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Abstract It is still an open question whether a compact embedded hypersurface in the Euclidean
space Rn+1 with constant mean curvature and spherical boundary is necessarily a hyperplanar ball or a
spherical cap, even in the simplest case of surfaces in R3. In a recent paper, Aĺıas and Malacarne (Rev.
Mat. Iberoamericana 18 (2002), 431–442) have shown that this is true for the case of hypersurfaces in
Rn+1 with constant scalar curvature, and more generally, hypersurfaces with constant higher-order r-
mean curvature, when r � 2. In this paper we deal with some aspects of the classical problem above, by
considering it in a more general context. Specifically, our starting general ambient space is an orientable
Riemannian manifold M̄ , where we will consider a general geometric configuration consisting of an
immersed hypersurface into M̄ with boundary on an oriented hypersurface P of M̄ . For such a geometric
configuration, we study the relationship between the geometry of the hypersurface along its boundary
and the geometry of its boundary as a hypersurface of P , as well as the geometry of P as a hypersurface
of M̄ . Our approach allows us to derive, among others, interesting results for the case where the ambient
space has constant curvature (the Euclidean space Rn+1, the hyperbolic space Hn+1, and the sphere
Sn+1). In particular, we are able to extend the symmetry results given in the recent paper mentioned
above to the case of hypersurfaces with constant higher-order r-mean curvature in the hyperbolic space
and in the sphere.

Keywords: higher-order mean curvature; Newton transformations; ellipticity; transversality;
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1. Introduction

An old problem in classical differential geometry consists on finding all compact surfaces
in Euclidean space R

3 with constant mean curvature and circular boundary. As is well
known, a circle C in R

3 is the boundary of two spherical caps with constant mean
curvature H for any positive number H, less than or equal to the inverse of the radius of
the circle C. A natural question to ask [10] is whether a compact constant mean curvature
surface in R

3 which is bounded by a circle is necessarily a spherical cap or a flat disc.
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Actually, a constant mean curvature surface with circular boundary is the mathematical
model of a soap bubble which has its boundary on a round hoop, and the surfaces we
almost always observe are spherical caps, so that it is natural to ask if these are the
only solutions. In [13] Kapouleas gave a negative answer to this question by showing
that there exist examples of higher genus compact, non-spherical immersed surfaces with
constant mean curvature in R

3 bounded by a circle. However, it has been conjectured
that there must be a positive answer to this question if one requires in addition that the
surface has genus zero or that it is embedded [9].

In recent years, several authors have obtained some partial answers to these prob-
lems. For instance, Barbosa [4,5] proved that the only compact immersed surfaces with
constant mean curvature H �= 0 and circular boundary which are contained either in a
sphere or in a cylinder of radius 1/|H| are the spherical caps. On the other hand, in the
genus zero case the first author, jointly with López and Palmer, has showed that the only
stable constant mean curvature immersed surfaces of disc type which are bounded by a
circle are spherical caps [3] (see also [7] for another characterization of spherical caps as
the only stable examples, given by Barbosa and Jorge under a stronger idea of stability).

It is clear that this classical question can be stated in a more general context as fol-
lows. Let Σn−1 be a compact (n − 1)-dimensional submanifold contained in a hyperplane
Π ⊂ R

n+1, and let Mn be an n-dimensional connected orientable manifold with smooth
boundary ∂M . As usual, M is said to be a hypersurface of R

n+1 with boundary Σ if
there exists an immersion ψ : Mn → R

n+1 such that the immersion ψ restricted to the
boundary ∂M is a diffeomorphism onto Σ. In this context, the classical question above
consists on finding the compact hypersurfaces in R

n+1 with constant mean curvature
whose boundary Σ is a round (n − 1)-sphere. At this point, it is interesting to recall that
a classical result by Alexandrov [1] states that round spheres are the only closed hyper-
surfaces with constant mean curvature which are embedded in Euclidean space R

n+1

(here by closed we mean compact and without boundary). More recently, Alexandrov
theorem was extended by Ros to the case of constant scalar curvature [24], and more
generally to the case of hypersurfaces with constant higher-order mean curvature [23],
showing that round spheres are the only closed embedded hypersurfaces with constant
r-mean curvature in R

n+1 (see also [19] for an extension of Alexandrov theorem for
higher-order mean curvatures in the hyperbolic space H

n+1 and in the sphere S
n+1).

As for the case of non-empty boundary, in [14] Koiso gave a new interpretation of
the problem by studying under what conditions the symmetries of the boundary Σ ⊂
Π of a non-zero constant mean curvature hypersurface M in R

n+1 are inherited by
the whole hypersurface. She showed that this necessarily occurs when the hypersurface
M is embedded and it does not intersect the outside of Σ in Π; as a consequence, if
the boundary Σ is a round (n − 1)-sphere, then M is symmetric with respect to every
hyperplane through the centre of Σ which is orthogonal to Π, and hence M must be a
spherical cap. Related to Koiso’s symmetry theorem, Brito et al . [9] also showed that
when Σ is strictly convex and M is embedded and transverse to Π along the boundary
∂M , then M is entirely contained in one of the half-spaces of R

n+1 determined by Π and,
therefore, the so-called Alexandrov reflection technique [1] implies that M inherits all the
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symmetries of Σ. In particular, if Σ is a round sphere, then M must be a spherical cap.
Here, transversality means that the hypersurface M is never tangent to the hyperplane
Π along its boundary. In what follows, we will use the term symmetry result to refer to
a result of this type.

The technique introduced in [9] makes extensive use of two essential ingredients, the
Alexandrov reflection technique mentioned above, and an integral formula first found
by Kusner [16], which is now known as the flux formula. This fact indicates that the
symmetry result in [9] can be extended from two new viewpoints: by considering con-
stant mean curvature hypersurfaces in other space forms; or by considering the case of
hypersurfaces with constant higher-order r-mean curvature. From the first point of view,
Nelli and Rosenberg [20] studied the case of hypersurfaces in hyperbolic space H

n+1,
and, more recently, Lira [11] considered the case of hypersurfaces in the sphere S

n+1,
establishing corresponding symmetry results for the case of constant mean curvature. On
the other hand, in [25] Rosenberg established a version of the flux formula for hypersur-
faces with constant higher-order r-mean curvature in Euclidean space R

n+1, and applied
it to extend the symmetry result given in [9] to the case of the higher-order r-mean
curvatures.

In this paper, we will deal with some aspects of the classical problem above. Our initial
strategy is to study this problem in a more general context. Specifically, our general
ambient space will be an (n + 1)-dimensional connected orientable Riemannian manifold
M̄ , where we will consider the following geometric configuration (for the details, see
§ 4). Let us fix Pn ⊂ M̄ an orientable connected totally geodesic hypersurface in M̄ ,
and let Σn−1 ⊂ P be an orientable (n − 1)-dimensional compact embedded submanifold
contained in Pn. Consider Mn an n-dimensional connected orientable manifold with
smooth boundary ∂M . Then, M is said to be a hypersurface of M̄ with boundary Σ if
there exists an immersion ψ : Mn → M̄n+1 such that the immersion ψ restricted to the
boundary ∂M is a diffeomorphism onto Σ.

From this geometric configuration, the following question, closely related to the sym-
metry problem, naturally arises.

How is the geometry of M along its boundary ∂M related to the geometry of the inclusion
Σ ⊂ P?

A first partial answer to this question is given by the following expression, which holds
along the boundary ∂M and for every 1 � r � n − 1 (see Corollary 6.1):

〈Trν, ν〉 = (−1)rsr〈ξ, ν〉r.

Here Tr stands for the rth classical Newton transformation associated to the second
fundamental form on M (see § 3 for the details), ν is the outward pointing unit conormal
vector field along ∂M , ξ is the unitary normal field of P ⊂ M̄ , and sr = sr(τ1, . . . , τn−1)
is the rth elementary symmetric function of τ1, . . . , τn−1, the principal curvatures of
Σ ⊂ P with respect to the outward pointing unitary normal. As a first consequence of
this expression, we obtain a very strong relationship between the transversality of M

with respect to P along the boundary ∂M , and the ellipticity on M of the rth Newton
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transformation Tr, that is, the positivity of the quadratic form associated to Tr. This
fact, along with Theorem 7.3 in [25], allows us to state the following symmetry theorem
for hypersurfaces in R

n+1 (Theorem 7.1).

Let Σ be a strictly convex compact (n − 1)-dimensional submanifold in a hyperplane
Π ⊂ R

n+1, and let ψ : Mn → R
n+1 be a compact embedded hypersurface with boundary

Σ. Let us assume that for a given 2 � r � n, the r-mean curvature Hr of M is a non-
zero constant. Then M has all the symmetries of Σ. In particular, if the boundary Σ is
a round (n − 1)-sphere of R

n+1, then M is a spherical cap.

As a consequence, we can conclude that the conjecture of the spherical cap [9] is true
for the case of embedded hypersurfaces with constant r-mean curvature in R

n+1, when
r � 2. This includes, in particular, the case of constant scalar curvature, when r = 2 [2].

In order to extend this symmetry result to the case of hypersurfaces in hyperbolic
space and hypersurfaces in the sphere, it is necessary to establish a certain flux for-
mula, which is one of the key ingredients of the used techniques. For that reason, § 8 is
devoted to deriving a general flux formula for the considered geometric configuration in
the case where the Riemannian ambient space M̄ is equipped with a conformal vector field
(Proposition 8.1). Our general flux formula becomes specially simple when the ambient
space has constant sectional curvature, and the conformal vector field is indeed a Killing
vector field. In that case, we are able to extend the flux formula given by Rosenberg
in [25, Theorem 7.2] to the case of the other space forms, as follows (Corollary 8.2).

Let ψ : Mn → M̄n+1 be an immersed compact orientable hypersurface with boundary ∂M ,
and let Dn be a compact orientable hypersurface with boundary ∂D = ∂M . Assume that
M ∪ D is an oriented n-cycle of M̄ , and let N and nD be the unit normal fields which
orient M and D, respectively. Assume that M̄ has constant sectional curvature. If the r-
mean curvature Hr is constant, 1 � r � n, then for every Killing vector field Y ∈ X (M̄)
the following flux formula holds

∮
∂M

〈Tr−1ν, Y 〉 ds = −r

(
n

r

)
Hr

∫
D

〈Y, nD〉 dD,

where ν is the outward pointing conormal to M along ∂M .

As first applications of our general flux formula, we derive some interesting estimates for
the volume of minimal hypersurfaces with boundary on a geodesic sphere of the ambient
space, in the case where the ambient space is the Euclidean space (Corollary 8.4), the
hyperbolic space (Corollary 8.5), or the sphere (Corollary 8.6).

On the other hand, and as another application of our flux formula and the expression for
〈Trν, ν〉 given in Corollary 6.1 (see above), we establish in § 9 some interesting estimates
for the constant r-mean curvature in terms of the geometry of the boundary. Specifically,
when the ambient space is the Euclidean space we obtain the following (Theorem 9.1).

Let Σ be an orientable (n − 1)-dimensional compact submanifold in a hyperplane P ⊂
R

n+1, and let ψ : Mn → R
n+1 be an orientable immersed compact (connected) hyper-

surface with boundary Σ = ψ(∂M) and constant r-mean curvature Hr, 1 � r � n.
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Then
0 � |Hr| � 1

n vol(D)

∮
∂M

|hr−1| ds,

where hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , and D is the domain in P

bounded by Σ. In particular, when Σ is a round (n − 1)-sphere of radius � it follows that

0 � |Hr| � 1
�r

.

This estimate is the natural generalization of an estimate first obtained by Barbosa in
the case of constant mean curvature (r = 1) [5]. On the other hand, when the ambient
space is the hyperbolic space, our estimate reads as follows (Theorem 9.2).

Let Σ be an orientable (n − 1)-dimensional compact submanifold contained in a totally
geodesic hyperplane P ⊂ H

n+1, and let ψ : Mn → H
n+1 be an orientable immersed com-

pact connected hypersurface with boundary Σ = ψ(∂M) and constant r-mean curvature
Hr, 1 � r � n. Then

0 � |Hr| � C

n vol(D)

∮
∂M

|hr−1| ds.

Here hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , D is the domain in P bounded
by Σ, and C = maxΣ cosh(�̃) � 1, where �̃(p) is the geodesic distance along P between a
fixed arbitrary point a ∈ int(D) and p. In particular, when Σ is a geodesic sphere in P

of geodesic radius �, it follows that

0 � |Hr| � cothr(�).

Similarly, for the case of hypersurfaces in the sphere, our estimate states the following
(Theorem 9.3).

Let Σ be an orientable (n − 1)-dimensional compact submanifold contained in an open
totally geodesic hemisphere P+ ⊂ S

n+1, and let ψ : Mn → S
n+1 be an orientable

immersed compact connected hypersurface with boundary Σ = ψ(∂M) and constant
r-mean curvature Hr, 1 � r � n. Then

0 � |Hr| � C

n vol(D)

∮
∂M

|hr−1| ds.

Here hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , D is the domain in P+

bounded by Σ, and C = maxΣ cos(�̃)/ minD cos(�̃), where �̃(p) is the geodesic distance
along P+ between a fixed arbitrary point a ∈ int(D) and p. In particular, when Σ is a
geodesic sphere in P+ of geodesic radius � < 1

2π, it follows that

0 � |Hr| � cotr(�).

Finally, the two remaining sections of the paper are devoted to the extension of our
symmetry results to the case of hypersurfaces in the hyperbolic space and hypersurfaces in
the sphere. Specifically, in § 10 we obtain the following symmetry result for hypersurfaces
in hyperbolic space (Theorem 10.1).
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Let Σn−1 be a strictly convex compact (n − 1)-dimensional (connected) submanifold of a
totally geodesic hyperplane Pn ⊂ H

n+1, and let Mn ⊂ H
n+1 be a compact (connected)

embedded hypersurface with boundary Σ. Let us assume that for a given 2 � r � n, the
r-mean curvature Hr of M is a non-zero constant. Then M has all the symmetries of
Σ. In particular, when the boundary Σ is a geodesic sphere in Pn ⊂ H

n+1, then M is a
spherical cap.

As a consequence, we can conclude, as in the Euclidean case, that the conjecture of
the spherical cap is true for the case of embedded hypersurfaces with constant r-mean
curvature in hyperbolic space, when r � 2. Finally, in the case of hypersurfaces in the
sphere, we state the following symmetry result (Theorem 11.1).

Let Σn−1 be a convex (n − 1)-dimensional submanifold of a totally geodesic n-sphere
Pn ⊂ S

n+1, and let Mn ⊂ S
n+1 be a compact (connected) embedded hypersurface with

boundary Σ. Let us assume that M is contained in an open hemisphere S
n+1
+ , and that

the r-mean curvature Hr of M is a non-zero constant, for a given 2 � r � n. Then M

has all the symmetries of Σ. In particular, when the boundary Σ is a geodesic sphere in
Pn ⊂ S

n+1, then M is a spherical cap.

In particular, the only compact embedded hypersurfaces in S
n+1
+ with constant r-mean

curvature Hr �= 0 (with 2 � r � n) and spherical boundary are the spherical caps.

2. Preliminaries

Throughout this paper, M̄n+1 will denote an (n + 1)-dimensional connected orientable
Riemannian manifold, and 〈· , ·〉 and ∇̄ will stand for its Riemannian metric and its
Levi-Civita connection, respectively. Let Mn be an n-dimensional connected orientable
manifold with smooth boundary ∂M ; M is said to be a hypersurface of M̄ if there
exists an isometric immersion ψ : Mn → M̄n+1. In that case, since M and M̄ are both
orientable, we may choose along ψ(M) a globally defined unit normal vector field N , and
we may assume that M is oriented by N . If ∇ denotes the Levi-Civita connection on M ,
then the Gauss and Weingarten formulae for the immersion are given, respectively, by

∇̄V W = ∇V W + 〈AV, W 〉N , (2.1)

and
A(V ) = −∇̄V N , (2.2)

for all tangent vector fields V, W ∈ X (M).
Here A : X (M) → X (M) defines the shape operator (or the second fundamental form)

of the hypersurface with respect to N . The curvature tensor R of the hypersurface M

is described in terms of A and the curvature tensor R̄ of the ambient space M̄ by the
so-called Gauss equation, which can be written as

R(U, V )W = (R̄(U, V )W )� + 〈AU, W 〉AV − 〈AV, W 〉AU (2.3)

for all tangent vector fields U, V, W ∈ X (M), where the superscript ‘	’ denotes projection
on X (M). Observe that our criterion here for the definition of the curvature tensor is the
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one in [21]. On the other hand, the Codazzi equation of the hypersurface describes the
normal component of R̄(U, V )W in terms of the derivative of the shape operator, and it
is given by

〈R̄(U, V )W, N〉 = 〈(∇V A)U − (∇UA)V, W 〉, (2.4)

where ∇UA denotes the covariant derivative of A. In particular, when the ambient space
has constant sectional curvature, then R̄(U, V )W is tangent to M for every U, V, W ∈
X (M), and (2.4) becomes

(∇V A)U = (∇UA)V. (2.5)

As is well known, A is a self-adjoint linear operator in each tangent plane TpM , and its
eigenvalues κ1(p), . . . , κn(p) are the principal curvatures of the hypersurface. Associated
to the shape operator there are n algebraic invariants given by

Sr(p) = σr(κ1(p), . . . , κn(p)), 1 � r � n,

where σr : R
n → R are the elementary symmetric functions in R

n given by

σr(x1, . . . , xn) =
∑

i1<···<ir

xi1 · · ·xin
.

Observe that the characteristic polynomial of A can be written in terms of the Sr as

det(tI − A) =
n∑

r=0

(−1)rSrt
n−r. (2.6)

The r-mean curvature Hr of the hypersurface is then defined by
(

n

r

)
Hr = Sr.

In particular, when r = 1, H1 = (1/n) tr(A) = H is the mean curvature of M , which is
the main extrinsic curvature of the hypersurface. On the other hand, when r = 2, H2

defines a geometric quantity which is related to the (intrinsic) scalar curvature of the
hypersurface. Indeed, it follows from the Gauss equation (2.3) that the Ricci curvature
of M is given by

Ric(U, V ) = Ric(U, V ) − 〈R̄(U,N)V, N〉 + nH〈AU, V 〉 − 〈AU, AV 〉,

for U, V ∈ X (M), where Ric stands for the Ricci curvature of the ambient space M̄ .
Therefore, the scalar curvature S of the hypersurface M is

S = tr(Ric) = S̄ − 2Ric(N ,N) + n(n − 1)H2.

For instance, if the ambient space has constant sectional curvature c̄, then

S = n(n − 1)(c̄ + H2). (2.7)
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3. The Newton transformations

The classical Newton transformations Tr : X (M) → X (M) are defined inductively from
A by

T0 = I and Tr = SrI − ATr−1, 1 � r � n,

where I denotes the identity in X (M), or equivalently by

Tr = SrI − Sr−1A + · · · + (−1)r−1S1A
r−1 + (−1)rAr.

Note that by the Cayley–Hamilton theorem, we have Tn = 0.
Let us recall that each Tr is also a self-adjoint linear operator in each tangent plane

TpM which commutes with A. Indeed, A and Tr can be simultaneously diagonalized; if
{e1, . . . , en} are the eigenvectors of A corresponding to the eigenvalues κ1(p), . . . , κn(p),
respectively, then they are also the eigenvectors of Tr corresponding to the eigenvalues
of Tr, and Tr(ei) = µi,r(p)ei with

µi,r(p) =
∂σr+1

∂xi
(κ1(p), . . . , κn(p)) =

∑
i1<···<ir, ij �=i

κi1(p) · · ·κir (p),

for every 1 � i � n. From here it can be easily seen that

tr(Tr) = (n − r)Sr = crHr, (3.1)

tr(ATr) = (r + 1)Sr+1 = crHr+1, (3.2)

where

cr = (n − r)
(

n

r

)
= (r + 1)

(
n

r + 1

)
.

For the details, we refer the reader to the classical paper by Reilly [22] (see also [25] for
a more accessible modern treatment by Rosenberg).

On the other hand, the divergence of Tr is defined by

divM Tr = tr(∇Tr) =
n∑

i=1

(∇eiTr)(ei),

where {e1, . . . , en} is a local orthonormal frame on M . Below we will compute divM Tr,
which will be necessary for its later use.

Lemma 3.1. The divergence of the Newton transformations Tr are given by the following
inductive formula:

divM T0 = 0,

divM Tr = −A(divM Tr−1) −
n∑

i=1

(R̄(N , Tr−1ei)ei)�,

⎫⎪⎬
⎪⎭ (3.3)

where R̄ stands for the curvature tensor of M̄ , and (R̄(N , V )W )� denotes the tangential
component of R̄(N , V )W . Equivalently, for every tangent field V ∈ X (M) it follows that

〈divM Tr, V 〉 =
r∑

j=1

n∑
i=1

〈R̄(N , Tr−jei)ei, A
j−1V 〉. (3.4)
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The expression (3.4) has also been recently obtained by Lima in [17], using a very
different argument to ours.

Proof. It is clear that divM T0 = divM I = 0. When r � 1, from the inductive definition
of Tr we have, for V, W ∈ X (M),

(∇V Tr)W = 〈∇Sr, V 〉W − ∇V (ATr−1)W

= 〈∇Sr, V 〉W − (∇V A)(Tr−1W ) − A((∇V Tr−1)W ),

so that

divM Tr =
n∑

i=1

(∇ei
Tr)(ei) = ∇Sr −

n∑
i=1

(∇ei
A)(Tr−1ei) − A(divM Tr−1).

Using now the Codazzi equation (2.4) we get, for V ∈ X (M),

〈(∇eiA)(Tr−1ei), V 〉 = 〈(∇ei
A)V, Tr−1ei〉

= 〈(∇V A)ei, Tr−1ei〉 + 〈R̄(V, ei)Tr−1ei,N〉
= 〈Tr−1((∇V A)ei), ei〉 + 〈R̄(N , Tr−1ei)ei, V 〉.

Therefore,

〈divM Tr, V 〉 = 〈∇Sr, V 〉 − tr(Tr−1∇V A)

−
n∑

i=1

〈R̄(N , Tr−1ei)ei, V 〉 − 〈A(divM Tr−1), V 〉. (3.5)

Using now equation (4.4) in [25] we have that

tr(Tr−1∇V A) = 〈∇Sr, V 〉,
which jointly with (3.5) gives (3.3). Finally, equation (3.4) follows easily from (3.3) by
an inductive argument. �

In particular, when the ambient Riemannian space M̄ has constant sectional curvature,
then (R̄(N , V )W )� = 0 for every tangent vector fields V, W ∈ X (M) and equation (3.4)
implies that divM Tr = 0 for every r.

Corollary 3.2. When the ambient Riemannian space M̄ has constant sectional curva-
ture, then the Newton transformations are divergence-free: divM Tr = 0 for each r.

4. A geometric configuration

Throughout this paper, we will be particularly interested in the following geometric
configuration, which is suggested by the classical question stated in § 1. Let Pn ⊂ M̄ be
an orientable connected hypersurface in M̄ , and let Σn−1 ⊂ P be an orientable (n − 1)-
dimensional compact embedded submanifold contained in Pn. Let ψ : Mn → M̄n+1 be
an orientable compact connected hypersurface in M̄ with smooth boundary ∂M . As
usual, M is said to be a hypersurface with boundary Σ if the immersion ψ restricted to
the boundary ∂M is a diffeomorphism onto Σ. The following question naturally arises
from this geometric configuration.
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How is the geometry of M along its boundary ∂M related to the geometry of the inclusion
Σ ⊂ P and the inclusion P ⊂ M̄?

In what follows, we will study this question. Let us start by choosing the orientation
of this configuration. Let us consider the hypersurface M oriented by a globally defined
unit normal vector field N . The orientation of M induces a natural orientation on its
boundary as follows: given a point p ∈ ∂M , a basis {v1, . . . , vn−1} for Tp(∂M) is said to
be positively oriented if {u, v1, . . . , vn−1} is a positively oriented basis for TpM , whenever
u ∈ TpM is outward pointing. We will denote by ν the outward pointing unit conormal
vector field along ∂M . By means of the diffeomorphism ψ|∂M : ∂M → Σ, the orientation
of ∂M is induced on each connected component of Σ. On each connected component P0

of P , we distinguish a connected component Σ0 ⊂ P0 of Σ. Let η0 be the unitary vector
field normal to Σ0 in P0 which points outward with respect to the domain in P0 bounded
by Σ0. Now, we choose ξ0 the unique unitary vector field normal to P0 in M̄ which is
compatible with η0 and with the orientation of Σ0. We note that the chosen orientation
of P0 given by the field ξ0 determines a unique choice to the unitary vector field η normal
to each components of Σ in P0 such that η|Σ0 = η0. We repeat this process to the others
connected components of P and hence we obtain unitary vector fields η normal to Σ in
P , and ξ normal to P in M̄ . With this choice, given a point p ∈ Σ, a basis {v1, . . . , vn−1}
for TpΣ is positively oriented if and only if {η(p), v1, . . . , vn−1} is a positively oriented
basis for TpP .

Let {e1, . . . , en−1} be a (locally defined) positively oriented frame field along a fixed
connected component of ∂M . Using this frame, we can write ν = e1×· · ·×en−1×N , and
similarly η = e1×· · ·×en−1×ξ, since det(ν, e1, . . . , en−1,N) = 1 = det(η, e1, . . . , en−1, ξ).

From these expressions we easily compute

η = e1 × · · · × en−1 × ξ

= e1 × · · · × en−1 × (〈ξ,N〉N + 〈ξ, ν〉ν)

= 〈ξ,N〉ν − 〈ξ, ν〉N ,

that is,
〈η, ν〉 = 〈ξ,N〉 and 〈η,N〉 = −〈ξ, ν〉. (4.1)

Let AΣ (respectively, AP ) denote the shape operator of Σn−1 ⊂ Pn (respectively,
Pn ⊂ M̄n+1) with respect to the unit normal vector field η (respectively, ξ). It then
follows that

∇̄ei
ej =

n−1∑
k=1

〈∇̄ei
ej , ek〉ek + 〈∇̄ei

ej , ν〉ν + 〈Aei, ej〉N ,

for every 1 � i, j � n − 1, and also

∇̄eiej =
n−1∑
k=1

〈∇̄eiej , ek〉ek + 〈AΣei, ej〉η + 〈AP ei, ej〉ξ,

so that from (4.1) we have that

〈Aei, ej〉 = −〈AΣei, ej〉〈ξ, ν〉 + 〈AP ei, ej〉〈ξ,N〉. (4.2)
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Equality (4.2) above shows us that it is not possible to go further without any additional
geometric hypothesis on the geometry of the inclusion P ⊂ M̄ . A hypothesis of relevant
geometric nature, and which is also technically quite appropriate for us, consists on
assuming the umbilicity of P ⊂ M̄ . Then, from now on let us suppose that P is a totally
umbilical hypersurface in M̄ . Therefore, there exists a smooth function λ ∈ C∞(P ) such
that AP = λI, where I denotes the identity in X (P ), and (4.2) becomes

〈Aei, ej〉 = −〈AΣei, ej〉〈ξ, ν〉 + λ〈ξ,N〉δij , 1 � i, j � n − 1. (4.3)

We now suppose that the basis {e1, . . . , en−1} ⊂ Tp(∂M) on the boundary is cho-
sen such that it is formed by eigenvectors of AΣ , and let us denote its corresponding
eigenvalues by τ1(p), . . . , τn−1(p). In other words,

AΣei = τiei, 1 � i � n − 1.

Hence, by (4.3), 〈Aei, ej〉 = 0 when i �= j, and for each p ∈ ∂M , the matrix of A in the
orthonormal basis {e1, . . . , en−1, ν} of TpM is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 0 · · · 0 〈Aν, e1〉
0 γ2 · · · 0 〈Aν, e2〉
...

...
. . .

...
...

0 0 · · · γn−1 〈Aν, en−1〉
〈Aν, e1〉 〈Aν, e2〉 · · · 〈Aν, en−1〉 〈Aν, ν〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.4)

where γi = −τi〈ξ, ν〉 + λ〈ξ,N〉 for 1 � i � n − 1.
Now we compute the characteristic polynomial of A. To do that, we begin by observing

that

det(tIn − A) = (t − γn−1) det(tIn−1 − Λ(γ1, . . . , γn−2))

− 〈Aν, en−1〉2(t − γ1) · · · (t − γn−2), (4.5)

where

Λ(γ1, . . . , γn−2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 0 · · · 0 〈Aν, e1〉
0 γ2 · · · 0 〈Aν, e2〉
...

...
. . .

...
...

0 0 · · · γn−2 〈Aν, en−2〉
〈Aν, e1〉 〈Aν, e2〉 · · · 〈Aν, en−2〉 〈Aν, ν〉

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, applying a simple induction argument on n in (4.5), we obtain that the char-
acteristic polynomial of A is given by

det(tIn − A) = (t − 〈Aν, ν〉)
n−1∑
i=0

(−1)isi(γ)tn−1−i −
n−1∑
i=1

〈Aν, ei〉2
n−2∑
j=0

(−1)jsj(γ̂i)tn−2−j ,
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where sr(γ) (respectively, sr(γ̂i)) stands for the elementary symmetric functions of
γ1, . . . , γn−1, (respectively, γ1, . . . , γ̂i, . . . , γn−1), and, as usual, s0(γ) = s0(γ̂i) = 1 by def-
inition. Comparing the terms of above polynomials, we conclude from (2.6) that the sym-
metric function of curvature Sr of the hypersurface M , at a boundary point p ∈ ∂M , is
given by

S1 = s1(γ) + 〈Aν, ν〉, (4.6)

S2 = s2(γ) + s1(γ)〈Aν, ν〉 −
n−1∑
i=1

〈Aν, ei〉2, (4.7)

Sr = sr(γ) + sr−1(γ)〈Aν, ν〉 −
n−1∑
i=1

sr−2(γ̂i)〈Aν, ei〉2, (4.8)

for 3 � r � n.

5. The Newton transformations on the boundary

Observe that expressions (4.6)–(4.8) provide us with a partial answer to our initial ques-
tion, since it relates the geometry of the hypersurface M along its boundary ∂M (given
by the r-curvature Sr) to the geometry of Σ ⊂ P and the geometry of P ⊂ M̄ (given
by sr(γ)). But this expression it is not still satisfactory for our purposes. We need the
following essential auxiliary result.

Lemma 5.1. Let Pn ⊂ M̄ be an orientable totally umbilical hypersurface in M̄ , and
let Σ ⊂ P be an orientable (n − 1)-dimensional compact submanifold in Pn. Let
ψ : Mn → M̄n+1 be an orientable connected hypersurface with boundary Σ = ψ(∂M),
and let ν stand for the outward pointing unit conormal vector field along ∂M ⊂ M .
Then, along the boundary ∂M and for every 1 � r � n − 1, it holds

〈Trν, ν〉 = sr(γ) = sr(γ1, . . . , γn−1), (5.1)

where γi = −τi〈ξ, ν〉 + λ〈ξ,N〉 for 1 � i � n − 1. Here τ1, . . . , τn−1 are the principal
curvatures of Σ ⊂ P with respect to the outward pointing unitary normal, N is the
unitary normal field of M , ξ is the unitary normal field of P ⊂ M̄ , and λ is the umbilicity
factor of P ⊂ M̄ (with respect to ξ).

Proof. We will use induction on r. First, observe that from (4.6) it follows that (5.1)
holds for r = 1. For a given 2 � r � n − 1, suppose that

〈Tjν, ν〉 = sj(γ) (5.2)

holds for all 1 � j � r − 1. Observe that

Aν =
n−1∑
i=1

〈Aν, ei〉ei + 〈Aν, ν〉ν,
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so that from the inductive definition of Tr and (5.2) we conclude that

〈Trν, ν〉 = Sr − 〈Tr−1ν, Aν〉

= Sr − 〈Tr−1ν, ν〉〈Aν, ν〉 −
n−1∑
i=1

〈Tr−1ν, ei〉〈Aν, ei〉

= Sr − sr−1(γ)〈Aν, ν〉 −
n−1∑
i=1

〈Tr−1ν, ei〉〈Aν, ei〉. (5.3)

On the other hand, we also know from (4.4) that

Aei = γiei + 〈Aν, ei〉ν,

so that from our induction hypothesis (5.2) we have, for every 1 � j � r − 1,

〈Tjν, ei〉 = −〈Tj−1ν, Aei〉 = −γi〈Tj−1ν, ei〉 − sj−1(γ)〈Aν, ei〉.

This implies by a recursive argument that

〈Tr−1ν, ei〉 = −〈Aν, ei〉
r−2∑
j=0

(−1)jsr−2−j(γ)γj
i = −〈Aν, ei〉sr−2(γ̂i), (5.4)

since it is not difficult to see that

sm(γ̂i) =
m∑

j=0

(−1)jsm−j(γ)γj
i

for every 1 � m � n − 1. Using now (5.4) in (5.3), along with (4.8), we conclude that

〈Trν, ν〉 = Sr − sr−1(γ)〈Aν, ν〉 +
n−1∑
i=1

sr−2(γ̂i)〈Aν, ei〉2 = sr(γ).

This finishes the proof of Lemma 5.1. �

Now, it remains to know how the elementary symmetric function sr(γ) can be expressed
in terms of the principal curvatures τ1, . . . , τn−1 of the inclusion Σ ⊂ P and the umbilicity
factor λ of P ⊂ M̄ . To see this, let us write γi = αi + β, where αi = −τi〈ξ, ν〉 and
β = λ〈ξ,N〉, for each i = 1, . . . , n − 1.

Lemma 5.2.

sr(γ) =
r∑

j=0

(
n − 1 − j

r − j

)
βr−jsj(α), 1 � r � n − 1.
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Proof. Recall that sr(γ) can be defined by the following polynomial identity (2.6):

n−1∑
r=0

(−1)rsr(γ)tn−1−r = (t − γ1) · · · (t − γn−1).

Since each γi = αi + β, the right-hand side of this equality can be written as follows:

((t − β) − α1) · · · ((t − β) − αn−1) =
n−1∑
j=0

(−1)jsj(α)(t − β)n−1−j .

On the other hand, computing the right-hand side of this last equality, we obtain

n−1∑
j=0

(−1)jsj(α)(t − β)n−1−j =
n−1∑
j=0

n−1−j∑
k=0

(−1)k+j

(
n − 1 − j

k

)
βksj(α)tn−1−k−j ,

which after a reordering becomes

n−1∑
r=0

(−1)r

( r∑
j=0

(
n − 1 − j

r − j

)
βr−jsj(α)

)
tn−1−r.

Therefore, we have obtained the following equality between polynomials:

n−1∑
r=0

(−1)rsr(γ)tn−1−r =
n−1∑
r=0

(−1)r

( r∑
j=0

(
n − 1 − j

r − j

)
βr−jsj(α)

)
tn−1−r,

which concludes the proof. �

We summarize the reasoning above in the following result.

Proposition 5.3. Let Pn ⊂ M̄ be an orientable totally umbilical hypersurface in M̄ ,
and let Σ ⊂ P be an orientable (n − 1)-dimensional compact submanifold in Pn. Let
ψ : Mn → M̄n+1 be an orientable hypersurface with boundary Σ = ψ(∂M), and let ν

stand for the outward pointing unit conormal vector field along ∂M ⊂ M . Then, along
the boundary ∂M and for every 1 � r � n − 1, it holds that

〈Trν, ν〉 =
r∑

j=0

(−1)j

(
n − 1 − j

r − j

)
λr−j〈ξ,N〉r−j〈ξ, ν〉jsj . (5.5)

Here sj = sj(τ1, . . . , τn−1), 0 � j � n − 1, are the elementary symmetric functions of
τ1, . . . , τn−1, the principal curvatures of Σ ⊂ P with respect to the outward pointing
unitary normal, N is the unitary normal field of M , ξ is the unitary normal field of
P ⊂ M̄ , and λ is the umbilicity factor of P ⊂ M̄ (with respect to ξ).
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6. Transversality versus ellipticity

The relationship between the Sr and the sr(γ) given in (4.6)–(4.8), as well as the expres-
sion for 〈Trν, ν〉 given in (5.5) becomes specially simple in the case where the inclusion
P ⊂ M̄ is totally geodesic, that is, when λ = 0. In that case γi = −τi〈ξ, ν〉, and we have
the following.

Corollary 6.1. Let Σ be an orientable (n − 1)-dimensional compact submanifold in
an orientable totally geodesic hypersurface Pn ⊂ M̄n+1. Let ψ : Mn → M̄n+1 be an ori-
entable hypersurface with boundary Σ = ψ(∂M), and let ν stand for the outward point-
ing unit conormal vector field along ∂M ⊂ M . Then, along the boundary ∂M and for
every 1 � r � n, it holds that

S1 = −s1〈ξ, ν〉 + 〈Aν, ν〉, (6.1)

S2 = s2〈ξ, ν〉2 − s1〈ξ, ν〉〈Aν, ν〉 −
n−1∑
i=1

〈Aν, ei〉2, (6.2)

Sr = (−1)rsr〈ξ, ν〉r + (−1)r−1sr−1〈ξ, ν〉r−1〈Aν, ν〉

− (−1)r−2〈ξ, ν〉r−2
n−1∑
i=1

sr−2(τ̂i)〈Aν, ei〉2, (6.3)

for 3 � r � n, and
〈Trν, ν〉 = (−1)rsr〈ξ, ν〉r, (6.4)

where sn = 0 and, for every 1 � r � n − 1,

sr = sr(τ1, . . . , τn−1)

is the rth elementary symmetric function of τ1, . . . , τn−1, the principal curvatures of
Σ ⊂ P with respect to the outward pointing unitary normal, and ξ is the unitary normal
field of P ⊂ M̄ .

It is not difficult to see that (6.4) establishes a very strong relationship between the
transversality of M with respect to P along the boundary ∂M , and the ellipticity on M

of the rth Newton transformation Tr, when r � 1 (recall that T0 = I). That relationship
between transversality and ellipticity will actually be one of the keys of the proof of our
symmetry results (Theorem 7.1, Theorem 10.1 and Theorem 11.1). In fact, saying that
M is not transverse to P along its boundary ∂M means that there exists a point p ∈ ∂M

such that 〈ξ, ν〉(p) = 0, which implies from (6.4) that 〈Trν, ν〉(p) = 0, r � 1. Therefore,
we can conclude that if the Newton transformation Tr is positive definite on M for some
1 � r � n−1, then the hypersurface M is necessarily transverse to P along its boundary.

Observe that in the case where Sn does not vanish on ∂M and n � 3, transversality
easily follows from expression (6.3). In fact, by (6.3) we have along the boundary ∂M

Sn = (−1)n−1sn−1〈ξ, ν〉n−1〈Aν, ν〉 + (−1)n−1〈ξ, ν〉n−2
n−1∑
i=1

sn−2(τ̂i)〈Aν, ei〉2.
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In particular, if there exists a point p ∈ ∂M where 〈ξ, ν〉(p) = 0, then Sn(p) = 0 (since
n � 3). In the same way, if we assume that n � 2 and S2 is positive everywhere on ∂M ,
then (6.2) also implies that M is transverse to P along the boundary.

We summarize the computations above in the following result.

Proposition 6.2. Let Σ be an orientable (n − 1)-dimensional compact submanifold in
an orientable totally geodesic hypersurface Pn ⊂ M̄n+1 and let ψ : Mn → M̄n+1 be an
orientable hypersurface with boundary Σ = ψ(∂M). Then each one of the following
hypotheses individually implies that M is transverse to P along the boundary ∂M .

(i) For a given 1 � r � n− 1, the Newton transformation Tr is definite positive on M .

(ii) n � 3 and Sn �= 0 on ∂M .

(iii) S2 > 0 on ∂M .

7. Symmetry for hypersurfaces in Euclidean space

The totally umbilic hypersurfaces of Euclidean space R
n+1 are the totally geodesic hyper-

planes and the round n-spheres. They trivially have constant r-mean curvature for each
r = 0, . . . , n. Actually, the hyperplanes have vanishing r-mean curvature Hr = 0, and,
after an appropriate choice of the unit normal vector field, the round n-spheres of radius
� > 0 have constant r-mean curvature Hr = 1/�r. Let us fix a hyperplane Π ⊂ R

n+1 and
an (n − 1)-sphere Σ ⊂ Π. Then the hyperplanar round ball bounded by Σ in Π, and
the spherical caps bounded by Σ (of radii greater than or equal to the radius of Σ) are
examples of compact hypersurfaces embedded into R

n+1 with constant r-mean curvature
and bounded by Σ. In this context, it was conjectured in [9] that these examples are
the only compact embedded hypersurfaces in R

n+1 with constant mean curvature and
spherical boundary. Related to this conjecture we have the following symmetry theorem
for hypersurfaces in Euclidean space [2].

Theorem 7.1. Let Σ be a strictly convex compact (n − 1)-dimensional submanifold in
a hyperplane Π ⊂ R

n+1, and let ψ : Mn → R
n+1 be a compact embedded hypersurface

with boundary Σ. Let us assume that for a given 2 � r � n, the r-mean curvature Hr

of M is a non-zero constant. Then M has all the symmetries of Σ. In particular, if the
boundary Σ is a round (n − 1)-sphere of R

n+1, then M is a spherical cap.

Proof. It is not difficult to see that under the hypothesis above there exists at least one
interior elliptic point of M , that is, an interior point of M where, after an appropriate
orientation of M , all the principal curvatures are positive. In fact, since M is not part
of a hyperplane (because of Hr �= 0), then one easily finds a radius R > 0 and a point
a ∈ R

n+1 such that the closed round ball B̄(a, R) contains M and such that there is a
point p0 ∈ int(M) ∩ ∂B(a, R) (englobe M with spheres of large radius until such a sphere
touches M on one side at an interior point). In particular, in the chosen orientation the
constant Hr = Hr(p0) > 0 is positive. The existence of an elliptic point, jointly with the
fact that Hr is a positive constant, allows us to conclude that the Newton transformation
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Tr−1 is positive definite on M (see [6, Proposition 3.2] and [25, p. 232]). Therefore, from
Proposition 6.2 it follows that M is transverse to Π along the boundary ∂M . Our result
then is a consequence of Theorem 7.3 in [25]. �

As a consequence of Theorem 7.1 we can conclude that the conjecture of the spherical
cap [9] is true for the case of embedded hypersurfaces with constant r-mean curvature
in R

n+1, when r � 2 [2].

Corollary 7.2. The only compact embedded hypersurfaces in R
n+1 with constant r-

mean curvature Hr (with 2 � r � n) and spherical boundary are the hyperplanar round
balls (with Hr = 0) and the spherical caps (with Hr a non-zero constant).

Indeed, if M is not a hyperplanar round ball, then the constant r-mean curvature must
be necessarily non-zero because there exists at least one interior elliptic point of M . In
particular, when r = 2 saying that H2 is constant is equivalent to saying that the scalar
curvature is constant (see equation (2.7)), so that the result reads as follows.

Corollary 7.3. The only compact embedded hypersurfaces in R
n+1 with constant scalar

curvature and spherical boundary are the hyperplanar round balls (with zero scalar
curvature) and the spherical caps (with positive constant scalar curvature).

Our objective in §§ 10 and 11 is to extend the symmetry result given in Theorem 7.1
to the case of hypersurfaces in hyperbolic space and hypersurfaces in sphere, as well
as the corresponding solution to the spherical cap conjecture for the case of constant
r-mean curvature, r � 2. A result of this type was first given by Nelli and Rosenberg
in [20, Theorem 3.1] for hypersurfaces with constant mean curvature in hyperbolic space.
On the other hand, the corresponding result for the case of hypersurfaces with constant
mean curvature in the sphere S

n+1 has been recently given by Lira [11]. As observed
by Nelli and Rosenberg, their result could be extended to the case of constant r-mean
curvature as soon as a certain flux formula could be established. In the next section, we
will derive such a flux formula.

8. A flux formula

In this section we will derive a general flux formula for the geometric configuration
considered in § 4 in the case where the Riemannian ambient space M̄ is equipped with a
conformal vector field Y ∈ X (M̄). Recall that the fact that Y is conformal means that
the Lie derivative of the metric tensor of M̄ with respect to Y satisfies

LY 〈· , ·〉 = 2φ〈· , ·〉

for a certain smooth function φ ∈ C∞(M̄). In other words,

〈∇̄V Y, W 〉 + 〈V, ∇̄W Y 〉 = 2φ〈V, W 〉, (8.1)

for every vector fields V, W ∈ X (M̄).
In order to derive our general flux formula, let us consider Y � ∈ X (M) the vector

field obtained on the hypersurface M by taking the tangential component of Y , that is,
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Y � = Y − fN , where f = 〈Y,N〉. Most of the interesting and useful integral formulae
in Riemannian geometry are obtained by computing the divergence of certain vector
fields and applying the divergence theorem. The interesting integral formulae therefore
correspond to vector fields with interesting divergences. Our idea here is to compute the
divergence divM (TrY

�). Using that ∇UTr is self-adjoint for any tangent vector field
U ∈ X (M), an easy computation shows that

divM (TrY
�) = 〈divM Tr, Y 〉 +

n∑
i=1

〈∇ei
Y �, Trei〉, (8.2)

where {e1, . . . , en} is a local orthonormal frame on M and divM Tr is given by (3.3) in
Lemma 3.1. From the conformal equation (8.1), we obtain

2φ〈TrU, U〉 = 〈∇̄TrUY, U〉 + 〈∇̄UY, TrU〉
= 〈∇̄TrUY �, U〉 + f〈∇̄TrUN , U〉 + 〈∇̄UY �, TrU〉 + f〈∇̄UN , TrU〉
= 〈∇TrUY �, U〉 + 〈∇UY �, TrU〉 − f〈ATrU, U〉 − f〈AU, TrU〉,

that is,
〈∇TrUY �, U〉 + 〈∇UY �, TrU〉 = 2φ〈TrU, U〉 + 2f〈ATrU, U〉. (8.3)

Choose {e1, . . . , en} a local orthonormal frame on M diagonalizing A. We know then
that it also diagonalizes Tr with eigenvalues µ1,r, . . . , µn,r, and therefore

〈∇ei
Y �, Trei〉 = µi,r〈∇ei

Y �, ei〉 = 〈ei,∇Trei
Y �〉,

so that from (8.3) we obtain

〈∇eiY
�, Trei〉 = φ〈ei, Trei〉 + 〈Y,N〉〈ATrei, ei〉.

Taking trace here and using (3.1) and (3.2), equation (8.2) becomes

divM (TrY
�) = 〈divM Tr, Y 〉 + cr(φHr + 〈Y,N〉Hr+1), (8.4)

where

cr = (r + 1)
(

n

r + 1

)
.

Integrating now (8.4) on M , the Stokes theorem implies the following integral formula
for every 0 � r � n − 1:∮

∂M

〈Trν, Y 〉 ds =
∫

M

divM (TrY
�) dM

=
∫

M

〈divM Tr, Y 〉 dM + cr

∫
M

(φHr + 〈Y,N〉Hr+1) dM. (8.5)

Here dM denotes the n-dimensional volume element of M with respect to the induced
metric and the chosen orientation, and ds is the (n − 1)-dimensional volume element
induced on ∂M .
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On the other hand, let Dn be a compact orientable hypersurface in M̄ with smooth
boundary that satisfies ∂D = ∂M , such that M ∪ D is an oriented n-cycle of M̄ , with
D oriented by the unit normal field nD. We suppose that M ∪ D = ∂Ω, where Ω is a
compact oriented domain immersed in M̄ . From the conformal equation (8.1), we easily
see that divM̄ Y = (n + 1)φ. Therefore, from the Stokes theorem we obtain that∫

M

〈Y,N〉 dM = −
∫

D

〈Y, nD〉 dD + (n + 1)
∫

Ω

φ dM̄, (8.6)

where dD stands for the n-dimensional volume element of D with respect to the orienta-
tion given by nD, and dM̄ denotes the (n + 1)-dimensional volume element on M̄ . Now,
from (8.5) and (8.6) we conclude the following general flux formula.

Proposition 8.1. Let ψ : Mn → M̄n+1 be an immersed compact orientable hypersurface
with boundary ∂M , and let Dn be a compact orientable hypersurface with boundary
∂D = ∂M . Assume that M ∪ D is an oriented n-cycle of M̄ , and let N and nD be
the unit normal fields which orient M and D, respectively. If the r-mean curvature Hr

is constant, 1 � r � n, then for every conformal vector field Y ∈ X (M̄) the following
formula holds

∮
∂M

〈Tr−1ν, Y 〉 ds =
∫

M

〈divM Tr−1, Y 〉 dM + r

(
n

r

) ∫
M

φHr−1 dM

− r

(
n

r

)
Hr

∫
D

〈Y, nD〉 dD + (n + 1)r
(

n

r

)
Hr

∫
Ω

φ dM̄, (8.7)

where ν is the outward pointing conormal to M along ∂M .

Formula (8.7) becomes especially simple when the ambient space M̄ has constant
sectional curvature, and the field Y is a Killing vector field, that is, φ = 0. In that case,
the Newton transformations are divergence free (Corollary 3.2) and, from formula (8.7),
we derive the balancing formula given by Rosenberg in [25, Theorem 7.2] (see also [8,9,
16,20] for the case of constant mean curvature).

Corollary 8.2. If M̄ has constant sectional curvature, then for every Killing vector field
Y ∈ X (M̄) the flux formula becomes∮

∂M

〈Tr−1ν, Y 〉 ds = −r

(
n

r

)
Hr

∫
D

〈Y, nD〉 dD, (8.8)

where ν is the outward pointing conormal to M along ∂M .

On the other hand, when the ambient space M̄ has constant sectional curvature, and
the field Y is a homothetic (and non-Killing) vector field, then we may assume without
loss of generality that φ = 1 and (8.7) becomes

∮
∂M

〈Tr−1ν, Y 〉 ds = −r

(
n

r

)
Hr

∫
D

〈Y, nD〉 dD

+ r

(
n

r

) ∫
M

Hr−1 dM + (n + 1)r
(

n

r

)
Hr vol(Ω). (8.9)
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As a consequence of (8.9) we obtain the following flux formula for r-minimal hypersur-
faces.

Proposition 8.3. Let ψ : Mn → M̄n+1 be a compact orientable hypersurface with
boundary ∂M immersed into a Riemannian space of constant sectional curvature. If
M is r-minimal in M̄ , that is, Hr = 0, then for every homothetic (non-Killing) vector
field Y ∈ X (M̄) the following formula holds:

∮
∂M

〈Tr−1ν, Y 〉 ds = r

(
n

r

) ∫
M

Hr−1 dM. (8.10)

In particular, for minimal hypersurfaces in Euclidean space with boundary in a round
sphere we have the following consequence.

Corollary 8.4. Let Σ be an orientable (n − 1)-dimensional compact submanifold in
a round sphere S

n(�) ⊂ R
n+1 of radius �, and let ψ : Mn → R

n+1 be an immersed
orientable compact minimal hypersurface with boundary Σ = ψ(∂M) ⊂ S

n(�). Then

vol(M) � �

n
vol(∂M),

and equality holds if and only if M is orthogonal to S
n(�) along the boundary ∂M .

Proof. Consider the radial vector field Y (p) = p in R
n+1, which is a homothetic vector

field in R
n+1 with φ = 1, and let ξ be the unit vector normal to S

n(�). Then, along S
n(�)

we have Y = �ξ and (8.10) gives

n

∫
M

dM = n vol(M) =
∮

∂M

〈ν, �ξ〉 ds � �

∮
∂M

ds = � vol(∂M).

Besides, equality holds if and only if ξ = ν along the boundary ∂M , or equivalently (see
(4.1)) 〈N , ξ〉 = 0 along ∂M . �

Let us now consider the case of a hypersurface immersed into the hyperbolic space
H

n+1. In that case, it will be appropriate to use the Minkowski space model of hyperbolic
space. Write R

n+2
1 for R

n+2 with the Lorentzian metric

〈· , ·〉1 = −dx2
0 + dx2

1 + · · · + dx2
n+1.

Then
H

n+1 = {x ∈ R
n+2
1 : 〈x, x〉1 = −1, x0 > 0}

is a complete spacelike hypersurface in R
n+2
1 with constant sectional curvature −1, which

provides the Minkowski space model for the hyperbolic space.
Let Σ ⊂ H

n+1 be an orientable (n − 1)-dimensional compact submanifold in a geodesic
sphere S(a, �) of H

n+1 of centre a ∈ H
n+1 and geodesic radius �, and let ψ : Mn → H

n+1

be an orientable compact hypersurface with boundary Σ = ψ(∂M).
Consider the vector field in H

n+1 represented in this model as Y (p) = −a − 〈a, p〉p for
every p ∈ H

n+1. Observe that Y is a conformal vector field in H
n+1 which is orthogonal
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to the geodesic spheres centred at the point a, with φ(p) = −〈a, p〉 = cosh(�̃(p)) and
|Y (p)| = sinh(�̃(p)), where �̃(p) = dist(p, a) for every p ∈ H

n+1. Therefore, along S(a, �)
we have Y = sinh(�)ξ. Assume now that M is minimal in H

n+1. Then, it follows from
(8.7) that

∮
∂M

〈ν, Y 〉 ds = sinh(�)
∮

∂M

〈ν, ξ〉 ds = n

∫
M

cosh(�̃) dM.

Thus, since cosh(�̃) � 1, we conclude that

n vol(M) � n

∫
M

cosh(�̃) dM = sinh(�)
∮

∂M

〈ν, ξ〉 ds � sinh(�) vol(∂M).

Summing up, we have obtained the following result.

Corollary 8.5. Let Σ be an orientable (n − 1)-dimensional compact submanifold in a
geodesic sphere S(a, �) of H

n+1 of centre a ∈ H
n+1 and geodesic radius �, and let ψ :

Mn → H
n+1 be an immersed orientable compact minimal hypersurface with boundary

Σ = ψ(∂M) ⊂ S(a, �). Then

vol(M) � sinh(�)
n

vol(∂M).

Finally, let us consider the case of a hypersurface immersed into the sphere S
n+1:

S
n+1 = {x = (x0, . . . , xn+1) ∈ R

n+2 : 〈x, x〉 = 1}.

Let Σ be an orientable (n − 1)-dimensional compact submanifold in a geodesic sphere
S(a, �) of S

n+1 of centre a ∈ S
n+1 and radius � < 1

2π, and let ψ : Mn → S
n+1 be an

orientable compact hypersurface with boundary Σ = ψ(∂M) ⊂ S(a, �).
In this case, consider the vector field in S

n+1 given by Y (p) = −a + 〈a, p〉p for every
p ∈ S

n+1, with singularities at the focal points {a,−a}. Observe that Y is a conformal
vector field in S

n+1 which is orthogonal to the geodesic spheres centred at the point a,
with φ(p) = 〈a, p〉 = cos(�̃(p)) and |Y (p)| = sin(�̃(p)), where �̃(p) = dist(p, a) for every
p ∈ S

n+1. Therefore, along S(a, �) we have Y = sin(�)ξ. Assume now that M is minimal
in S

n+1. Then, it follows from (8.7) that
∮

∂M

〈ν, Y 〉 ds = sin(�)
∮

∂M

〈ν, ξ〉 ds = n

∫
M

cos(�̃) dM.

Let us assume now that M is contained in the open hemisphere centred at a. In that
case, it is clear that minM cos(�̃) = cos �0, where �0 = maxM �̃ < 1

2π, so that

n cos(�0) vol(M) � n

∫
M

cos(�̃) dM = sin(�)
∮

∂M

〈ν, ξ〉 ds � sin(�) vol(∂M).

This leads to the following result.
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Corollary 8.6. Let Σ be an orientable (n − 1)-dimensional compact submanifold in
a geodesic sphere S(a, �) of S

n+1 of centre a ∈ S
n+1 and geodesic radius �, and let

ψ : Mn → S
n+1 be an immersed orientable compact minimal hypersurface with boundary

Σ = ψ(∂M) ⊂ S(a, �). Assume that M is contained in the open hemisphere centred at a.
Then

vol(M) � sin(�)
n cos(�0)

vol(∂M),

where �0 < 1
2π stands for the maximum over M of the distance to the point a.

9. Estimating the r-mean curvature by the geometry of the boundary

In this section, we will describe an interesting application of our flux formula (8.8) and
the formula (6.4). Let us consider the geometric configuration given in Proposition 6.2;
that is, let Σ be an orientable (n − 1)-dimensional compact submanifold in an orientable
totally geodesic hypersurface Pn ⊂ M̄ , and let ψ : Mn → M̄n+1 be an orientable compact
connected hypersurface with boundary Σ = ψ(∂M) and constant r-mean curvature Hr.
Our objective here is to estimate Hr by the geometry of the boundary. Assume that there
exists a Killing vector field Y ∈ X (M̄) which is orthogonal to P . Then, we can write Y

along the boundary ∂M both as Y = 〈Y, ξ〉ξ and also as Y = 〈Y, ν〉ν + 〈Y,N〉N , and
using (6.4) we obtain

〈Tr−1ν, Y 〉 = 〈Y, ν〉〈Tr−1ν, ν〉 = (−1)r−1sr−1〈Y, ξ〉〈ξ, ν〉r

along the boundary ∂M .
Let us consider D ⊂ P the domain in P bounded by Σ, and let us orient D by the

unit normal field nD, so that M ∪ D is an oriented n-cycle in M̄ . Let us denote by hj

the jth mean curvature of Σ ⊂ P with respect to the outward pointing unitary normal
η, that is, (

n − 1
j

)
hj = sj = sj(τ1, . . . , τn−1), 0 � j � n − 1.

In the case where the ambient space M̄ has constant sectional curvature, then our flux
formula (8.8) allows us to write

nHr

∫
D

〈Y, nD〉 dD = (−1)r

∮
∂M

hr−1〈Y, ξ〉〈ξ, ν〉r ds. (9.1)

Let us first apply formula (9.1) to the Euclidean case, M̄ = R
n+1.

Theorem 9.1. Let Σ be an orientable (n − 1)-dimensional compact submanifold in a
hyperplane P ⊂ R

n+1, and let ψ : Mn → R
n+1 be an orientable immersed compact

(connected) hypersurface with boundary Σ = ψ(∂M) and constant r-mean curvature
Hr, 1 � r � n. Then

0 � |Hr| � 1
n vol(D)

∮
∂M

|hr−1| ds, (9.2)
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where hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , and D is the domain in P

bounded by Σ. In particular, when Σ is a round (n − 1)-sphere of radius � it follows that

0 � |Hr| � 1
�r

. (9.3)

This estimate was first obtained in the case of constant mean curvature (r = 1) by
Barbosa in [5].

Proof. Let ξ be the unit vector normal to P . Then ξ is a constant vector field in R
n+1,

and therefore Y = ξ is a Killing field in R
n+1. On the other hand, we also have that

nD = ±ξ, so that, from (9.1), we obtain

n|Hr| vol(D) =
∣∣∣∣
∮

∂M

hr−1〈ξ, ν〉r ds

∣∣∣∣ �
∮

∂M

|hr−1| ds,

which yields (9.2).
In particular, when Σ = S

n−1(�) is a round sphere of radius �, then we have that
τi = −1/� for every i = 1, . . . , n − 1, so that hr−1 = (−1)r−1/�r−1. Besides, the domain
D is an n-dimensional round ball of radius �, with volume n vol(D) = � vol(Sn−1(�)),
and the estimate (9.2) becomes (9.3). �

Let us now consider the case of a hypersurface immersed into the hyperbolic space
H

n+1. As in § 8, it will be appropriate to use the Minkowski space model of H
n+1:

H
n+1 = {x = (x0, . . . , xn+1) ∈ R

n+2
1 : 〈x, x〉1 = −1, x0 > 0}.

We may assume, up to an isometry of H
n+1, that the totally geodesic hyperplane P

containing Σ is given by

Pn = H
n+1 ∩ {x ∈ R

n+2
1 : xn+1 = 0}.

In this case, the unit vector normal to P in H
n+1 is given by ξ(p) = en+1 = (0, . . . , 0, 1) ∈

R
n+2
1 for every p ∈ P . Observe that, for every arbitrary fixed point a ∈ P , the vector

field given by
Y (p) = −〈p, a〉en+1 + 〈p, en+1〉a, p ∈ H

n+1,

is a Killing vector field on H
n+1 which is orthogonal to P , since at every p ∈ P

Y (p) = −〈p, a〉en+1 = cosh(�̃(p))ξ(p),

where �̃(p) is the geodesic distance along P between a and p. Let D be the compact
domain D bounded by Σ in P , then nD = ±ξ and from (9.1) we obtain

n|Hr|
∫

D

cosh(�̃) dD =
∣∣∣∣
∮

Σ

hr−1 cosh(�̃)〈ξ, ν〉r ds

∣∣∣∣. (9.4)
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Choose a ∈ int(D). Then minD cosh(�̃) = cosh(�̃(a)) = 1, so that from (9.4) we conclude
that

n|Hr| vol(D) � n|Hr|
∫

D

cosh(�̃) dD �
∮

∂M

|hr−1| cosh(�̃) ds

� max
Σ

cosh(�̃)
∮

∂M

|hr−1| ds. (9.5)

In particular, when Σ is a geodesic sphere in P of geodesic radius � and a is chosen to be
the geodesic centre of Σ, then �̃(p) = � at every p ∈ Σ, |hr−1| = cothr−1(�), and (9.5)
simply becomes

n|Hr| vol(D) � cosh(�) cothr−1(�) vol(Σ). (9.6)

Moreover, in this case D is the geodesic ball in P of radius � centred at a, that is,

D = {p ∈ P : 1 � −〈p, a〉 < cosh(�)},

and
Σ = ∂D = {p ∈ P : −〈p, a〉 = cosh(�)}.

Observe then that Σ is in fact a round (n − 1)-sphere of Euclidean radius sinh(�),
and D is a round n-dimensional ball of Euclidean radius sinh(�). Therefore, vol(Σ) =
(n/ sinh(�)) vol(D) and (9.6) simplifies to

|Hr| � cothr(�).

We summarize this as follows.

Theorem 9.2. Let Σ be an orientable (n − 1)-dimensional compact submanifold con-
tained in a totally geodesic hyperplane P ⊂ H

n+1, and let ψ : Mn → H
n+1 be an

orientable immersed compact connected hypersurface with boundary Σ = ψ(∂M) and
constant r-mean curvature Hr, 1 � r � n. Then

0 � |Hr| � C

n vol(D)

∮
∂M

|hr−1| ds.

Here hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , D is the domain in P bounded
by Σ, and C = maxΣ cosh(�̃) � 1, where �̃(p) is the geodesic distance along P between
a fixed arbitrary point a ∈ int(D) and p. In particular, when Σ is a geodesic sphere in
P of geodesic radius �, it follows that

0 � |Hr| � cothr(�).

Finally, let us consider the case of a hypersurface immersed into the sphere S
n+1:

S
n+1 = {x = (x0, . . . , xn+1) ∈ R

n+2 : 〈x, x〉 = 1}.

We may assume, up to an isometry of S
n+1, that the totally geodesic n-sphere P con-

taining Σ is given by

Pn = S
n+1 ∩ {x ∈ R

n+2 : xn+1 = 0}.
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In this case, the unit vector normal to P in S
n+1 is given by ξ(p) = en+1 = (0, . . . , 0, 1) ∈

R
n+2 for every p ∈ P . Observe that, for every arbitrary fixed point a ∈ P , the vector

field given by
Y (p) = 〈p, a〉en+1 − 〈p, en+1〉a, p ∈ S

n+1,

is a Killing vector field on S
n+1 which is orthogonal to P , since at every p ∈ P

Y (p) = 〈p, a〉en+1 = cos(�̃(p))ξ(p),

where �̃(p) is the geodesic distance along P between a and p. Suppose that Σ is contained
in an open hemisphere P+ of P determined by an equator S of P , and let D be the
compact domain D bounded by Σ in P+. Then nD = ±ξ and from (9.1) we obtain

n|Hr|
∣∣∣∣
∫

D

cos(�̃) dD

∣∣∣∣ =
∣∣∣∣
∮

Σ

hr−1 cos(�̃)〈ξ, ν〉r ds

∣∣∣∣. (9.7)

Choose a ∈ int(D). Since we are assuming that Σ = ∂D is contained in the open hemi-
sphere P+, then 0 � �̃ < 1

2π on D and minD cos(�̃) > 0, so that from (9.7) we conclude
that

n|Hr| min
D

cos(�̃) vol(D) � n|Hr|
∫

D

cos(�̃) dD �
∮

∂M

|hr−1| cos(�̃) ds

� max
Σ

cos(�̃)
∮

∂M

|hr−1| ds. (9.8)

In particular, when Σ is a geodesic sphere in P of geodesic radius � < 1
2π and a is chosen

to be the geodesic centre of Σ, then �̃(p) = � at every p ∈ Σ, |hr−1| = cotr−1(�). Now a
computation similar to that in hyperbolic space leads us from (9.8) to

|Hr| � cotr(�),

because, in this case Σ is in fact a round (n − 1)-sphere of Euclidean radius sin(�), and
D is a round n-dimensional ball of Euclidean radius sin(�). Summing up, we can state
the following result.

Theorem 9.3. Let Σ be an orientable (n − 1)-dimensional compact submanifold con-
tained in an open totally geodesic hemisphere P+ ⊂ S

n+1, and let ψ : Mn → S
n+1 be an

orientable immersed compact connected hypersurface with boundary Σ = ψ(∂M) and
constant r-mean curvature Hr, 1 � r � n. Then

0 � |Hr| � C

n vol(D)

∮
∂M

|hr−1| ds.

Here hr−1 stands for the (r − 1)-mean curvature of Σ ⊂ P , D is the domain in P+

bounded by Σ, and C = maxΣ cos(�̃)/ minD cos(�̃), where �̃(p) is the geodesic distance
along P+ between a fixed arbitrary point a ∈ int(D) and p. In particular, when Σ is a
geodesic sphere in P+ of geodesic radius � < 1

2π, it follows that

0 � |Hr| � cotr(�).
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10. Symmetry for hypersurfaces in hyperbolic space

Hyperbolic space is rich in totally umbilic hypersurfaces. Besides the totally geodesic
hyperplanes, there are the horospheres, the hyperspheres and the equidistant hypersur-
faces. In all of them, the second fundamental form is proportional to the metric by a
constant factor, and therefore they all have constant r-mean curvature, for 1 � r � n.
After an appropriate choice of the unit normal vector field, hyperspheres have r-mean
curvature bigger than 1, horospheres have r-mean curvature 1, and equidistant hyper-
surfaces have r-mean curvature in the interval (0, 1).

Let us fix a totally geodesic hyperplane Pn ⊂ H
n+1 and a geodesic sphere Σn−1 ⊂ Pn

in H
n+1. Then each of the totally umbilic hypersurfaces above contains at least a compact

domain Mn with boundary being the sphere Σ. Those examples are called the spherical
caps in hyperbolic space. That terminology is due to the fact that, working in the half-
space model of hyperbolic space, after an appropriate isometry of H

n+1, the totally
umbilic hypersurfaces above are given as intersections of H

n+1 with Euclidean spheres in
R

n+1. Because of the existence of these examples in H
n+1, it is natural to consider the

conjecture of the spherical cap in hyperbolic space.
In this context, the corresponding result analogous to our Theorem 7.1 for the case of

hypersurfaces in hyperbolic space can be stated as follows.

Theorem 10.1. Let Σn−1 be a strictly convex compact (n − 1)-dimensional (connected)
submanifold of a totally geodesic hyperplane Pn ⊂ H

n+1, and let Mn ⊂ H
n+1 be a

compact (connected) embedded hypersurface with boundary Σ. Let us assume that for
a given 2 � r � n, the r-mean curvature Hr of M is a non-zero constant. Then M has
all the symmetries of Σ. In particular, when the boundary Σ is a geodesic sphere in
Pn ⊂ H

n+1, then M is a spherical cap.

As a consequence of Theorem 10.1 we can conclude, as in the Euclidean case, that
the conjecture of the spherical cap is true for the case of embedded hypersurfaces with
constant r-mean curvature in hyperbolic space, when r � 2.

Corollary 10.2. The only compact embedded hypersurfaces in H
n+1 with constant

r-mean curvature Hr (with 2 � r � n) and spherical boundary are

(i) the geodesic balls of a totally geodesic hyperplane (with Hr = 0);

(ii) the geodesic balls of an equidistant hypersurface (with 0 < |Hr| < 1);

(iii) the geodesic balls of a horosphere (with |Hr| = 1);

(iv) the geodesic balls of a hypersphere (with |Hr| > 1).

Proof of Theorem 10.1. Let us work in the half-space model of hyperbolic space. We
may assume, up to an isometry of H

n+1, that the totally geodesic hyperplane P is given
by

P = {x = (x1, . . . , xn+1) ∈ H
n+1; |x| = 1, xn+1 > 0}. (10.1)

Let B be the connected component of H
n+1\P containing the point (0, . . . , 0, 2) ∈ H

n+1.
We will first see that there exists an interior elliptic point, that is, a point p0 ∈ int(M)
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where all the principal curvatures of M are positive (after an appropriate orientation
of M). In fact, since Hr is a non-zero constant, M cannot be entirely contained in P .
After an inversion with centre (0, . . . , 0) ∈ R

n+1 which fixes P (an isometry of H
n+1), if

necessary, we may assume that M ∩B �= ∅. Let C ⊂ P be the geodesic sphere in P given
as the boundary of a geodesic ball in P centred at the point (0, . . . , 0, 1) and containing
Σ. Let us consider Γ ε ⊂ H

n+1 the equidistant sphere with centre on the vertical geodesic
through the centre of C such that Γ ε ∩ P = C, and such that the exterior angle between
Γ ε and the asymptotic boundary of H

n+1 is 1
2π − ε > 0. Since Γ ε → P as ε → 0, and

taking into account that M ∩B �= ∅, we may choose ε > 0 such that Γ ε ∩M �= ∅. Besides,
since Σ is contained in the geodesic ball in P bounded by C, then the points in Γ ε ∩ M

are interior points of M . Now, for every t � 0, let us consider Γ ε
t ⊂ H

n+1 the equidistant
sphere in H

n+1 obtained from Γ ε by an homothety centred at (0, . . . , 0) ∈ R
n+1 (which

is also an isometry of H
n+1), and let us define Γ ε

0 = Γ ε. If t is large enough, then M

is contained in the interior of the domain enclosed by Γ ε
t ; thus, we may find t0 > 0

such that M is tangent to Γ ε
t0 at a point p0, which is necessarily an interior point of M .

Finally, it is easy to conclude that the normal curvatures of M at p0, with respect to the
normal direction of the mean curvature vector of Γ ε

t0 , are greater than or equal to those
of Γ ε

t0 , which are positive. In particular, choosing the appropriate orientation of M , all
the principal curvatures of M at p0 are positive.

Therefore, we may assume that Hr = Hr(p0) is a positive constant. This implies
that for every 1 � j � r − 1, the Newton transformation Tj is positive definite on
M (see [6, Proposition 3.2]), and in particular the mean curvature is positive on M ,
so that we may assume that M is oriented by the mean curvature vector field. From
Proposition 6.2 we know that M is transverse to P along the boundary ∂M . This implies
that, in a neighbourhood of the boundary ∂M , M is contained in one of the two connected
components of H

n+1\P , which, without loss of generality, can be assumed to be B. Beside,
we may also assume that M is globally transverse to P .

In this situation, we will prove that M is above P , that is, M ⊂ B̄. Let us consider
M̃ the connected component of M ∩ B̄ containing Σ. Then, M̃ is a compact embedded
hypersurface in H

n+1 with boundary ∂M̃ contained in P . If the boundary ∂M̃ were
connected, then M̃ = M and there is nothing to prove. Our objective is to show that
actually ∂M̃ must be connected. We will prove it by showing that assuming that ∂M̃ is
not connected yields a contradiction.

Thus, let us assume that the boundary ∂M̃ consists of a finite number of disjoint con-
nected compact embedded (n − 1)-dimensional submanifolds Σi ⊂ P (0 � i � k), with
Σ0 = Σ. We orient this configuration as in § 4, with M̃ oriented by the mean curvature
vector of M . Let ν be the outward pointing conormal to M̃ along each connected compo-
nent of ∂M̃ . Then, the mean curvature vector of M , together with ν, allows us to orient
each Σi. Let η be the unitary vector field normal to Σ in P which points outward with
respect to the domain D bounded by Σ in P , and let ξ be the unique unitary vector field
normal to P which is compatible with η and with the orientation of Σ. Now, there exists
a unique choice for the unitary vector field ηi normal to Σi in P which is compatible
with the orientation of Σi and with the orientation of P given by ξ. We remark that we
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cannot ensure here that, for i � 1, ηi points outward to the domain Di bounded by Σi

in P . In this way, we have that formula (6.2) holds at each point p ∈ ∂M̃ with r = 1,
giving

〈T1ν, ν〉(p) = −s1(p)〈ξ, ν〉(p). (10.2)

Here s1 denotes the trace of the shape operator, with respect to ηi, of the inclusion
Σi ⊂ P which contains the point p.

As Σ is a compact strictly convex submanifold of P and η points outward of D, then
s1 < 0 on Σ. On the other hand, as T1 is positive definite on M , it follows from (10.2)
that 〈ξ, ν〉 > 0 on ∂M . Besides M̃ ⊂ B implies that 〈ξ, ν〉 > 0 on each component of
∂M̃ . Hence, along Σ, the mean curvature vector of M points into D. Therefore, if ∂M̃

has a connected component contained in the interior of D, then there exists at least
one component Σi, for some i � 1, contained in the interior of D on which the mean
curvature vector of M points outward to the domain Di ⊂ P bounded by Σi in P . As
〈ξ, ν〉 > 0 on Σi, then ηi must point into Di. This contradicts the formula (10.2), because
if ηi points into Di, then we can easily conclude from the compactness of Σi that there
must be a point p ∈ Σi where s1(p) > 0. It then follows that the connected components
of ∂M̃ must be all contained in P\D.

Now, let us assume that there exists one of them, say Σj (j � 1), which is homotopic
to Σ in P\D. Without loss of generality, we may assume that, between Σj and Σ there
is no other component of ∂M̃ which is homotopic to Σ in P\D. We showed above that,
along Σ, the mean curvature vector of M points into D. Therefore, along Σj , the mean
curvature vector of M must point outward of the domain Dj ⊂ P bounded by Σj in P .
Since 〈ξ, ν〉 > 0 on Σj , it then follows that the unitary vector field ηj normal to Σj in P

points into Dj . This situation gives again a contradiction with formula (10.2), because if
ηj points into Dj , then there must be a point p ∈ Σj where s1(p) > 0.

Finally, the only remaining case is the one where ∂M̃ has a connected component Σl

(l � 1) which is contained in P\D and is null homotopic in P\D. However, this final
possibility is discarded by using the Alexandrov reflection technique [1], exactly as in
the proof of [9, Theorem 1] or [20, Theorem 3.1]. For the sake of completeness, we will
include the argument here. Let γ be an infinite length geodesic in P starting at a point
of D and intersecting Σl in at least two points.

Consider a family Q(t), t < ∞, of geodesic hyperplanes of H
n+1 orthogonal to γ, such

that for each q ∈ γ there exists exactly one Q(t) which intersects γ orthogonally at q.
Each Q(t) is orthogonal to P , so a hyperbolic symmetry through Q(t) leaves P and B
invariant. Now we apply Alexandrov reflection method to M (observe that this can be
done because the equation Hr = const. > 0, under the existence of an elliptic point, is
an elliptic equation [15]). For t large enough, Q(t) is disjoint from M . As t decreases,
there must exist a first point of contact of some Q(t) with M . One continues to decrease
t and considers the symmetries of M through the geodesic hyperplanes Q(t). Since γ

intersects Σl in at least two points, there must exist some hyperplane Q(t0) such that
the symmetry of M through Q(t0) will touch M at an interior point. This occurs at an
interior point since Σ is convex and γ intersects Σ exactly at one point. Thus, M is
invariant under symmetry through Q(t0), which is impossible (for M would then be part
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of an embedded closed manifold with constant r-mean curvature, hence, a sphere; but a
sphere cannot meet P in more that one component).

Summing up, we conclude from the reasoning above that ∂M̃ has no other connected
component on P except of Σ, and therefore M ⊂ B̄. Now that we know that M is above P

and transverse to P along ∂M , the proof finishes applying again the Alexandrov reflection
method to M ∪ D, exactly as in the final step of the proof of [20, Theorem 2.1]. �

11. Symmetry for hypersurfaces in sphere

The totally umbilic hypersurfaces of S
n+1 are given by the intersections of S

n+1 with the
hyperplanes of Euclidean space R

n+2. When the hyperplane passes through the origin
of R

n+2, they are totally geodesic, and when the hyperplane is an affine hyperplane,
they are totally umbilic. We will refer to them as totally geodesic n-spheres and totally
umbilic n-spheres of S

n+1, respectively. They all have constant r-mean curvature. After
an appropriate choice of the unit normal vector field, the totally umbilic n-spheres have
r-mean curvature Hr = cotr(�), where � > 0 denotes the geodesic radius of the convex
geodesic ball of S

n+1 whose boundary is the totally umbilic n-sphere.
Let us fix a totally geodesic n-sphere Pn ⊂ S

n+1 and a geodesic sphere Σn−1 ⊂ Pn

in S
n+1. Then, for a given value of Hr, there are two compact domains Mn

1 and Mn
2 of

a totally umbilic n-sphere of S
n+1 whose boundaries are the geodesic sphere Σ. These

examples are called the spherical caps in S
n+1. As in hyperbolic space, because of the

existence of these examples in S
n+1, it is also natural to consider the conjecture of the

spherical cap in S
n+1. In this context, the corresponding result for the case of hypersur-

faces in S
n+1 can be stated as follows.

Theorem 11.1. Let Σn−1 be a convex (n − 1)-dimensional submanifold of a totally
geodesic n-sphere Pn ⊂ S

n+1, and let Mn ⊂ S
n+1 be a compact (connected) embedded

hypersurface with boundary Σ. Let us assume that M is contained in an open hemisphere
S

n+1
+ , and that the r-mean curvature Hr of M is a non-zero constant, for a given 2 �

r � n. Suppose that the convex disc D bounded by Σ in P contains a focal point of
P1 ∩P , where P1 = ∂S

n+1
+ . Then M has all the symmetries of Σ. In particular, when the

boundary Σ is a geodesic sphere in Pn ⊂ S
n+1, then M is a spherical cap.

Corollary 11.2. Let M be a compact (connected) embedded hypersurface in S
n+1
+ with

constant r-mean curvature Hr �= 0 (with 2 � r � n) and spherical boundary contained
in a totally geodesic n-sphere Pn ⊂ S

n+1. Suppose that the convex disc D bounded by
the spherical boundary of M in P contains a focal point of P1 ∩ P , where P1 = ∂S

n+1
+ .

Then M is a spherical cap.

As we pointed out before, corresponding results for r = 1 can be found in [11].
Before we go further, we need to fix a suitable notion of symmetry in the spherical

space form. This is done in the definition below.

Definition 11.3. We say that a totally geodesic n-sphere Q is a n-sphere of symmetry of
a subset S of S

n+1 if for each point p ∈ S and any complete geodesic γ perpendicular to Q
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and containing p, we have p̃ ∈ S, where p̃ is the point of γ such that p and p̃ lie in opposite
hemispheres of Q at a distance of less than or equal to 1

2π and dist(p̃, Q) = dist(p, Q).

We observe that the choice of D in this section is compatible with the orientations
established in § 4, which allows us to use the calculations made in the earlier parts of the
article.

Proof. Let a ∈ S
n+1 and consider P1 = {x ∈ S

n+1 : 〈x, a〉 = 0} the totally geodesic
n-sphere which defines the open hemisphere S

n+1
+ = {x ∈ S

n+1 : 〈x, a〉 > 0} where M

is contained. Now, we may assume without loss of generality that the totally geodesic
n-sphere containing the boundary of M is

P = {x ∈ S
n+1 : 〈x, e0〉 = 0}, a �= e0.

Our first objective is to see that there exists an interior elliptic point of M , that is,
a point p0 ∈ int(M) where all the principal curvatures of M have the same sign. To
see it, let Bt(a) ⊂ S

n+1
+ be the geodesic ball with centre a and geodesic radius t, where

0 < t < 1
2π, and let St(a) = ∂Bt(a) be the corresponding geodesic sphere. Since M is

compact and M ⊂ S
n+1
+ , there exists a minimum value t′ such that M ⊂ Bt′(a), and a

contact point p0 ∈ M ∩ St(a). Observe that the height function 〈x, a〉 on M attains its
minimum value precisely at that contact point. Therefore, if such a contact point is an
interior point of M , then it is also a tangency point and all the principal curvatures of
M , with respect to the unit normal vector field of St′(a), are positive at p0. If the contact
point is a boundary point, then we can consider a geodesic ball Bt(a) with t > t′ so that
Bt(a) ∩ Σ = ∅. Now, we can simultaneously move the centre a of the geodesic ball and
decrease its radius, keeping always M contained in the interior of this geodesic ball, and
we consider the intersection of this geodesic ball with S

n+1
+ . From this process it follows

that either some geodesic ball Bt(a′) ∩ S
n+1
+ is tangent to M at an interior point, or M

is entirely contained in the totally geodesic n-sphere P . However, the second possibility
cannot happen because Hr is a non-zero constant. Then, reasoning as above, such an
interior tangency point is an elliptic point of M . Thus, we may always (including when r

is even) assume that the r-mean curvature Hr of M is a positive constant. This implies
that Tj is positive definite on M , for each 1 � j � r − 1, and, since H = H1 > 0, we
may orient M by the mean curvature vector. By Proposition 6.2, we conclude that M

is transversal to P along its boundary ∂M . So, there is a neighbourhood U of Σ in M

contained in only one of the hemispheres P̄+ and P̄− determined by P . We fix U ⊂ P̄+.
Let D ⊂ P be the domain bounded by Σ which does not contain points of Σ1 := P1∩P .

Denote by int(D) the interior of D in P and by ext(D) the subset P − D. According to
this notation, we have the following claim.

Claim 11.4. If M ∩ int(D) �= ∅, then M ∩ ext(D) �= ∅.

We omit the proof of this claim since it follows the same guidelines as the similar one
for the hyperbolic case (see § 10).

To guarantee that M ∩ P = Σ it suffices then, by using the claim, to prove that
M ∩ ext(D) = ∅. Suppose otherwise; that is, suppose that M ∩ ext(D) �= ∅. So, we may
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assume, without loss of generality, that M ∩ext(D) consists of a finite number of disjoint
connected embedded submanifolds of P .

In order to apply correctly the reflection procedure, we consider now on M the con-
nected component containing Σ of the topological embedded submanifold N obtained
after excision of small annuli in M surrounding each one of the domains Di bounded
by the components of Σ ∩ intD containing no points of Σ and gluing domains home-
omorphic to each Di at the boundary of these annuli (see [9] for the similar device in
R

3). This construction allows us to consider M ∪ D separating S
n+1 in two connected

components. By Ω we denote the component that contains no points of Σ1. Note that
the set M ∪ ext(D) is not diminished in this process. In fact, the only components of
M ∪ext(D) that could be discarded are the ones that contains points in int(D) and points
in ext(D), whose existence should oblige the mean curvature vector to point outside Ω,
contradicting the Maximum Principle applied to geodesic graphs in S

n+1 (see [12]).

Case 1. Suppose initially that there exist components Σk of M ∩ ext(D) homologous
to zero in P − int(D). For each k, denote by Mk the connected component of M which
has boundary Σk and contains no points of Σ. We note that Mk contains points of P̄−

in a neighbourhood of Σk.
We fix Σ1 = {x = (0, 0, x2, . . . , xn+1) ∈ S

n+1} and x1 > 0 throughout the hemisphere
of P which contains no points of Σ. Define P1(t), 0 � t � π, as the family of totally
geodesic n-spheres such that P1(t)∩P = Σ1, for all t, and P1(α) = P1, where α is the angle
between P1 and P . The normal vector to P1(t) is given by nt = (cos t, − sin t, . . . , 0, 0).

For t, 0 � t < α, let M−
k (t) be the set {x ∈ M ; 〈x, nα〉 > 0 and 〈x, nt〉 < 0} and let

M̃k(t) be the reflected image of M−
k (t) through P1(t), i.e.

M̃k(t) = {x̃ ∈ S
n+1; x̃ = x − 2〈x, nt〉nt, x ∈ M−

k (t)}.

By the fact that P1(α) ∩ Mk = ∅, there exists t0, 0 � t0 < α, such that

(i) P1(t0) ∩ Mk �= ∅;

(ii) P1(t) ∩ Mk = ∅, for all t > t0.

So, Mk is tangent to P1(t0) at their common points and there is a neighbourhood of
each one of these points in Mk which is a geodesic graph over a domain in P1(t0).

Thus, unless t0 = 0, we have that M̃k(t) ⊂ P̄− for t sufficiently close to t0. However,
for t0 = 0, we consider a rotation of P by a small angle, fixing Σ1, to return to the
previous situation.

We claim that Mk is a geodesic graph over the domain Dk in P bounded by Σk which
contains no points of Σ1, with M̃k(0) ⊂ int(Ω). In particular, Mk is not perpendicular to
P at points of Σk. Otherwise, for some k and t1 ∈ [0, t0), one of the following possibilities
occurs:

(i) M̃k(t1) ∩ M contains interior points of Mk;

(ii) P1(t1) is perpendicular to Mk at points of ∂Mk(t1);
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(iii) M̃k(t1) ∩ M contains points of (M − Σ) − Mk;

(iv) M̃k(t1) contains points of Σ.

Cases (i)–(iii) are all ruled out by the Maximum Principle. In fact, otherwise, P1(t1)
should be a sphere of symmetry and M a compact hypersurface without boundary (see
[14, pp. 572–573]).

Thus, we conclude that the points of M̃k(t1) away from Σ are contained in int(Ω).
Since there exists a neighbourhood U of Σ in M as above, the reflected image of M̃k(t1)
through P = P (π) is not contained in Ω, if we suppose M̃k(t1) ∩ Σ �= ∅. In particular, the
reflection of M̃k(t1) through P is not contained in the open domain bounded by M̃k(t1) in
int(Ω). Therefore, a sphere P1(τ), α < τ < π, should exist such that the reflected image of
M̃k(t1) through P1(τ) is tangent to M̃k(t1) and, in this way, P1(τ) is sphere of symmetry
of M̃k(t1). Hence, since the portion of M̃k(t1) lying between P1(α) and P1(τ) does not
contain points of ∂M̃k(t1) = ∂Mk(t1) in P1(t1), we obtain a contradiction, proving that
case (iv) does not occur at any instant t ∈ [0, t0).

Notice that it is equally impossible to have M̃k(t1) tangent to M at points of opposite
orientation, because if it is the case, then the reflected image of a portion of Mk would
have left int(Ω) before t1.

So, we conclude from the impossibility of cases (i)–(iv), for each t ∈ [0, t0), that Mk(t)
is a geodesic graph over the domain in P1(t) bounded by ∂M−

k (t) which does not contain
points of Σ1, with M̃k(t) ⊂ int(Ω), proving the claim. Besides this, we guarantee that
M−

k (t) is not perpendicular to P1(t) at any point of ∂M−
k (t).

Case 2. Now, suppose there exist components of M ∩ ext(D) homologous to Σ. We
will prove that whenever exist such components, they are graphs over domains in P .

This case is handled as in [11], with minor modifications concerning the use of the flux
formula there, which must be changed by the appropriate formula (8.8).

Now, as above, define for t ∈ (α, 1
2π] the submanifold of M given by M−(t) = {x ∈

P+; 〈x, nα〉 > 0 and 〈x, nt〉 < 0} and its reflected image through P1(t) as

M̃(t) = {x̃ ∈ S
n+1; x̃ = x − 2〈x, nt〉nt, x ∈ M−(t)}.

Since M ∩P1 = ∅, either M is contained in the open hemisphere determined by P1( 1
2π)

containing Σ, or there exists a t0 ∈ (α, 1
2π] such that

(i) P1(t0) ∩ M �= ∅;

(ii) P1(t) ∩ M = ∅, for all α < t < t0.

For t0 = 1
2π, there is a neighbourhood of M that is a graph over a domain of P1( 1

2π).
If t0 < 1

2π, suppose that there exists t1 ∈ (t0, 1
2π] for which one of the following state-

ments hold:

(i) M̃(t1) is tangent to M at interior points;

(ii) P1(t1) is perpendicular to M at some points of M ∩ P1(t1);

(iii) M̃(t1) ∩ Σ �= ∅.
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If (i) or (ii) occurs, then P1(t1) is a sphere of symmetry of M . However, Σ is contained
in only one of the hemispheres determined by Σ1 = P1(t1) ∩ P on P .

Suppose (iii) occurs; if there exists p ∈ M−(t1) such that p̃ ∈ Σ, then p and p̃ are points
at the same distance from P1(t1) on a geodesic Σ perpendicular to P1(t1). If t1 = 1

2π,
then p ∈ P , since P is totally geodesic. If t1 < 1

2π, we have dist(p̃, P1(t1)) < 1
2π; thus,

dist(p, p̃) < 2t1 < π, which implies that p ∈ P−. Both situations contradict the fact that
M−(t1) ⊂ P+.

We conclude that M̃(t1) ⊂ int(Ω), for all t ∈ (α, 1
2π]. Furthermore, M−( 1

2π) is a
geodesic graph over the domain bounded by ∂M−( 1

2π) in P1( 1
2π) containing points of Ω.

Let p ∈ D the geodesic centre of Σ1 and σ an arc of geodesic starting from p passing
through Σ and crossing orthogonally Σ1. We may assume, initially, that the component
Σk0 = ∂Mk0 of M ∩ ext(D) nearest from Σ1 in the direction given by σ is homologous
to zero. Modifying slightly the direction of σ, if necessary, we may assume that σ crosses
Σk0 at least twice.

For each point σ(t), 0 � t � d, we consider the intersection Q(t) of S
n+1 and the

Euclidean hyperplane containing the origin of R
n+2 and perpendicular to {x0 = 0} whose

normal vector is σ′(t). Denote by Q−(t) the hemisphere determined by Q(t) containing
σ[t, d] and by Qt the reflection through Q(t).

As we have proved, the portion of M in the hemisphere Q−(d) determined by
Q(d) = P1( 1

2π), if it is not empty, is a geodesic graph over a domain in P1( 1
2π) ∩ P+

at a distance of less than 1
2π from the sphere P1( 1

2π). This remains true, for t sufficiently
close to d. By the choice of Σk0 , we have that the first point of contact, if exists, between
the planes Q(t) and M ∩ P̄− must be in Σk0 . More precisely, there exists t0 ∈ (0, d) such
that we have:

(i) M ∩ Q−(t) is contained in the portion of the geodesic cylinder over a domain of
Q(t) contained in P+ and Qt(M ∩ Q−(t)) ⊂ Ω ∩ P+, for all t < t0;

(ii) M ∩ P̄− ∩ Q(t0) is a non-empty subset of Σk0 .

These statements follow from the fact that Mk0 is, as proved above, contained in the
geodesic cylinder over a domain in P and Q(t0) is a totally geodesic sphere perpendicular
to P . So, since σ crosses Σk0 at least twice, and Mk0 is compact, there exists t1 ∈ (0, t0]
so that M ∩ Q−(t) is contained in the geodesic cylinder over a domain of Q(t), in such
a way that Qt(M ∩ Q−(t)) ⊂ int(Ω), whenever t > t1. Furthermore, one of the following
assertions holds:

(i) Qt1(M ∩Q−(t1)) is tangent to Mk0 at points not belonging to Q(t1) with the same
orientation;

(ii) Q(t1) is perpendicular to M ∩ Q−(t1) at points of Q(t1) or, equivalently,

Qt1(M ∩ Q−(t1))

is tangent to M at points of Q(t1).

In any case, Q(t1) should be a sphere of symmetry of M . Let p′ be the last point of
Σ in σ[0, d). The distance between p′ and Q(t1) is less than t1. Thus, prolonging σ until

https://doi.org/10.1017/S1474748006000077 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000077
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the point Qt1(p
′), we obtain an arc of geodesic of length strictly less than 2t1 < π. Since

Q(t1) is a sphere of symmetry of M and, in particular, of Σ, we have that Q(p′) is a
point of Σ. However, since that Σ is convex, σ does not return to Σ until it has just
crossed all of the hemisphere determined by Σ1 in P which does not contain points of Σ,
that is, just after t > π. As 2t1 < π, we have a contradiction. From this contradiction,
we conclude that there is no components of M ∩ ext(D) homologous to zero outside the
region in P − Σ1 bounded by Σ and some component of M ∩ ext(D) homologous to Σ;
otherwise, there exists at least a direction σ starting from p so that the component of
M ∩ ext(D) nearest from Σ1 in its direction is homologous to a constant.

Now, suppose Σk0 is homologous to Σ. By construction, it is clear that σ crosses each
component Σk of M ∩ ext(D) homologous to Σ at least once. So, proceeding as in [11]
we find a sphere of symmetry of M before reach Σ, a contradiction.

So far, we have proved that M is contained in P̄+ and that M ∩ P = Σ. Furthermore,
M−( 1

2π), if it is not empty, is a geodesic graph over a domain in P1( 1
2π) having height

less than 1
2π and its reflected image through P1( 1

2π) is entirely contained in int(Ω).
Let then R be a sphere of symmetry of Σ and q ∈ R ∩ D. Let µ be the geodesic

perpendicular to R starting from q and reaching a point q′ ∈ Σ1. We define R(t), 0 �
t � 2π, as the intersection of S

n+1 and the Euclidean hyperplane containing the origin
of R

n+2 and perpendicular to {x0 = 0}, whose normal is µ′(t)(0,...,0). It is clear that
R(0) = R. Suppose that R(d) and P1( 1

2π) coincide. Then, the facts above imply that
we have no touching points until the time t = d on the reflection process through the
spheres R(t). However, since M is compact and M ∩ P = Σ, there exists t1 ∈ [0, d) such
that R(t1) is a sphere of symmetry of M and, in particular, of Σ. Since R and R(t1) are
both perpendicular to µ, it follows from the convexity of Σ that R = R(t1), i.e. that R

is a sphere of symmetry of M .
If R(d) and P1( 1

2π) are distinct spheres, let Σ2 = P1( 1
2π) ∩ R(d) and consider the

totally geodesic spheres T (t), 0 � t � α0, obtained by rotation, fixing Σ2, of P1( 1
2π)

towards R(d), with T (0) = P ( 1
2π) and T (α0) = R(d). It is clear that Σ2 = ∩tT (t).

Moreover, we have that T (t)∩Σ = ∅, for all t, since each T (t) is contained in the domain
C of S

n+1 bounded by P1( 1
2π) and R(d) that does not contain points of Σ. Denote T−(t)

and T (t) as before.
By continuity, we have that, for t close enough to 0, each component of M ∩ T−(t),

when this set is not empty, is still a geodesic graph over a domain T (t) at distance from
T (t) strictly less than 1

2π. Furthermore, since M is compact, it is possible to consider
t sufficiently small so that T (t)(M ∩ T−(t)) ⊂ int(Ω). Thus, either this remains true
for each t ∈ (0, α0], or there exists t1 ∈ (0, α0] such that one of the following situations
occurs:

(i) Tt1(M ∩ T−(t1)) is tangent to M at points not belonging to T (t1) with the same
orientation;

(ii) T (t1) is perpendicular to M ∩ T−(t1) at points of T (t1) or, equivalently,

Tt1(M ∩ T−(t1))

is tangent to M at points of T (t1).
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In these cases, T (t1) should be a sphere of symmetry of M and, in particular, of
Σ. However, this contradicts the fact that there are no points of Σ in C. Therefore,
we conclude from this contradiction that Tα0(M ∩ T−(α0)) is contained in Ω and that
M ∩ T−(α0) is either empty or a graph over T (α0) = R(d). In this way, we return to the
previous case. The theorem is proved. �
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