Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T16:44:09.600Z Has data issue: false hasContentIssue false

WHAT THE ŁUKASIEWICZ AXIOMS MEAN

Published online by Cambridge University Press:  30 October 2020

DANIELE MUNDICI*
Affiliation:
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE “ULISSE DINI” UNIVERSITY OF FLORENCE VIALE MORGAGNI 67/A, I-50134FLORENCE, ITALYE-mail: daniele.mundici@unifi.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\to $ be a continuous $\protect \operatorname {\mathrm {[0,1]}}$ -valued function defined on the unit square $\protect \operatorname {\mathrm {[0,1]}}^2$ , having the following properties: (i) $x\to (y\to z)= y\to (x\to z)$ and (ii) $x\to y=1 $ iff $x\leq y$ . Let $\neg x=x\to 0$ . Then the algebra $W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let $x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and $\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism $\phi $ of W onto the standard Wajsberg algebra $W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$ . Thus $x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$ .

MSC classification

Type
Articles
Copyright
© The Association for Symbolic Logic 2020

References

REFERENCES

Baczyński, M. and Balasubramaniam, J., Fuzzy Implications , Springer, Berlin, 2008.Google Scholar
Borkowski, L. (ed.), Jan Łukasiewicz, Selected Works , Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam and Polish Scientific Publishers, Warsaw, 1970.Google Scholar
Cignoli, R., D’Ottaviano, I. M. L., and Mundici, D., Algebraic Foundations of Many-Valued Reasoning, vol. 7 , Trends in Logic, Kluwer, Dordrecht, 2000.CrossRefGoogle Scholar
Klement, E. P., Mesiar, R., and Pap, E., Triangular Norms , Kluwer, Dordrecht, 2000.CrossRefGoogle Scholar
Mundici, D., Advanced Łukasiewicz Calculus and MV-Algebras , Trends in Logic, vol. 35, Springer, Berlin, 2011.CrossRefGoogle Scholar