Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T07:24:27.085Z Has data issue: false hasContentIssue false

CONSTANT HIGHER-ORDER MEAN CURVATURE HYPERSURFACES IN RIEMANNIAN SPACES

Published online by Cambridge University Press:  09 June 2006

Luis J. Alías
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain (ljalias@um.es)
Jorge H. S. de Lira
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza-Ce, Brazil (jherbert@mat.ufc.br)
J. Miguel Malacarne
Affiliation:
Departamento de Matemática, Universidade Federal do Espírito Santo, 29060-910 Vitória-ES, Brazil (jmiguel@cce.ufes.br)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is still an open question whether a compact embedded hypersurface in the Euclidean space $\mathbb{R}^{n+1}$ with constant mean curvature and spherical boundary is necessarily a hyperplanar ball or a spherical cap, even in the simplest case of surfaces in $\mathbb{R}^3$. In a recent paper, Alías and Malacarne (Rev. Mat. Iberoamericana18 (2002), 431–442) have shown that this is true for the case of hypersurfaces in $\mathbb{R}^{n+1}$ with constant scalar curvature, and more generally, hypersurfaces with constant higher-order $r$-mean curvature, when $r\geq2$. In this paper we deal with some aspects of the classical problem above, by considering it in a more general context. Specifically, our starting general ambient space is an orientable Riemannian manifold $\bar{M}$, where we will consider a general geometric configuration consisting of an immersed hypersurface into $\bar{M}$ with boundary on an oriented hypersurface $P$ of $\bar{M}$. For such a geometric configuration, we study the relationship between the geometry of the hypersurface along its boundary and the geometry of its boundary as a hypersurface of $P$, as well as the geometry of $P$ as a hypersurface of $\bar{M}$. Our approach allows us to derive, among others, interesting results for the case where the ambient space has constant curvature (the Euclidean space $\mathbb{R}^{n+1}$, the hyperbolic space $\mathbb{H}^{n+1}$, and the sphere $\mathbb{S}^{n+1}$). In particular, we are able to extend the symmetry results given in the recent paper mentioned above to the case of hypersurfaces with constant higher-order $r$-mean curvature in the hyperbolic space and in the sphere.

Type
Research Article
Copyright
2006 Cambridge University Press