
J. Inst. Math. Jussieu (2013) 12(2), 237–247 237
doi:10.1017/S1474748012000680 c© Cambridge University Press 2012

ABELIAN VARIETIES AND GALOIS EXTENSIONS OF
HILBERTIAN FIELDS

CHRISTOPHER THORNHILL
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

(cthornhi@indiana.edu)

(Received 31 July 2011; accepted 10 December 2011;
first published online 16 May 2012)
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1. Introduction

In his article ‘Diamonds in torsion of Abelian varieties’, Moshe Jarden made the
following conjecture:

Conjecture ([5]). Let K be a Hilbertian field, A an Abelian variety defined over K, and
M an extension of K in K(Ator). Then M is Hilbertian.

In the same article he proved that the conjecture is true if K is a number field, and
in a later paper written by Fehm et al. [2], the class of Hilbertian fields K for which
the conjecture holds was greatly extended. In each case, specific properties of the fields
considered had to be used to verify the conjecture.

In this paper, we apply a group-theoretic approach which enables us to prove Jarden’s
conjecture for all Hilbertian fields provided that M/K is a Galois extension. This
approach requires the introduction of a special type of group, the Galois–Hilbertian
group.

Definition 1. A profinite group G is called Galois–Hilbertian if for every closed normal
subgroup H of G the following property holds: if K is a Hilbertian field and L/K is a
G/H-Galois extension, then L is Hilbertian.
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Remark 2. Suppose G is Galois–Hilbertian and H is a closed normal subgroup of
G. Since each quotient of G/H is also a quotient of G, it follows that G/H is also
Galois–Hilbertian. Thus, if K is a Hilbertian field and L/K is a G-Galois extension, then
LH is a Hilbertian field. We see then that every Galois extension of K in L is Hilbertian.

There are several well-known examples of Galois–Hilbertian groups:

(i) Finite groups are Galois–Hilbertian since every finite extension of a Hilbertian field
is Hilbertian [3, Proposition 12.3.5].

(ii) Abelian groups are Galois–Hilbertian since every Abelian extension of a Hilbertian
field is Hilbertian. This result was originally due to Kuyk [3, Theorem 16.11.3].

(iii) A profinite group is small if for each positive integer n, the group has only finitely
many open subgroups of index n [3, p. 328]. Small groups are Galois–Hilbertian
since every quotient of a small group is small and every Galois extension of a
Hilbertian field with a small Galois group is Hilbertian [3, Remark 16.10.3(d),
Proposition 16.11.1]. In fact, if L is a Galois extension of a Hilbertian field K with
Gal(L/K) small, then any extension of K in L is Hilbertian [5, Lemma 4].

The main result of this paper is the following.

Theorem. For each n every closed subgroup of
∏

p GLn(Zp) is Galois–Hilbertian.

It is known that the maximal separable extension of K in K(Ator) has a Galois group
over K which is a closed subgroup of

∏
p GL2 dim(A)(Zp), so we can conclude that every

Galois extension of a Hilbertian field K in K(Ator) is Hilbertian.
The strategy employed is to show that extensions of Galois–Hilbertian groups by

Galois–Hilbertian groups are again Galois–Hilbertian, and then we will see that any
closed subgroup of

∏
p GLn(Zp) can be expressed as an extension of a Galois–Hilbertian

group by a Galois–Hilbertian group. The latter result utilizes a theorem of Larsen and
Pink [6] which describes special properties of subgroups of GLn(Fp). We also state and
apply several results regarding properties of p-adic analytic groups and products of finite
simple groups, and we make use of Haran’s diamond theorem to make several important
reductions.

Throughout this paper we will consider many homomorphisms between profinite
topological groups. In particular, we will use the following homomorphisms, all of which
are continuous:

• inclusion of a closed subgroup into a group;
• projection from a closed subgroup of a direct product of groups to any subproduct

of the groups;
• the canonical isomorphisms from the first, second, and third isomorphism theorems;
• the canonical isomorphism

∏
i Gi/

∏
i Ni ∼=∏

i(Gi/Ni), where each Ni is normal in Gi.

Since all of the groups that we consider are closed subgroups of profinite groups, they
are compact. Thus, we are only considering continuous maps from compact spaces to
Hausdorff spaces, and so the homomorphisms are closed maps. We will use this fact
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often when we consider a closed subgroup of one group as a closed subgroup of another
group by means of one or more of the homomorphisms listed above.

2. Results

Proposition 3. Every Galois–Hilbertian extension of a Galois–Hilbertian group is
Galois–Hilbertian.

Proof. Suppose we have a closed normal subgroup G′ of G such that G′ and G/G′
are Galois–Hilbertian. Let H be any closed normal subgroup of G. The groups
G′/(G′ ∩ H) and (G/G′)/(G′H/G′) are both Galois–Hilbertian since they are quotients
of Galois–Hilbertian groups. We also have the canonical isomorphisms

G′/(G′ ∩ H)∼= G′H/H

and

(G/G′)/(G′H/G′)∼= G/G′H ∼= (G/H)/(G′H/H).
Let Ḡ′ = G′H/H and G/H = (G/H)/(G′H/H). We now view G/H as an extension
of the Galois–Hilbertian group G/H by the Galois–Hilbertian group Ḡ′. Now let K
be a Hilbertian field and L an extension of K with G/H = Gal(L/K). Then LḠ′ is
Hilbertian since K is Hilbertian and G/H ∼= Gal(LḠ′/K) is Galois–Hilbertian. Also, L is
Hilbertian since LḠ′ is Hilbertian and Ḡ′ ∼= Gal(L/LḠ′) is Galois–Hilbertian. Thus, G is
Galois–Hilbertian. �

We now introduce a class of groups called k-stage groups. We prove that k-stage
groups are Galois–Hilbertian and then use them to construct other Galois–Hilbertian
groups.

Definition 4. A topological group G is called one-stage if it is trivial or a direct product
of finite simple groups. A topological group G is called k-stage for k > 2 if it has a closed
normal subgroup G′ such that G′ is one-stage and G/G′ is (k − 1)-stage.

Remark 5. If a group G is k-stage, then it is (k+1)-stage, for G always has the subgroup
{e}, and G/{e} is k-stage. Therefore, G is also j-stage for any j> k.

We now establish that certain closed subgroups of k-stage groups are also k-stage
groups, but first we will require several results regarding closed subgroups of direct
products of finite simple groups.

Lemma 6. Let G =∏
i∈I Si be a direct product of finitely many finite simple groups, and

let H be a subgroup of G. Suppose the projection of H on each of the factors of G is
surjective. Then there is a subset J of I such that H ∼=∏

j∈J Sj.

Proof. We proceed by induction. The result is trivial if |I| = 1, so suppose that the
result holds for any direct product of k finite simple groups for some k > 1, and let
|I| = k + 1. Choose some i ∈ I, set I′ = I \ {i}, and let G′ =∏

i′ 6=i Si′ , so G = Si × G′. Let
πi : G→ Si and π ′ : G→ G′ be the projection maps. Then H′ = π ′(H) is a subgroup of G′
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whose projection on each of the factors of G′ is surjective. By induction, there is some
J′ ⊂ I′ such that

H′ ∼=
∏
j∈J′

Sj. (1)

The map h 7→ (πi(h), π ′(h)) embeds H into Si × H′, so H is a subgroup of Si × H′ which
projects surjectively to each factor. Let N′ = H ∩ Ker(πi) and Ni = H ∩ Ker(π ′). By
Goursat’s lemma, H′/N′ ∼= Si/Ni. Since Si is simple, either Ni is trivial or Ni = Si. If Ni is
trivial, then H ∼= H′. If Ni = Si, then H′ = N′, so H = Si×H′. In both cases, the conclusion
of the lemma follows from (1). �

Lemma 7. Let (Hx, αyx)x,y∈X be a projective system of finite groups such that the
homomorphism αyx : Hy → Hx is surjective for all y > x. For each x ∈ X we assume
that Hx =

∏
i∈Ix

Si is a direct product of finitely many finite non-Abelian simple groups.
Then H = lim←−Hx is a direct product of non-Abelian simple groups, each isomorphic to a

group belonging to the set
⋃

x∈X{Si|i ∈ Ix}.
Proof. We may assume that 0 6∈ Ix and set I′x = 0 ∪ Ix. Given x 6 y in X, we define a
map βyx : I′y→ I′x in the following way. First we set βyx(0)= 0. Next let j ∈ Iy. Then either
αyx(Sj) is trivial or αyx(Sj) is a non-Abelian simple subgroup of Hx. In the former case we
set βyx(j)= 0. In the latter case there exists a unique i ∈ Ix such that αyx(Sj)= Si [4, p. 51,
Satz 9.12(b)]. We set βyx(j)= i and note that αyx maps Sj isomorphically onto Si.

Now let I0
yx = {j ∈ Iy|βyx(j) = 0} and Iyx = Iy \ I0

yx. Then βyx maps Iyx bijectively onto Ix.
Also,

∏
j∈I0yx

Sj =Ker(αyx) and αyx maps
∏

j∈Iyx
Sj isomorphically onto Hx =∏

i∈Ix
Si.

If z ∈ X and z > y, then the uniqueness in the first paragraph of the proof implies that
βyx ◦ βzy = βzx. Moreover, βxx : I′x→ I′x is the identity map. It follows that (I′x, βyx)x,y∈X is a
projective system of finite sets. Let I′ = lim←− I′x and I = I′ \ {0}. Thus, I′ is a profinite space

and I is an open subset of I′.
For each x ∈ X let βx : I′→ I′x be the inverse limit of the maps βyx : I′y→ I′x with y > x.

Also, let Ix = lim←−y>x
Iyx. Then Ix is a finite subset of I and βx maps Ix bijectively onto Ix

and βx(I′ \ Ix)= {0}. If y> x, then Ix ⊂ Iy.
Again, for each x ∈ X let αx : H → Hx be the inverse limit of the homomorphisms

αyx : Hy→ Hx with y > x. For each i ∈ Ix we set ix = βx(i). Set Si = lim←−y>x
Siy . Since each

of the maps αyx : Siy → Six is an isomorphism, so is the map αx : Si→ Six . In particular, Si

is a finite simple non-Abelian subgroup of H. Moreover, Si is normal in H because Six is
normal in Hx for each i ∈ Ix.

It follows that αx maps 〈Si|i ∈ Ix〉 isomorphically onto Hx =∏
i∈Ix

Si. Thus, 〈Si|i ∈ Ix〉 =∏
i∈Ix Si. Since for each x ∈ X the group Hx is generated by the groups Si with i ∈ Ix, the

group H is generated by the groups Si, for i ∈ I. It follows that H =∏
i∈I Si, as claimed. �

Lemma 8. Let G =∏
i∈I Si be a direct product of finite non-Abelian simple groups, and

let H be a closed subgroup of G. Suppose that the projection of H to each of the factors
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of G is surjective. Then H is isomorphic to a direct product of simple groups, each
belonging to the set {Si|i ∈ I}.
Proof. For each finite subset J of I let GJ =

∏
j∈J Sj and let HJ be the projection of H to

GJ . Lemma 6 gives a subset J′ of J such that HJ ∼=
∏

j∈J′ Sj. Thus, for each j ∈ J′, there
is a subgroup S′j of Hj which is isomorphic to SJ such that HJ =

∏
j∈J′ S

′
j. By Lemma 7,

H = lim←−HJ is a direct product of non-Abelian simple groups, each isomorphic to a group
belonging to the set {Si|i ∈ I}. �

Lemma 9. For each prime p, let Gp be a pro-p group, and let H be a closed subgroup of∏
p Gp such that the projection πp : H→ Gp is surjective for each p. Then H =∏

p Gp.

Proof. If G is finite, then |G| =∏
p pnp . Since H/Ker(πp) ∼= Gp, we have that pnp divides

|H| for each p. Hence, |H| = |G|, so H = G.
If G is an infinite group, then consider an open normal subgroup N of the form∏
p Np, where Np is an open normal subgroup of Gp for each p and Np = Gp for almost

all p. Then G/N ∼=∏
p Gp/Np, and the projection of HN/N onto Gp/Np is surjective for

each p. Since Np has finite index in Gp for each p, G/N is finite. Thus, by the previous
paragraph, HN/N = G/N; hence, HN = G. Since the intersection of all the N as above is
trivial and H is a closed subgroup of G, we have that H = G [3, Lemma 1.2.2(b)]. �

Lemma 10. Let H be a closed subgroup of G1 × G2, where G1 is a direct product of
non-Abelian finite simple groups and G2 is Abelian. If the projection of H to each of G1

and G2 is surjective, then H = G1 × G2.

Proof. Let H, G1, and G2 be as above, and let π1 : H→ G1 and π2 : H→ G2 be the
projection maps, which are surjective. Thus, Ker(π1) and Ker(π2) are normal subgroups
of G2 and G1, respectively. It is known that every closed normal subgroup of a direct
product of finite simple non-Abelian groups is itself a direct product of a subcollection
of those groups [3, Lemma 18.3.9], so G1/Ker(π2) is isomorphic to a direct product of
non-Abelian finite simple groups, which is necessarily non-Abelian unless Ker(π2) = G1.
By Goursat’s lemma,

G1/Ker(π2)∼= G2/Ker(π1).

Since G2/Ker(π1) is Abelian, it follows that Ker(π2) = G1 and Ker(π1) = G2. Thus,
H = G1 × G2. �

Lemma 11. Let H be a closed subgroup of a direct product of finite simple groups which
projects surjectively to each factor. Then H is a direct product of finite simple groups.

Proof. Let H be a closed subgroup of G = ∏
i∈I Gi, where the Gi are finite simple

groups. Let A be the set of indices i for which Gi is Abelian, and let R = I \ A. Let
πA : H→

∏
i∈A Gi and πR : H→

∏
j∈R Gj be the projection maps. First we write

∏
i∈A Gi

as
∏

p (Z/pZ)αp , where αp is a (possibly infinite) cardinal, by grouping all of the Abelian
finite simple groups of order p together for each prime p, and we let πp : H→ (Z/pZ)αp

be the projection map. Then πA(H) is a closed subgroup of the direct product of the
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pro-p groups πp(H). From Lemma 9 we get that πA(H) =∏
p πp(H). In addition, πp(H)

is a closed subgroup of a Z/pZ-vector space, so it is isomorphic to (Z/pZ)βp for some
βp 6 αp [3, Lemma 22.7.3]. Hence, πA(H) is a direct product of finite simple groups.
From Lemma 8 we also have that πR(H) ∼=∏

j∈R′ Gj, where R′ is some subset of R. Thus,
we can view H as a closed subgroup of

∏
j∈R′ Gj×∏

p πp(H) which projects surjectively to
each of the two factors. We conclude from Lemma 10 that H =∏

j∈R′ Gj ×∏
p πp(H), and

so we have that H is a direct product of finite simple groups. �

Proposition 12. Let H be a closed subgroup of a direct product of k-stage groups such
that the projection of H to each factor is surjective. Then H is k-stage.

Proof. We proceed by induction on k. A direct product of one-stage groups is again a
one-stage group, so suppose H is a closed subgroup of a one-stage group which projects
surjectively to each factor. From Lemma 11, we see that H is isomorphic to a product of
finite simple groups, so H is one-stage.

Now suppose that H is a closed subgroup of a product of (k + 1)-stage groups
G = ∏

i Gi which projects surjectively to each factor, and any closed subgroup of a
product of k-stage groups which projects surjectively to each of the factors is again a
k-stage group. For each Gi we have a closed normal subgroup G′i such that G′i is one-stage
and Ḡi = Gi/G′i is k-stage.

Let G′ =∏
i G′i, so H′ = H ∩ G′ is a closed normal subgroup of H. We claim that H′ is

one-stage. Let πi : H→ Gi be the projection map. Then G′′i = πi(H′) is a closed normal
subgroup of Gi, and hence also of G′i. Since G′i is a direct product of finite simple groups,
it follows that G′′i is also a direct product of finite simple groups [3, Lemma 25.5.3(b)].
Now we have that G′′ =∏

i G′′i is a one-stage group, and H′ is a closed subgroup of G′′
which projects surjectively to each factor. From the first paragraph of the proof, H′ is
one-stage.

Note that H/H′ ∼= HG′/G′, which is a closed subgroup of G/G′ ∼= ∏
i Ḡi. Since

π(H) = Gi and πi(H′) = G′′i , the projection of HG′/G′ to the ith component is
Gi/G′′i = Ḡi. By induction, HG′/G′ is k-stage, so H/H′ is also k-stage. Therefore, H is
a (k + 1)-stage group. �

Lemma 13. Every finite group G is k-stage, where k 6 |G|.
Proof. The result is trivial if |G| = 1, so suppose that all groups of order at most k are
k-stage. Let G be a finite group with |G| = k + 1. If G is simple, then G is one-stage, so
suppose G is not simple. Then G has a minimal normal subgroup H, and so H ∼=∏n

i=1 S
for some finite simple group S; hence, H is one-stage. Also, |G/H|6 k, so G/H is k-stage.
Therefore, G is (k + 1)-stage. �

Corollary 14. Let H be a closed subgroup of a direct product of groups of order bounded
by k such that the projection of H to each factor is surjective. Then H is k-stage.

Proof. Suppose each of the groups in the product has order bounded by k. By
Lemma 13, all of these groups are k-stage. Thus, H is a closed subgroup of a
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direct product of k-stage groups which projects surjectively to each factor, so by
Proposition 12, H is k-stage. �

Haran’s diamond theorem is a powerful result for identifying Hilbertian fields within
Galois extensions of Hilbertian fields. We will need this result to make several important
reductions.

Diamond Theorem ([3, Theorem 13.8.3]). Let K be a Hilbertian field, M1 and M2

Galois extensions of K, and M an intermediate field of M1M2/K. Suppose that M 6⊂M1

and M 6⊂M2. Then M is Hilbertian.

Lemma 15. Let {Gi}i∈I be a collection of groups with the property that whenever F is a
Hilbertian field and M/F is a Galois extension with Gal(M/F)∼= Gi for some i, then every
intermediate extension of M/F is Hilbertian. Suppose K is a Hilbertian field and L/K is a
Galois extension with Gal(L/K) ∼=∏

i∈I Gi. Then every intermediate extension of L/K is
Hilbertian.

Proof. Let K, L, and {Gi}i∈I be as above, and let K′ be an extension of K in L, so
K′ = LH for some closed subgroup H of

∏
i∈I Gi. Suppose there are two indices i1 and

i2 such that H contains neither Gi1 nor Gi2 . Let G′1 =
∏

i6=i1 Gi, and then LGi1 LG′1 = L,
and K′ is an extension of K which is contained in neither LGi1 nor LG′1 . Thus, by
Haran’s diamond theorem, K′ is Hilbertian. If, on the other hand, H contains all but
possibly one Gi, say Gi1 , then H contains the subgroup G′1 above. Thus, K′ ⊂ LG′1 . Since
Gal(LG′1/K)∼= Gi1 , we have that K′ is Hilbertian. �

Proposition 16. Every k-stage group is Galois–Hilbertian.

Proof. We proceed by induction on k. If G is a one-stage group and H is any
closed normal subgroup of G, then G/H is a direct product of finite simple groups
[3, Lemma 25.5.3(d)]. Finite groups satisfy the hypotheses of the groups in Lemma 15,
so in particular we see that every G/H-extension of a Hilbertian field is Hilbertian. Thus,
G is Galois–Hilbertian.

Now suppose G is (k + 1)-stage and all k-stage groups are Galois–Hilbertian, so G has
a closed normal subgroup G′ such that G′ is one-stage and G/G′ is k-stage. Thus, G′ and
G/G′ are Galois–Hilbertian. It follows from Proposition 3 that G is Galois–Hilbertian. �

Lemma 17. Every Abelian profinite extension of a k-stage group is Galois–Hilbertian.

Proof. Abelian groups and k-stage groups are Galois–Hilbertian, so the result follows
from Proposition 3. �

A group G is called p-adic analytic if G is an analytic manifold over Qp such that the
functions (x, y) 7→ xy and x 7→ x−1 for x and y in G are analytic. We will be particularly
interested in p-adic analytic groups which are also pro-p groups. There are many
equivalent characterizations of pro-p p-adic analytic groups. We will adopt one of these
characterizations and say that a pro-p group G is p-adic analytic if it is isomorphic to a
closed subgroup of GLn(Zp) for some n [1, p. 97]. There are several properties of p-adic
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analytic groups that will prove useful. In particular, every closed subgroup of GLn(Zp)

is finitely generated [3, Lemma 22.14.4], so p-adic analytic groups are finitely generated;
hence, they are small [3, Lemma 16.10.2]. Hence, closed subgroups and quotients of
pro-p p-adic analytic groups are pro-p p-adic analytic groups [1, Theorem 9.6]. We now
introduce another class of groups, which we term Z-analytic.

Definition 18. A topological group is called Z-analytic if it is isomorphic to
∏

p Gp,
where for each prime p, Gp is a pro-p p-adic analytic group.

Proposition 19. Every closed subgroup of a Z-analytic group is Z-analytic.

Proof. Suppose H is a closed subgroup of a Z-analytic group G =∏
p Gp. Let πp be

the projection of H to Gp. Then πp(H) is a closed subgroup of Gp, so πp(H) is a pro-p
p-adic analytic group. Thus, H is a closed subgroup of the Z-analytic group

∏
p πp(H). It

follows from Lemma 9 that H =∏
p πp(H), so H is Z-analytic. �

Proposition 20. Every Z-analytic group is Galois–Hilbertian.

Proof. We use the notation from the proof of Proposition 19. Let H be any closed
normal subgroup of G, and then H = ∏

p πp(H) is a Z-analytic group. Also, G/H ∼=∏
p(Gp/πp(H)), and since quotients of pro-p p-adic analytic groups by closed normal

subgroups are again pro-p p-adic analytic groups, we have that G/H is Z-analytic. Since
Gp/πp(H) is a small group for each p, the groups Gp/πp(H) satisfy the hypotheses of the
groups in Lemma 15. Thus, every G/H-extension of a Hilbertian field is Hilbertian, so G
is Galois–Hilbertian. �

Remark 21. It is worth noting that Proposition 19 would not necessarily be true if the
groups Gp were not pro-p groups. In particular, this means that a closed subgroup of∏

p GLn(Zp) is not necessarily a direct product of closed subgroups of the GLn(Zp). If
this were the case, then the Kuykian conjecture would follow from a slight modification
of Lemma 15. The proof of Proposition 19 requires the result of Lemma 9, which
depends on the fact that quotients of the factors in the direct product have orders that
are pairwise relatively prime. This is not the case in general.

Lemma 22. Every Z-analytic extension of a Galois–Hilbertian group is Galois–
Hilbertian.

Proof. Z-analytic groups are Galois–Hilbertian, and so the result follows from
Proposition 3. �

Corollary 23. Every Z-analytic extension of an Abelian extension of a k-stage group is
Galois–Hilbertian.

Proof. By Lemma 17 we know that an Abelian extension of a k-stage group is
Galois–Hilbertian. Thus, by Lemma 22 we have that a Z-analytic extension of an
Abelian extension of a k-stage group is Galois–Hilbertian. �
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Proposition 24. For each n there exists some k such that every closed subgroup of∏
p GLn(Fp) is a Z-analytic extension of an Abelian extension of a k-stage group.

Proof. Let H be a closed subgroup of
∏

p GLn(Fp). Consider the subgroups Hp = πp(H),
where πp is projection to the pth factor. We simultaneously view Hp as a subgroup
of GLn(Fp) and

∏
p GLn(Fp) in the natural way. Larsen and Pink showed that there

are normal subgroups Γp,1 ⊇ Γp,2 ⊇ Γp,3 of Hp satisfying the following properties
[6, Theorem 0.2]:

(i) [Hp : Γp,1] is bounded by a constant J′(n) which depends only on n.
(ii) Γp,1/Γp,2 is a direct product of finite simple groups.

(iii) Γp,2/Γp,3 is Abelian with order not divisible by p.
(iv) Γp,3 is a p-group.

We wish to show that there are closed normal subgroups A1 of H and A2 of H/A1 such
that A1 is Z-analytic, A2 is Abelian, and (H/A1)/A2 is k-stage.

First, we define A1 as

A1 = H ∩
∏

p

Γp,3.

Each Γp,3 is a pro-p p-adic analytic group, so
∏

p Γp,3 is Z-analytic. From Proposition 19
we have that every closed subgroup of a Z-analytic group is Z-analytic, so A1 is
Z-analytic.

Now we let B=∏
p Γp,2 and

A2 = (H ∩ B)/A1,

so A2 is then a closed normal subgroup of H/A1. Note that

A2 = (H ∩ B)

(H ∩ B) ∩∏
p Γp,3

∼= (H ∩ B)(
∏

p Γp,3)∏
p Γp,3

6
B∏

p Γp,3

∼=
∏

p

(Γp,2/Γp,3).

Since the groups Γp,2/Γp,3 are Abelian, so is
∏

p(Γp,2/Γp,3), and we see that A2 is
Abelian.

It only remains to prove that (H/A1)/A2 is k-stage. Since H is a subgroup of
∏

p Hp

and B is a normal subgroup of
∏

p Hp, we have that

(H/A1)/A2
∼= H/(H ∩ B)∼= HB/B.

Now HB/B is a closed subgroup of the group
∏

p Hp/B, and the latter group is isomorphic
to

∏
p(Hp/Γp,2). For each p, Hp/Γp,2 is an extension of the group Hp/Γp,1 by the group

Γp,1/Γp,2, and Γp,1/Γp,2 is a direct product of finite simple groups. Thus, by definition,
Hp/Γp,2 is k-stage for some k 6 |Hp/Γp,1| + 1 6 J′(n) + 1, so we can let k = J′(n) + 1.
By Proposition 12,

∏
p(Hp/Γp,2) is k-stage, and since H projects surjectively to each of

the factors of
∏

p Hp, we see that HB/B projects surjectively to each of the factors of∏
p(Hp/Γp,2). Thus, by Proposition 12, HB/B is k-stage, and so (H/A1)/A2 is k-stage. �

An immediate consequence of Corollary 23 and Proposition 24 is the following result:

Corollary 25. For each n every closed subgroup of
∏

p GLn(Fp) is Galois–Hilbertian.
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Now we are ready to prove the main result:

Theorem 26. For each n every closed subgroup of
∏

p GLn(Zp) is Galois–Hilbertian.

Proof. First we make a small reduction. If H is a closed subgroup of A × B, where
A = GLn(Z2) and B = ∏

p>2 GLn(Zp), then consider the projection πB : H → B. If
H0 = Ker(πB), then H0 is a closed subgroup of GLn(Z2), so H0 is finitely generated,
and hence, small. Thus, H0 is Galois–Hilbertian. Now πB(H) is a closed subgroup
of

∏
p>2 GLn(Zp), so if πB(H) is Galois–Hilbertian, then H is Galois–Hilbertian by

Proposition 3. Thus we need only consider closed subgroups of
∏

p>2 GLn(Zp).
Let H be a closed subgroup of

∏
p>2 GLn(Zp), K a Hilbertian field, and L/K a Galois

extension with Gal(L/K)∼= H. For each prime p> 2 let

Np = {M ∈GLn(Zp) :M ≡ I(mod p)}
be the principal congruence subgroup. Let N′ =∏

p Np and let N = H ∩ N′. Note that

H/N ∼= HN′/N′ <
∏
p>2

GLn(Zp)/N
′ ∼=

∏
p>2

GLn(Fp).

Thus, we can view H/N as a closed subgroup of
∏

p GLn(Fp). From Corollary 25 we see
that H/N is Galois–Hilbertian.

It is known that Np is a pro-p p-adic analytic group for each p> 2 [3, Lemma 22.14.2],
so

∏
p>2 Np is a Z-analytic group, and N is a closed subgroup of

∏
p>2 Np. Thus, by

Proposition 19, N is also Z-analytic. Now we see that H is a Z-analytic extension of the
Galois–Hilbertian group H/N, so by Lemma 22, H is Galois–Hilbertian. �

Immediately, we have the following theorem.

Theorem 27. Let K be a Hilbertian field and A an Abelian variety defined over K. If M
is a Galois extension of K in K(Ator), then M is Hilbertian.

Proof. For each prime p, we have Ap∞ =
⋃∞

n=1 Apn , where Apn is the set of pn-torsion
points of A, and we have Ator =

⋃
p Ap∞ . Let Kp be the maximal separable extension of

K in K(Ap∞), and let K′ be the compositum of the Kp. Since K(Ator) is the compositum
of all the K(Ap∞), we have that K′ is the maximal separable extension of K in K(Ator).
Thus, if M is a Galois extension of K in K(Ator), then M ⊂ K′. For each p, Gal(Kp/K)
is a closed subgroup of GL2 dim(A)(Zp) (proof of [5, Lemma 6]), so Gal(K′/K) is a closed
subgroup of

∏
p GL2 dim(A)(Zp). By Theorem 26, Gal(K′/K) is Galois–Hilbertian, so M is

Hilbertian. �
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