Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-05T23:08:10.769Z Has data issue: false hasContentIssue false

Abelian varieties and Galois extensions of Hilbertian fields

Published online by Cambridge University Press:  16 May 2012

Christopher Thornhill*
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA (cthornhi@indiana.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent paper Moshe Jarden (Diamonds in torsion of Abelian varieties, J. Inst. Math. Jussieu9(3) (2010), 477–480) proposed a conjecture, later named the Kuykian conjecture, which states that if $A$ is an Abelian variety defined over a Hilbertian field $K$, then every intermediate field of $K({A}_{\mathrm{tor} } )/ K$ is Hilbertian. We prove that the conjecture holds for Galois extensions of $K$ in $K({A}_{\mathrm{tor} } )$.

Type
Research Article
Copyright
©Cambridge University Press 2012

References

Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro-p groups, 2nd edn, Cambridge Studies in Advanced Mathematics, Volume 61 (Cambridge University Press, Cambridge, 1999).Google Scholar
Fehm, Arno, Jarden, Moshe and Petersen, Sebastian, Kuykian fields. Forum Math., 2010..Google Scholar
Fried, Michael D. and Jarden, Moshe, Field arithmetic, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2nd edn, A Series of Modern Surveys in Mathematics, Volume 11 (Springer-Verlag, Berlin, 2005).Google Scholar
Huppert, B., Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Volume 134 (Springer, Berlin, 1967).Google Scholar
Jarden, Moshe, Diamonds in torsion of Abelian varieties, J. Inst. Math. Jussieu 9 (3) (2010), 477480.Google Scholar
Larsen, Michael J. and Pink, Richard, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (4) (2011), 11051158.Google Scholar