Let
$K$ be a commutative ring with unity,
$R$ an associative
$K$-algebra of characteristic different from
$2$ with unity element and no nonzero nil right ideal, and
$f({x}_{1} , \ldots , {x}_{n} )$ a multilinear polynomial over
$K$. Assume that, for all
$x\in R$ and for all
${r}_{1} , \ldots , {r}_{n} \in R$ there exist integers
$m= m(x, {r}_{1} , \ldots , {r}_{n} )\geq 1$ and
$k= k(x, {r}_{1} , \ldots , {r}_{n} )\geq 1$ such that
$\mathop{[{x}^{m} , f({r}_{1} , \ldots , {r}_{n} )] }\nolimits_{k} = 0$. We prove that: (1) if
$\text{char} (R)= 0$ then
$f({x}_{1} , \ldots , {x}_{n} )$ is central-valued on
$R$; and (2) if
$\text{char} (R)= p\gt 2$ and
$f({x}_{1} , \ldots , {x}_{n} )$ is not a polynomial identity in
$p\times p$ matrices of characteristic
$p$, then
$R$ satisfies
${s}_{n+ 2} ({x}_{1} , \ldots , {x}_{n+ 2} )$ and for any
${r}_{1} , \ldots , {r}_{n} \in R$ there exists
$t= t({r}_{1} , \ldots , {r}_{n} )\geq 1$ such that
${f}^{{p}^{t} } ({r}_{1} , \ldots , {r}_{n} )\in Z(R)$, the center of
$R$.