ′
e). Then we have γ �= e and

∃h ∈ H ′
e, such that

γ = g(h · exp(T (Xx + L0)))g−1.

Since γ fixes the orbit of gH ′
e, then it fixes gP ′

e and gP ′′
e . So by Lemma 4.6, the γ-action

on G′
e/P ′′

e admits at least an isolated fixed point. Then by some direct calculations, the
corresponding γ-action on R1 × S1 (∼= G′

e/P ′′
e ) must be as follows:

R1 × S1 γ−→ R1 × S1,

(y, [u]) → (e−cy + d, [Au]),

}
(∗)

where c �= 0 and A is a matrix with two different positive eigenvalues. Here S1 is viewed
as the set of directions, i.e.

S1 ∼= {[u] | u ∈ C∗, u ∼ v ⇔ u = tv, t > 0}.

Then GL(2, R) acts on S1 by matrix multiplication.
Up to an isomorphism of covering spaces, the projection of G′

e/P ′
e onto G′

e/P ′′
e is as

follows:
R1 × R1 
→ R1 × S1,

(x, θ) 
→ (x, [eiθ]).

}
(∗∗)
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Since the γ-action on G′
e/P ′

e is just a lift of the γ-action on G′
e/P ′′

e , then by (∗) and (∗∗),
we clearly see that on G′

e/P ′
e, γ admits either a saddle or no fixed point. We deduce that

γ admits a saddle on G′
e/P ′

e, which contradicts Lemma 4.6.

5. The case of one positive exponent and dλ ∧ ω �≡ 0

5.1. Preparations

In this section, we suppose that φt has only one positive Lyapunov exponent and dλ∧ω �≡
0. Up to a constant change of time-scale, we suppose that this positive exponent is 1. By
Lemma 3.6, dλ ∧ ω vanishes nowhere. So ω|E+

1 ⊕E−
1

is non-degenerate. As in Lemma 3.3,
we define

E±
2 := [Ker(v 
→ ω(E∓

1 , v))] ∩ E±.

Then E+
2 and E−

2 are both φt-invariant C∞ line subbundles of TM .
In this case, the underlying geometric structure is

g2 := (X, E+, E−, ω).

Denote by G′ the isometry group of g̃2. Then by Lemma 3.6, G′ acts transitively on M̃ .
Fix x ∈ M̃ and denote by H ′ the isotropy subgroup of x. Because of the existence of E±

2 ,
some arguments of § 4.1 pass through without change. In particular, we get that H ′

e is
isomorphic to 0, R or R2 and G′

e is simply connected.
Denote by g′ and h′ the Lie algebras of G′ and H ′. By using the connection corre-

sponding to the case of one positive Lyapunov exponent, we have a similar identification
of g′ and TxM̃ ⊕ h′ as in § 4.1. To simplify the notation, we identify TxM̃ with TxM . If
L0 := P+ − P−, then we get L0 ∈ h′. So h′ ∼= R or R2.

Lemmas 4.1 and 4.2 are also valid here. But the proof of Lemma 4.3 does not pass
through in the current case.

5.2. dim h′ = 2

In this subsection, we suppose that h′ is of dimension two. So if we define

S := P+
2 − P+

1 − P−
2 + P−

1 ,

then h′ is generated by S and L0.

Lemma 5.1. Under the above notation, we have Ω+ ≡ 0.

Proof. As before, we consider only the restrictions onto E+ ⊕ E− of the forms and
endomorphisms. Take a dual basis with respect to ωx|E+

x ⊕E+
x
, (l+2 , l+1 , l−2 , l−1 ), such that

l±1,2 ∈ E±
1,2 and dλ(l+2 , l−2 ) = −1. Extend locally these vectors to the sections of E±

1,2,
denoted by l̄±1,2. Then we have

T (l+1 , l−2 ) = P−[l̄+1 , l̄−2 ] − P+[l̄−2 , l̄+1 ] − [l̄+1 , l̄−2 ]

= dλ(l+1 , l−2 ) · Xx

= 0.

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083


354 Y. Fang

Similarly, we have T (l+1 , l−1 ) = 0 and T (l+2 , l−2 ) = −Xx. Thus we get the constants, such
that

[l+1 , l−1 ] = aS + bL0,

[l+1 , l−2 ] = a′S + b′L0,

[l+2 , l−2 ] = Xx + a′′S + b′′L0.

As before, we have

[l±1 , l±2 ] = 0, [Xx, l±1,2] = ∓l±1,2.

By the Jacobi identity of l+1 , l+2 and l−2 , we get

0 = [l+1 , [l+2 , l−2 ]] + [l+2 , [l−2 , l+1 ]] + [l−2 , [l+1 , l+2 ]]

= [l+1 , Xx + a′′S + b′′L0] + [l+2 ,−a′S − b′L0]

= (1 + a′′ − b′′)l+1 + (a′ + b′)l+2 .

So a′ + b′ = 0. By the Jacobi identity of l−2 , l+1 and l−1 , we get a′ − b′ = 0. So [l+1 , l−2 ] = 0.
We deduce that Ω+(l+1 , l−2 ) = 0.

Define ψ as in Lemma 4.3. View ψx as a matrix in the basis above, then we get
(ψx)1,2 = Ω+(l+1 , l−2 ) = 0. Since Ω+ ∧ Ω+ = Ω+ ∧ ω = 0, then detψ = Tr ψ = 0. So we
get

ψx =

⎛
⎜⎜⎜⎝

0 0 0 0
B 0 0 0
0 0 0 B

0 0 0 0

⎞
⎟⎟⎟⎠ .

For all h ∈ H ′
e, h preserves Ω+. If ψx �= 0, then the matrix of Dxh must have the following

form:

Dxh =

⎛
⎜⎜⎜⎝

c 0 0 0
d c 0 0
0 0 1/c −d/c2

0 0 0 1/c

⎞
⎟⎟⎟⎠ .

But h preserves also the subbundles, E±
1,2. So d = 0. We deduce that dim h′ = 1, which

is a contradiction. So we get ψx = 0, i.e. Ω+
x = 0. Then by homogeneity, Ω+ ≡ 0. �

With the help of the previous lemma, we can define as in § 4.1 a character χ of g′.
Then by similar calculations as in § 4.2, g′ is seen to be the same as that of § 4.3, except
that a = 1 here. But in § 4.3, we have found three elements, α, β and δ, which have
eliminated the effect of a on the structure of g′. So we get here the same G′

e and H ′
e as

in § 4.3. Thus the same arguments prove the non-existence of this case.
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5.3. dim h′ = 1

In this subsection, we suppose that dim h′ = 1. So g′ = RL0 ⊕ TxM . Take a basis
(Xx, l+2 , l+1 , l−2 , l−1 ) of TxM , such that l±1,2 ∈ (E±

1,2)x and dλ(l+2 , l−2 ) = 1. Since E+
2 and

E−
2 are both of dimension one, then there exists a well-defined smooth function f , such

that
dλ|E+

2 ⊕E−
2

= f · ω|E+
2 ⊕E−

2
.

Since dλ, ω and E±
2 are all φt-invariant, then f is also φt-invariant. We deduce that f is

constant. So if we multiply ω by a constant, (l+2 , l+1 , l−2 , l−1 ) can be supposed to be dual
with respect to ωx|E+

x ⊕E−
x

. Using the Jacobi identities, we get directly (see § 4.2)

[L0, l
±
1,2] = ±l±1,2,

[Xx, l±1,2] = ∓l±1,2,

[l+2 , l−2 ] = −Xx − L0.

The brackets, which have not appeared in these bracket relations, vanish.
Define α := Xx + L0 and

g ∼= Rα ⊕ Rl+2 ⊕ Rl+1 ⊕ Rl−2 ⊕ Rl−1 .

Then we get
g

′ ∼= g � RL0.

Denote by Ge the connected Lie subgroup of G′
e with Lie algebra g. Since G′

e is simply
connected, then so is Ge. Thus by the bracket relations above, we get

Ge
∼= R2 × Heis,

where ‘Heis’ represents the three-dimensional Heisenberg group. In addition, we have
G′

e
∼= Ge � H ′

e. So Ge is naturally identified to M̃ as follows:

ψ : Ge
∼
→ M̃,

g 
→ gx.

Define ω1 := ψ∗ω. Then ω1 is a left-invariant 2-form on Ge. View l±1,2 as left-invariant
vector fields on Ge. Then Rl+2 ⊕ Rl+1 and Rl−2 ⊕ Rl−1 are identified to Ẽ+ and Ẽ−. The
corresponding flow on Ge is given by the left-invariant field α. So the corresponding
geometric structure on Ge is given by

g3 := (α, Rl+1 ⊕ Rl+2 , Rl−1 ⊕ Rl−2 , ω1).

In addition, by the identification of g′ with h′ ⊕TxM , (l+2 , l+1 , l−2 , l−1 ) is dual with respect
to ω1.

For all c, d ∈ R, define an endomorphism of g, ρc
d, such that

ρc
d(l

±
1 ) = e±cl±1 ,

ρc
d(l

±
2 ) = e±dl±2 ,

ρc
d(α) = α.
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Then {ρc
d}c,d∈R gives a two-parameter family of Lie algebra automorphisms of g. The

corresponding isomorphisms of Ge form a Lie group isomorphic to R2. Then we observe
easily that its action on Ge preserves g3 and fixes e. We deduce that dim(H ′

e) � 2, which
is contradictory to the assumption that dim h′ = 1.

6. The case of one positive exponent and dλ ∧ ω ≡ 0

6.1. Preparations

In this section, we suppose that φt has only one positive Lyapunov exponent and dλ ∧
ω ≡ 0. As before, we suppose that this positive exponent is 1. Since dλ ∧ ω ≡ 0, then
ω|E+

1 ⊕E−
1

≡ 0. So in this case, we have no more the canonically defined subbundles E+
2

and E−
2 as before (see § 5.1). Here the underlying geometric structure is

g4 := (X, E+, E−, ω).

Denote by G′ the isometry group of g4. Fix x ∈ M̃ and denote by H ′ the isotropy sub-
group of x. Then we have M̃ ∼= G′/H ′.

To simplify the notation, we identify TxM with TxM̃ . Take a dual basis of E+
x ⊕ E−

x

with respect to ωx|E+
x ⊕E−

x
, (y+, l+1 , l−1 , y−), such that l±1 ∈ E±

1 and dλ(y+, y−) = 1.
Denote by ϕ the section of End(E+ ⊕ E−), such that

dλ(·, ·) = ω(ϕ·, ·).

Since dλ ∧ ω = 0, then Trϕ = 0. So ∃B �= 0, such that

ϕx =

⎛
⎜⎜⎜⎝

0 0 0 0
B 0 0 0
0 0 0 B

0 0 0 0

⎞
⎟⎟⎟⎠ .

For all h ∈ H ′
e, Dxh preserves dλx. So in the basis above, the matrix of Dxh must be of

the following form:

Dxh =

⎛
⎜⎜⎜⎝

c 0 0 0
d c 0 0
0 0 1/c −d/c2

0 0 0 1/c

⎞
⎟⎟⎟⎠ .

So H ′
e is abelian and isomorphic to 0, R or R2. Then as in § 4.1, G′

e is seen to be simply
connected.

Denote by g′ and h′ the Lie algebras of G′ and H ′. Then we get a similar identification
of g′ and TxM ⊕ h′ as in § 5.1. In particular, if L0 := P+ − P−, then L0 ∈ h′. We deduce
that h′ ∼= R or R2.

Lemma 4.2 is still valid here. But the proofs of Lemmas 4.3 and 5.1 do not pass through
in the current case.
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6.2. dim h′ = 1

In this subsection, we suppose that dim h′ = 1. Then g′ = RL0 ⊕ TxM . By the Jacobi
identities of g′, we get the following relations with respect to the dual basis in the previous
subsection:

[L0, y
±] = ±y±, [L0, l

±
1 ] = ±l±1 ,

[Xx, y±] = ∓y±, [Xx, l±1 ] = ∓l±1 ,

[y+, y−] = −Xx − L0.

The brackets, which have not appeared in these bracket relations, vanish.
As in § 5.3, we define α := Xx + L0 and

g := Rα ⊕ Ry+ ⊕ Ry− ⊕ Rl+1 ⊕ Rl−1 .

Thus g′ ∼= g � RL0. Denote by Ge the connected Lie subgroup of G′
e with Lie algebra g.

Then Ge is naturally identified to M̃ under ψ (see § 5.3) and the corresponding geometric
structure on Ge is given by

g5 := (α, Rl+1 ⊕ Ry+, Rl−1 ⊕ Ry−, ψ∗ω).

In addition, (y+, l+1 , l−1 , y−) is dual with respect to ψ∗ω.
For all c, d ∈ R, there is a unique Lie algebra automorphism of g, ρc

d, such that

ρc
d(y

±) = e±c(y± ± d · l±1 ),

ρc
1(l

±
1 ) = e±c · l±1 ,

ρc
d(α) = α.

Their corresponding isomorphisms of Ge forms a Lie group isomorphic to R2. Then we
observe easily that its action on Ge preserves g5 and fixes e. So dim(H ′

e) � 2, which is a
contradiction.

6.3. dim h′ = 2

In this subsection, we suppose that dim h′ = 2.

Lemma 6.1. ∃c < 2, such that Ω+ = c · dλ.

Proof. Let ϕ and ψ be the same endomorphisms as in §§ 4.1 and 6.1. Take l+1 ∈ (E+
1 )x.

Thus ϕx(l+1 ) = 0.
Since Ω+ ∧ Ω+ = 0, then detψx = 0. So if ψx(l+1 ) �= 0, then there exists y+ �= 0, such

that ψx(y+) = 0. Extend y+ and l+1 to a dual basis, (y+, l+1 , z−, y−). Then in this basis,
we get

ϕx =

⎛
⎜⎜⎜⎝

a 0 0 0
b 0 0 0
0 0 a b

0 0 0 0

⎞
⎟⎟⎟⎠ , ψx =

⎛
⎜⎜⎜⎝

0 A 0 0
0 B 0 0
0 0 0 0
0 0 A B

⎞
⎟⎟⎟⎠ .
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Since Ω+∧ω = 0 and dλ∧ω = 0, then Trϕ = Tr ψ = 0, i.e. a = B = 0. Since dλ∧Ω+ = 0,
then b · A = 0. So we get A = 0, i.e. ψx(l+1 ) = 0, which is a contradiction.

We deduce that ψx(l+1 ) = 0. Extend l+1 to a dual basis (y+
1 , l+1 , y−

1 , z−
1 ). Thus in this

basis, ϕx and ψx are proportional. Then by homogeneity, we deduce the existence of c,
such that Ω+ = c · dλ.

Denote by λ the canonical 1-form of φt and by J the section of End(TM), such that

J(X) = 0, J(u±) = ±u±.

We introduce another φt-invariant connection

∇̄ := ∇ − 1
2cλ ⊗ J.

Thus
∇̄XY ± = [X, Y ±] ± (1 − 1

2c)Y ±.

Denote by Ω̄+ the curvature form of the induced connection ∇̄+ of ∇̄ on ∧2E+. Then
from the definition of ∇̄, we easily get

Ω̄+ ≡ 0.

Fix a nowhere-vanishing section ω+ of ∧2E+. Then with respect to ω+, the connection
form of ∇̄+ is given by

∇̄ω+ = β̄+(·)ω+.

So we have dβ̄+ = Ω̄+ = 0.
Suppose that c � 2. Then 1 − 1

2c � 0. Define

αt :=
1
t

∫ 0

t

φ∗
sβ̄

+ ds.

By the arguments in § 4.4.2 of [6], if t � 0, then we have

αt(X) > 0.

Thus fix t � 0 and denote this αt by α. Since β̄+ is closed, then so is α. Define Y :=
X/α(X). By Lemma 2.2, the flow of Y , φY

t , is also a geometric Anosov flow with smooth
distributions.

Since λ is φt-invariant, then

0 = LXλ = iX dλ = α(X)(iY dλ).

So
LY dλ = iY d(dλ) + diY dλ = 0,

i.e. dλ is φY
t -invariant. Since α is easily seen to be the canonical 1-form of φY

t and dα = 0,
then rank(φY

t ) = 0. Thus by § 3.1, φY
t is finitely covered by the suspension of a hyperbolic

automorphism of T4, which is given by a hyperbolic matrix in GL(4, Z). Then by a direct
calculation, using the Jordan form of this matrix, λ is seen to be closed (see [10] for the
details). We deduce that rank(φt) = 0, which is a contradiction. �
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We can see that Lemma 3.5 is also true for ∇̄ defined in the previous lemma. So, in
particular, we get

∇̄R̄ = 0, ∇̄T̄ = 0, T̄ (Ea, Eb) ⊆ Ea+b,

and if a + b �= 0, R̄(Ea, Eb) = 0, where T̄ and R̄ are the torsion and curvature tensors of
∇̄. Since the ∇̄-geodesics tangent to E+ or E− are also complete, then by Lemma A.1
in the appendix, ∇̄ is complete. Thus as in § 4.1, we get the following identification via
∇̄:

g
′ ∼
→ TxM̃ ⊕ h

′,

u → (Y u(x), ( ˜̄∇Y u − LY u)|x).

Since Ω̄+ ≡ 0, then we can define a character χ̄ of g′ as in § 4.1. Thus χ̄−1(0) is an
ideal of g′, denoted again by g. By the same type of arguments as before, we easily get

g ∼= R3 � sl(2, R).

Denote by Ge the connected Lie subgroup of G′
e with Lie algebra g and define He :=

H ′
e ∩ Ge. Since G′

e is simply connected, then so is Ge (see § 4.1 of [5]). Thus by some
direct calculations, Ge and He can be realized as follows,

Ge
∼= R3 � ˜SO0(1, 2),

where SO0(1, 2) is the identity component of the isometry group of the quadratic form:
−dx2+dy2+dz2. The semi-direct product is given by the composition of the projection of

˜SO0(1, 2) onto SO0(1, 2) and the linear action of SO0(1, 2) on R3. Let ((0, 0, 1), 0) ∈
R3�so(1, 2). Then He is just the 1-parameter subgroup generated by this vector, denoted
also by R.

Since Ω̄+ ≡ 0, then the same argument as in § 4.2 of [5] works in our case, if we replace
the metric entropy there by 2(1 − 1

2c). Thus the general argument of § 5 of [5] gives a
discrete subgroup of Ge, acting freely, properly and co-compactly on Ge/He. Now we
finish the proof by proving the following lemma.

Lemma 6.2. R3 � ˜SO0(1, 2) admits no discrete subgroup, which acts properly, freely
and co-compactly on (R3 � ˜SO0(1, 2))/R.

Proof. Recall that R denotes He and Ge denotes R3 � ˜SO0(1, 2). Suppose the existence
of a subgroup Γ satisfying the conditions in the lemma. Denote by Γ̄ the Zariski closure
of Γ in Ge. (Here the Zariski topology of Ge means the lifted topology of the Zariski
topology of R3 � SO0(1, 2) by the canonical projection.)

If Γ is solvable, then Γ̄ is also solvable. Then by [18], there exists a connected closed
subgroup H of Γ̄ , such that Γ ⊆ H and H/Γ is compact. Let cd(·) denote the co-
homological dimension of a group. Since Γ acts co-compactly on Ge/R, then cd(Γ ) = 5.
We deduce that cd(H) = 5. So H is a closed solvable subgroup of Ge of dimension five.
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Then the single possibility is R3 � AN (where KAN is the Iwasawa decomposition of
˜SO0(1, 2)). But R3 � AN is not unimodular. So it has no co-compact lattice. We deduce

that Γ is not solvable. Then Γ̄ must contain ˜SO0(1, 2).
Since Γ acts co-compactly on Ge/R, then ˜SO0(1, 2) � Γ̄ . We deduce that Γ̄ ∩ R3 �= 0.

Since the representation of ˜SO0(1, 2) on R3 is irreducible, then Γ̄ must be Ge, i.e. Γ

is Zariski-dense in Ge. Let ∆ be the projection of Γ into ˜SO0(1, 2), then by [18], ∆ is
discrete in ˜SO0(1, 2). We deduce that Γ ∩ R3 �= 0. Since the semi-direct product is given
by an irreducible representation, Γ ∩ R3 is in fact co-compact in R3.

Since Γ acts properly on Ge/R, then Γ ∩ R3 acts properly on R3/R which is a closed
subset of Ge/R. We deduce that R3 acts also properly on R3/R. But it is absurd. �

Appendix A.

At first, we prove the following elementary lemma, which is used in the proof of
Lemma 3.6.

Lemma A.1. Let ∇ be a smooth linear connection on a connected manifold M of dimen-
sion n. Let X1, . . . , Xk be complete fields on M and E1, . . . , El be smooth distributions
on M , such that

(1) ∇Xi = 0, ∀1 � i � k, ∇Ej ⊆ Ej , ∀1 � j � l,

(2) TM = RX1 ⊕ · · · ⊕ RXk ⊕ E1 ⊕ · · · ⊕ El,

(3) ∇R = 0, ∇T = 0,

(4) ∀1 � j � l, the geodesics of ∇, tangent to Ej , are defined on R,

then ∇ is complete.

Proof. For the terminology below, our reference is Volume I of [15]. For all 1 � i � k,
since Xi is complete and parallel, then any geodesic tangent to RXi is defined on R. So
without any loss of generality, we suppose that k = 0.

Let F(M) be the frame bundle of M and π the projection of F(M) onto M . The linear
connection ∇ gives a horizontal distribution H on FM and FM is foliated by holonomy
subbundles. H is tangent to each holonomy subbundle, then so is any standard horizontal
field. For all u ∈ FM , denote by P (u) the holonomy subbundle containing u. The induced
fields on P (u) of the standard horizontal fields of FM are also called standard horizontal.
By [15], ∇ is complete, if and only if for all x ∈ M , ∃u ∈ π−1(x), such that the standard
horizontal fields of P (u) are all complete.

Take x ∈ M and u ∈ π−1(x), such that

u = (v1
1 , . . . , v1

i1 , . . . , v
l
1, . . . , v

l
il
),

where {vj
1, . . . , v

j
ij

} is a basis of Ej(x), ∀1 � j � l. For all ξ ∈ Rn, the standard horizontal
field on P (u) corresponding to ξ is denoted by Bu(ξ) and the canonical basis of Rn is
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denoted by (e1, . . . , en). Take v ∈ P (u). Because of assumption (1), v has the same form
as u. Then for all 1 � m � n, the integral curve of Bu(em), beginning at v, is just the
horizontal lift, beginning at v, of the geodesic tangent to Prm(v). By assumption (4),
such a geodesic is defined on R. We deduce that Bu(em) is complete.

Fix a basis of the holonomy algebra of ∇ and denote the corresponding vertical fields
of P (u) by {V1, . . . , Vs}. By assumption (3), the fields

{V1, . . . , Vs, B
u(e1), . . . , Bu(en)}

generate a Lie algebra. Since these fields are all complete, then this Lie algebra must
be induced by the smooth action on P (u) of a simply connected Lie group. Thus for
all ξ ∈ Rn, the field Bu(ξ) (=

∑
1�i�n ξiB

u(ei)) is complete. We deduce that ∇ is
complete. �

The following lemma is used in the proof of Lemma 2.2.

Lemma A.2. Let φt be an Anosov flow with C∞ distributions on a closed manifold M .
If f is a smooth positive function on M and the flow of fX (X is the generator of φt) has
also C∞ distributions, then there exists a C∞ 1-form α on M , such that LX dα = 0 and
f = 1/α(X). Conversely, if α is a C∞ 1-form on M , such that LX dα = 0 and α(X) > 0,
then the flow of X/α(X) has also C∞ distributions.

Proof. Recall at first that a C∞ time change of an Anosov flow is also Anosov. Let fX

be a time change of φt with smooth distributions. Denote by φfX
t the flow of fX and by

λ1 its canonical 1-form. Then λ1(fX) = 1, i.e. f = 1/λ1(X). Since λ1 is φfX
t -invariant,

then ifX dλ1 = 0. So iX dλ1 = 0. We deduce that LX dλ1 = 0.
If hX is a smooth time change of φt, then its strong stable distribution is given by (see

Lemma 1.2 of [8])
E−

hX = {Y − + β(Y −)X | Y − ∈ E−
X},

where E−
hX denotes the strong stable distribution of hX and β is a C0 section of (E−

X)∗,
such that

LX(h−1β) = h−2 dh. (∗)

Denote by λ the canonical 1-form of φt. If α is a smooth 1-form on M , such that
LX dα = 0 and α(X) > 0, then by a simple calculation, −(α − λ)/α(X) satisfies the
previous Equation (∗) about β with h := 1/α(X). So E−

X/α(X) is smooth. Similarly,
E+

X/α(X) is also smooth. �

Acknowledgements. The author thanks his thesis advisors, P. Foulon and P. Pansu,
for the discussions and help. He also thanks Y. Benoist and F. Labourie for their help.

References

1. A. M. Amores, Vector fields of a finite type G-structure, J. Diff. Geom. 14 (1979), 1–6.
2. V. D. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature,

Proc. Inst. Steklov 90 (1967), 1–235.

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083


362 Y. Fang
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16. A. Lichnérowicz, Théorie globale des connexions et des groupes d’holonomie (Edizioni
Cremonese, Roma, 1962).

17. J. F. Plante, Anosov flows, Am. J. Math. 94 (1972), 729–754.
18. M. S. Raghunathan, Discrete subgroups of Lie groups (Springer, 1972).
19. P. Tomter, Anosov flows on infra-homogeneous spaces, in Proc. Symp. Pure Mathemat-

ics, Global Analysis, Vol. XIV, pp. 299–327 (American Mathematical Society, 1970).

https://doi.org/10.1017/S1474748005000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000083

