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WHAT THE ŁUKASIEWICZ AXIOMSMEAN

DANIELE MUNDICI

Abstract. Let→ be a continuous [0, 1]-valued function defined on the unit square [0, 1]2, having the

following properties: (i) x→ (y→ z) = y→ (x→ z) and (ii) x→ y= 1 iff x≤ y. Let¬x= x→ 0. Then the

algebraW = ([0,1], 1,¬,→) satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus.

Let x→Ł y=min(1,1 – x+y) and¬Łx= x→Ł 0 = 1 – x. Then there is precisely one isomorphism φ ofW

onto the standard Wajsberg algebraWŁ = ([0,1], 1,¬Ł,→Ł). Thus x→ y = φ–1(min(1,1 – φ(x)+φ(y))).

§1. Foreword. We present an original itinerary to infinite-valued Łukasiewicz
propositional logic. The only prerequisite is knowledge of the most basic properties
of continuous [0,1]-valued functions on [0,1] = {x ∈ R | 0 ≤ x ≤ 1} and on the
square [0,1]2.
The Łukasiewicz axioms for his infinite-valued calculus have the following

algebraic reformulation [2, p. 144]: 1→ x= x, (x→ y)→ ((y→ z)→ (x→ z)) = 1,
((x→ y)→ y) = ((y→ x)→ x), (¬x→¬y)→ (y→ x) = 1.
Theorem 2.3 shows that every [0,1]-valued function → defined on [0,1]2

determines an algebra W satisfying the Łukasiewicz axioms, provided → is
continuous and satisfies the following two conditions: (i) x→ (y→ z) = y→ (x→ z),
and (ii) x→ y = 1 iff x ≤ y. This theorem sheds new light on the meaning of the
Łukasiewicz axioms, notably the intriguing axiom ((x→ y)→ y) = ((y→ x)→ x).
Corollary 4.2 yields a unique isomorphism φ between W and the standard

Wajsberg algebraWŁ = ([0,1],1,¬Ł,→Ł). So this paper may serve as an introduction
to Łukasiewicz logic for college mathematics students. Historical remarks and
further motivation will be given in a final section. The symbol “⇒” is to be read as
“implies”. The symbol “⇔” is an abbreviation of “iff”, meaning “if and only if”.

§2. Order, exchange, and continuity.

Definition 2.1. Let→ be a [0,1]-valued function defined on the real unit square
[0,1]2 . We then say that→ has the order property if for all x,y ∈ [0,1], x→ y= 1⇔
x ≤ y. Further,→ has the exchange property if for all x,y,z ∈ [0,1], x→ (y→ z) =
y→ (x→ z). A [0,1]-valued function → defined on the real unit square [0,1]2 is
called implicative if it has both the exchange and the order property.
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Proposition 2.2. Let→ be an implicative function. Let the functions ¬, ⊕ and ⊙
be defined by ¬x = x→ 0, x⊕ y = ¬x→ y and x⊙ y = ¬(x→ ¬y). Then for all
x,y,z ∈ [0,1] we have:

x→ y ≥ y, (1)

1→ x= x, (2)

x≤ y ⇒ y→ z ≤ x→ z, (3)

(x→ y)→ y ≥ max(x,y), (4)

x≤ y⇒¬x ≥ ¬y. (5)

If, in addition, → is continuous then so are ¬,⊕ and ⊙. Considering the ¬ function
more binding than any binary function, we have for all x,y,z ∈ [0,1] :

¬¬x= x, (6)

x→ y= ¬y→¬x, (7)

x⊕y= y⊕x, (8)

x⊕ (y⊕ z) = (x⊕y)⊕ z, (9)

x⊙y≤ z ⇔ x≤ y→ z ⇔ y≤ x→ z ⇔ y⊙x≤ z, (10)

x⊙y= y⊙x, (11)

x⊙ (x→ y) ≤ y, (12)

y≤ z⇒ x→ y ≤ x→ z, (13)

y≤ z⇒ x⊙y ≤ x⊙ z, (14)

x⊙ (y⊙ z) = (x⊙y)⊙ z, (15)

x→ y=max{t | x⊙ t≤ y}, (16)

x⊙ (x→ y) = min(x,y), (17)

(y→ x)→ x=max(x,y). (18)

Proof. The implicative property of the → function will be applied throughout
without explicit mention: the reader will always be able to discern which one of the
exchange or the order property is being applied.
(1) is proved bywriting 1= x→ 1= x→ (y→ y)= y→ (x→ y). For a proof of (2),

from 1 = (1→ x)→ (1→ x) = 1→ ((1→ x)→ x) we get 1→ x≤ x. The converse
inequality is proved in (1). To prove (3) we first write 1 = (y→ z)→ (y→ z) =
y→ ((y→ z)→ z), whence y≤ ((y→ z)→ z). From x≤ y we get x≤ (y→ z)→ z.
Therefore, 1 = x→ ((y→ z)→ z) = (y→ z)→ (x→ z), whence y→ z≤ x→ z. For
(4), from 1 = (x→ y)→ (x→ y) = x→ ((x→ y)→ y) we have x ≤ (x→ y)→ y.
On the other hand, the identity y≤ (x→ y)→ y follows from y→ ((x→ y)→ y) =
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(x→ y)→ (y→ y) = 1. From x≤ y and (3) we get ¬x= x→ 0≥ y→ 0 = ¬y, which
settles (5).
We now assume that the implicative function→ is continuous, whence so are the

derived functions ¬,⊕ and ⊙.
The proof of (6) is in two steps. From (4) we obtain x ≤ (x→ 0)→ 0 = ¬¬x,

whence by (5), ¬x ≥ ¬¬¬x. Conversely, from ¬x→ ¬¬¬x = ¬x→ (((x→ 0)→
0)→ 0) = ((x→ 0)→ 0)→ (¬x→ 0) = ((x→ 0)→ 0)→ ((x→ 0)→ 0) = 1 we get
¬x≤¬¬¬x, whence ¬x= ¬¬¬x. Since by (2), ¬0 = 0→ 0 = 1 and ¬1 = 1→ 0 = 0,
the range of the continuous function ¬ coincides with [0,1], whence for every x ∈
[0,1] there is a = ax ∈ [0,1] such that x = ¬a. Thus, ¬¬x = ¬¬¬a = ¬a = x. This
settles (6). For a proof of (7), using (6) we can write (x→ y)→ (¬y→¬x) = (x→
y)→ (¬y→ (x→ 0)) = (x→ y)→ (x→ (¬y→ 0)) = (x→ y)→ (x→¬¬y) = (x→
y)→ (x→ y) = 1, thus showing that x→ y≤¬y→¬x. The converse inequality now
follows from (6). By (6) and (7) we can write x⊕y= ¬x→ y= ¬y→¬¬x= ¬y→
x= y⊕x, which settles (8). Using (6), (7) and (8), the identity (9) follows by writing
(x⊕y)⊕z= ¬(¬x→ y)→ z= ¬z→¬¬(¬x→ y) = ¬z→ (¬x→ y) = ¬x→ (¬z→
y) = x⊕ (z⊕ y) = x⊕ (y⊕ z). To prove (10), using (3) and (6)–(7) we can write
x⊙ y ≤ z⇔¬(x→¬y) ≤ z⇔ x→¬y ≥ ¬z⇔¬z→ (x→¬y) = 1⇔ x→ (¬z→
¬y) = 1⇔ x→ (y→ z) = 1⇔ x≤ (y→ z). Since x→ (y→ z) = 1⇔ y→ (x→ z)= 1,
the proof of (10) is completed by interchanging the roles of x and y. From (10) it
follows that x⊙ y and y⊙ x have the same upper bounds, so they must coincide.
This settles (11). Now (11) yields x⊙ (x→ y) = (x→ y)⊙x. From (10) we have
(x→ y)⊙x≤ y⇔ x→ y≤ x→ y. Since the latter inequality holds for all x,y∈ [0,1],
then so does the former, and (12) is proved. The proof of (13) is as follows: by
(11) and (12), (x→ y)⊙ x = x⊙ (x→ y) ≤ y, whence y ≤ z⇒ x⊙ (x→ y) ≤ z.
Further, by (11) and (10), x⊙ (x→ y) ≤ z⇔ (x→ y)⊙ x ≤ z⇔ x→ y ≤ x→ z.
(14) now follows by combining (13) with (6)–(7). (15) follows from (6)–(7) and
(11) by writing x⊙ (y⊙ z) = ¬(x → ¬(y⊙ z)) = ¬(x → ¬¬(y → ¬z)) = ¬(x →
(y→¬z)) = ¬(x→ (z→¬y)) = ¬(z→ (x→¬y)) = ¬(z→¬¬(x→¬y)) = ¬(z→
¬(x⊙ y)) = z⊙ (x⊙ y) = (x⊙ y)⊙ z. To prove (16), let W = {t | x⊙ t ≤ y}. Since
⊙ is continuous, supW =maxW . Since x⊙0 = 0 then, by (14),W is a nonempty
interval. By (10), max(W)≥ z⇔ z∈W ⇔ x⊙z≤ y⇔ x→ y≥ z. As a consequence,
x→ y =max(W). Proof of (17). Since ⊙ is continuous and monotonic, a number
w ∈ [0,1] is of the form x⊙ t for some t ∈ [0,1] iff w ∈ [0,x]. By (16), x⊙ (x→
y) = x⊙max{t | x⊙ t≤ y}=max{x⊙ t | x⊙ t≤ y}=max{w | w≤ y, w ∈ [0,x]}=
min(x,y). Finally, to prove (18), iterated application of (7) and (6) using (17) yields:
max(x,y) =¬min(¬x,¬y) =¬(¬x⊙(¬x→¬y)) =¬¬(¬x→¬(¬x→¬y)) =¬x→
¬(¬x→¬y) = (¬x→¬y)→ x= (y→ x)→ x. ⊣

Theorem 2.3. Suppose the implicative function→ is continuous. Let the functions
¬ and ⊕ be as in Proposition 2.2. Let the algebras A= A→ and W =W→ be defined
by A= ([0,1],0,¬,⊕) and W = ([0,1],1,¬,→). We then have:

(a) A is an MV-algebra, that is, A satisfies the axioms
MV1) x⊕ (y⊕ z) = (x⊕y)⊕ z,
MV2) x⊕y= y⊕x,
MV3) x⊕0 = x,
MV4) ¬¬x= x,
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MV5) x⊕¬0 = ¬0,
MV6) ¬(¬x⊕y)⊕y= ¬(¬y⊕x)⊕x.

(b) W is a Wajsberg algebra, that is, W satisfies the axioms
Ł1) 1→ x= x,
Ł2) (z→ x)→ ((x→ y)→ (z→ y)) = 1,
Ł3) ((x→ y)→ y) = ((y→ x)→ x),
Ł4) (¬x→¬y)→ (y→ x) = 1.

Proof.

(a) MV1) is (9).MV2) is (8).MV4) is (6).MV6) is a reformulation of (18). Using
MV2) and (2),MV3) is proved bywriting x⊕0= 0⊕x=¬0→ x=1→ x= x.
Using MV2) and (6), MV5) is proved by writing x⊕¬0 = ¬0⊕x = ¬¬0→
x= 0→ x= 1.

(b) Ł1) is (2). Ł3) follows from (18). Ł4) is (7). To settle Ł2) in view of the
continuity of the functions→,¬,⊙, using the monotonicity, associativity and
commutativity of ⊙, we first prove the inequality

(u→ v)⊙w≤ u→ (v⊙w), for all u,v,w ∈ [0,1] . (19)

As a matter of fact, from (16) we have the equivalences (u→ v)⊙w ≤ u→
(v⊙w)⇔ w⊙ (u→ v) ≤ u→ (v⊙w) ⇔ w⊙max{s | u⊙ s ≤ v} ≤ max{t |
u⊙ t ≤ v⊙w} ⇔max{w⊙ s | u⊙ s ≤ v} ≤max{t | u⊙ t ≤ v⊙w} ⇔max{t |
t= w⊙ s and u⊙ s≤ v} ≤max{t | u⊙ t≤ v⊙w}. Thus, for the proof of (19)
it suffices to prove

(t= w⊙ s and u⊙ s≤ v)⇒ u⊙ t≤ v⊙w, for all s, t,u,v,w ∈ [0,1] . (20)

Commutativity (11) and associativity (15) yield u⊙ (w⊙ s) = (u⊙ s)⊙w.
Monotonicity (14) yields u⊙ s≤ v⇒ (u⊙ s)⊙w≤ v⊙w. A fortiori,

(t= w⊙ s and u⊙ s≤ v)⇒ u⊙ t= u⊙ (w⊙ s) = (u⊙ s)⊙w≤ v⊙w,

which settles (20) and completes the proof of (19).
The inequality (x→ y)⊙ t ≤ x→ (y⊙ t) is an instance of (19). Thus by

(13), y⊙ t ≤ z⇒ (x→ y)⊙ t ≤ x→ z, whence max{t | y⊙ t ≤ z} ≤ max{t |
(x→ y)⊙ t≤ x→ z}. By (16), y→ z≤ (x→ y)→ (x→ z), that is, 1 = (y→
z)→ ((x→ y)→ (x→ z)) = (x→ y)→ ((y→ z)→ (x→ z)), which settles
Ł2). ⊣

§3. Further properties of continuous implicative functions. In this section a self-
contained proof is given of the existence of a unique isomorphism φ of the MV-
algebra A = A→ onto the standard MV-algebra AŁ = ([0,1],0,¬Ł,⊕Ł) where ¬Ł =
1 – x and x⊕Ł y =min(1,x+y). This strengthening of Theorem 2.3 is obtained as
a corollary of the key Theorem 4.1, where an isomorphism ø is constructed from a
dense subalgebra of A onto the subalgebra of AŁ consisting of all rational numbers
in [0,1].

Proposition 3.1. For → an arbitrary continuous implicative function, let A =
A→ = ([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. With x⊙y= ¬(x→¬y) as
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defined in Proposition 2.2, let the [0,1]-valued function ⊖ be defined by

x⊖y= x⊙¬y for all x,y ∈ [0,1] .

For all x,y,z,å ∈ [0,1] we then have:

x⊖y= ¬(x→ y), (21)

x→ y= ¬x⊕y, (22)

y ≤ z ⇒ x⊕y ≤ x⊕ z, (23)

x⊙y= ¬(¬x⊕¬y), x⊕y= ¬(¬x⊙¬y), (24)

x< y⇒¬x> ¬y, (25)

If 0≤ y< z≤ 1 then z⊖y> 0 and z= y⊕ (z⊖y), (26)

If y< 1 and å > 0 then y⊕ å > y, (27)

If z> 0 and å < 1 then z⊙ å < z. (28)

Proof. Both identities (21) and (22) immediately follow from (6). (23) then
follows from (22) and (13). For (24), from (7) and (6) we get x⊕ y = ¬x→ y =
¬y→ x= ¬(¬y⊙¬x). The identity x⊙y= ¬(¬x⊕¬y) follows in a similar way. To
prove (25), suppose x < y and ¬x ≤ ¬y (absurdum hypothesis). By (5), ¬x ≥ ¬y,
whence¬x=¬y. By (6) y=¬¬y=¬¬x= x, a contradiction. For the first statement
of (26), arguing by way of contradiction, if z⊙¬y= 0 then 1 = ¬(z⊙¬y) = z→ y,
whence z≤ y, which is impossible. For the second statement, by hypothesis together
with (7) and (18)we get y⊕(z⊙¬y)=¬y→¬(z→ y)= (z→ y)→ y=max(z,y)= z.
We are now in a position to prove (27). By (14), ⊙ is a monotonically increasing
continuous function. The range of the function z ∈ [y,1] 7→ z⊖y is the nonsingleton
interval [0,¬y]. Thus for any 0 < å ≤ ¬y there is z = zå with z⊖y = å. Necessarily,
z > y. By (26), y⊕ å = y⊕ (z⊖ y) = z > y. The inequality y⊕ å > y actually holds
for all 0< å ∈ [0,1], because of the monotonicity and commutativity properties (8)
and (23) of the ⊕ function. This settles (27). To prove (28), by (24) we can write
z⊙ å = ¬(¬z⊕¬å). For all å < 1, (27) yields ¬z⊕¬å > ¬z, because ¬z < 1 and
¬å > 0. The desired conclusion now follows from (25). ⊣

Proposition 3.2. For → an arbitrary continuous implicative function, let A =
A→ = ([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. We then have:

(a) For all x,y in the open interval [0,1]\{0,1} we have the following equivalence:
x= ¬y⇔ (x⊕y= 1 and x⊕ (y⊖ å)< 1 for all å > 0).

(b) Since ⊕ is associative, for any x ∈ A and k = 1,2, ... we may use the notation
k.x = x⊕···⊕x

︸ ︷︷ ︸

k summands

and 0.x = 0. Then for all n = 1,2, ... there is precisely one

z ∈ [0,1] satisfying the equation

(n – 1).z= ¬z. (29)
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(c) Let a,b,å ∈ [0,1] and k = 0,1, ... . Then the following identities hold:

(b⊕ å)⊖ å = b, (for all b< 1 and å < ¬b). (30)

((k+1).a)⊖ å ≤ k.a⊕ (a⊖ å), (provided (k+1).a< 1 and 0< å < a). (31)

Proof.

(a) (⇒) By hypothesis, x⊕y= x⊕¬x= ¬x→¬x= 1. For all å > 0 with å ≤ y,
(28) yields the inequality ¬x⊖ å = ¬x⊙¬å < ¬x, because ¬x> 0 and ¬å < 1.
As a consequence, x⊕ (y⊖ å) = (x⊕ (¬x⊖ å)) = ¬x→ (¬x⊖ å) < 1. (⇐)
We will repeatedly use the monotonicity of ⊕, and the fact that y⊖ å is
monotonically decreasing when å increases. The hypothesis x⊕y = 1 means
1 = ¬x→ y, that is, ¬x ≤ y. For the converse inequality, the assumption
x⊕ (y⊖ å) = ¬x→ (y⊖ å) < 1 for all å > 0 entails ¬x > (y⊖ å) for all å > 0.
From the continuity of ⊖ and y⊖0 = y we then obtain ¬x≥ y. Having thus
proved ¬x= y, the desired conclusion follows from (6).

(b) For n=1 the only possible solution of (29) is z=1. So assume n=2,3, ... . The
continuous function x 7→ n.x increasingly covers the interval [0,1] while ¬x
decreasingly covers [0,1]. Therefore, (29) has at least one solution z ∈ [0,1].
To prove uniqueness, arguing by way of contradiction, suppose both x and y
satisfy (29), with x< y. Then 0< x< y< 1. By (a), n.x= n.y= 1, and for all
å > 0 both (n – 1).x⊕ (x⊖ å) and (n – 1).y⊕ (y⊖ å) are < 1. Since, a fortiori,
(n – 1).x < 1, (23) yields ¬x = (n – 1).x ≤ (n – 1).y = ¬y, whence by (24),
x≥ y, a contradiction.

(c) Using (18), the identity (30) is proved by writing (b⊕ å)⊖ å = (¬b→ å)⊙
¬å = ¬((¬b→ å)→ å) = ¬max(¬b,å) = ¬¬b = b. Finally let us prove (31).
Recalling (26), for all 0< å< awemay write a= å⊕è, with 0< è = a⊖å < a.
Upon setting b = k.a⊕ è we obtain ((k+1).a)⊖ å = (k.a⊕ a)⊖ å = (k.a⊕
è⊕ å)⊖ å = (b⊕ å)⊖ å. By hypothesis and (27), b= k.a⊕è < k.a⊕a= (k+
1).a < 1, whence an application of (30) yields ((k+1).a)⊖ å = (b⊕ å)⊖ å =
b= k.a⊕è = k.a⊕ (a⊖ å), as desired. ⊣

3.1. Ideals and the underlying order of an MV-algebra. The underlying order ≤A
of an MV-algebra A= (A,0,¬,⊕) is defined by x≤A y⇔¬x⊕y= ¬0 = 1. An ideal
I of A is a proper subset of A containing 0, closed under minorants (i.e., y ∈ I and
x≤A y⇒ x ∈ I), and under the ⊕ function (i.e., x,y ∈ I ⇒ x⊕y ∈ I).
Let us denote by n⊸1 the uniquely determined z satisfying (n – 1).z= ¬z in (29).

Proposition 3.3. For → an arbitrary continuous implicative function, let
A= A→ = ([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. We then have:

(a) The order ≤A coincides with the natural order ≤ of [0,1], whence it is complete
(every nonempty subset T of [0,1] has a least upper bound supT and a greatest
lower bound infT with respect to ≤A). Accordingly, we will write ≤ instead
of ≤A .

(b) A is simple, in the sense that its only ideal is the singleton {0}.
(c) For every 0< x≤ 1 there is n= 1,2, ... with n.x= 1.
(d) For every 0 < x ≤ 1 there is m = 1,2, ... with m⊸1 < x. Thus in particular,
inf{n⊸1 | n= 1,2, ...}= 0.
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Proof.

(a) By (22), x≤A y ⇔ x→ y= 1 ⇔ x≤ y.
(b) Arguing by way of contradiction, suppose A has an ideal I different from

{0}. There is a> 0 such that either I = [0,a] or I = [0,a]\{a}. Let s= supI
(such s existing by (a)). Then s> 0. Since 0⊕0 = 0 and 2⊸1⊕2⊸1 = 1, the
monotonicity property (27) of the continuous function x 7→ x⊕x defined on
[0,2⊸1] yields an element h≤ 2⊸1 such that h⊕h= s. Necessarily, h> 0 and,
by (27), h< s. By definition of s, there is j ∈ I with h≤ j. Thus h belongs to I
and so does s= h⊕h. Since I is a proper subset of [0,1] then s< 1. Another
application of (27) yields s< s⊕ s ∈ I , which contradicts the definition of s.

(c) Again by way of contradiction, let x> 0 satisfy n.x< 1 for all n= 1,2, ... . Let
J = {y ∈ [0,1] | n.x≥ y for some n= 1,2, ...}. Then 1 /∈ J and x ∈ J. It is easy
to see that whenever z≤ y and y ∈ J then z ∈ J. Further, y,z ∈ J⇒ z⊕y ∈ J.
So J is an ideal of A other than {0}, against (b).

(d) We must find m = 1,2, ... with m⊸1 < x. If x = 1, then 2⊸1 will do. So let
us assume x < 1. Let n be the smallest integer satisfying n.x = 1 (such n
existing by (c)). Then n ≥ 2. Let m = (n+1). By definition, 0 < m⊸1. If
m⊸1 ≥ x (absurdum hypothesis) then n.m⊸1 ≥ n.x = 1. However, n.m⊸1 =
(m – 1).m⊸1 = ¬m⊸1 < 1, a contradiction. ⊣

Proposition 3.4. For → an arbitrary continuous implicative function, let A =
A→ = ([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. With the notation of
Proposition 3.2(b) let the set AQ ⊆ [0,1] be defined by

AQ = {0,1}∪{h.n⊸1 | n= 2,3, ... and h= 1,2, ... ,n – 1}.

For any h.n⊸1 ∈ AQ \ {0,1} let us agree to say that h is its A-numerator and n its
A-denominator. Then for each n= 2,3, ... we have:

¬ l.n⊸1 = (n – l).n⊸1, (l = 1,2, ... ,n – 1), and (32)

n⊸1 = k.(kn)⊸1, (k = 1,2, ...). (33)

Further, for all m,n ∈ {2,3, ...}, p= 1,2, ... ,m – 1 and q= 1,2, ... ,n – 1,

p.m⊸1⊕q.n⊸1 =min(mn, (qm+pn)).(mn)⊸1, and (34)

p.m⊸1 = q.n⊸1 ⇔ pn= qm. (35)

Proof. The proof of (32) in case l = 1 immediately follows by definition. So
assume l > 1. We have (n – l).n⊸1⊕ l.n⊸1 = 1. By Proposition 3.2(a), there remains
to be proved (n – l).n⊸1⊕ (l.n⊸1⊖ å)< 1 for all å > 0, that is,

(n – l).n⊸1⊕ (((l – 1).n⊸1⊕n⊸1)⊖ å)< 1 for all å > 0. (36)

Since l.n⊸1 ≤ (n – 2).n⊸1 < 1, from (31) it follows that (36) amounts to saying that
for all å > 0, (n – l).n⊸1⊕ ((l – 1).n⊸1)⊕ (n⊸1⊖ å)< 1. This latter inequality holds
because (n – 1).n⊸1⊕ (n⊸1⊖ å)< 1.
Proof of (33). By Proposition 3.2(b) we must show (n – 1).(k.(kn)⊸1) =

¬k.(kn)⊸1. Proposition 3.2(a) immediately yields (n – 1).k.(kn)⊸1⊕ k.(kn)⊸1 =
nk.(kn)⊸1=1.Next let us turn to the inequality (n–1).k.(kn)⊸1⊕(k.(kn)⊸1⊖ å)<1

https://doi.org/10.1017/jsl.2020.74 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.74


WHAT THE ŁUKASIEWICZ AXIOMSMEAN 913

(for all å > 0). By (31), this is equivalent to (n – 1).k.(kn)⊸1⊕ (k – 1).(kn)⊸1⊕
((kn)⊸1⊖å)< 1. Now the left hand term equals (kn – k+k – 1).(kn)⊸1⊕((kn)⊸1⊖
å), which is < 1 by definition of (kn)⊸1. This settles (33).
To prove (34), using (33) and passing to the common A-denominator mn of

p.m⊸1 and q.n⊸1, we may write p.m⊸1⊕q.n⊸1 = np.(nm)⊸1⊕mq.(mn)⊸1 = (np+
mq).(mn)⊸1. This latter term equals mn.(mn)⊸1 = 1 whenever np+mq≥ nm.
For (35), mimicking the proof of (34) we rewrite p.m⊸1 and q.n⊸1 into their

equivalents with common A-denominator mn and A-numerators respectively given
by pn and qm. By (27), p.m⊸1 and q.n⊸1 are equal iff qm is equal to pn. ⊣

Corollary 3.5. For→ an arbitrary continuous implicative function, let A=A→ =
([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. Then AQ is the underlying set of a
subalgebra of A, also denoted AQ.

§4. The standard Wajsberg algebra and the standard MV-algebra. For all x,y ∈
[0,1] let ¬Łx = 1 – x and x→Ł y = min(1,1 – x+ y). The continuous implicative
function→Ł is known as theŁukasiewicz implication.The standardWajsberg algebra
WŁ = ([0,1],0,¬Ł,→Ł) satisfies axioms Ł1)–Ł4).
Similarly, for all x,y ∈ [0,1] let x⊕Ł y = min(1,x+ y) = ¬Łx→Ł y. The standard

MV-algebra AŁ = ([0,1],0,¬Ł,⊕Ł) satisfies axioms MV1)–MV6).
The subalgebra AŁ,Q of AŁ whose universe are the rational numbers in [0,1] is

called the standard rational MV-algebra.

Theorem 4.1. For→ an arbitrary continuous implicative function, let A= A→ =
([0,1],0,¬,⊕) be theMV-algebra of Theorem 2.3. Let AQ be the subalgebra of A given
by Corollary 3.5.

(i) There is an isomorphism ø of AQ onto AŁ,Q. Thus in particular,

ø(x→ y) = ø(x)→Ł ø(y) = min(1,1 – ø(x)+ø(y)). (37)

(ii) For all p,q ∈ AQ, p≤ q ⇔ ø(p)≤ ø(q).
(iii) For all p,q with 0≤ p< q≤ 1 there exists a ∈ AQ with p< a< q.
(iv) For every x ∈ [0,1], let us set Lx = {ø(z) | z ≤ x, z ∈ AQ} and Rx =

{ø(y) | y ≥ x, y ∈ AQ}. Let further l = supLx and r = infRx, as given by
Proposition 3.3(a). Then l = r.

Proof.

(i) For x ∈ {0,1} let us set ø(x) = x. For each k.m⊸1 ∈ AQ, let ø(k.m
⊸1)

be the rational k/m ∈ [0,1] . If l.n⊸1 belongs to AQ and k.m
⊸1 = l.n⊸1,

then from (35) it follows that ø(k.m⊸1) = k/m = l/n = ø(l.n⊸1). Thus ø
is a function from AQ into [0,1] . Evidently, ø is onto [0,1]∩Q. To prove
that ø is one–one, first observe that ø(x) = 0 implies x = 0 and ø(y) = 1
implies y = 1. Next suppose k.m⊸1 and l.n⊸1 are distinct elements of AQ.
By (33) and (35), the equivalents of k.m⊸1 and l.n⊸1 with common A-
denominatormn have differentA-numerators. Thenø(k.m⊸1) andø(l.n⊸1)
are rational numbers with equal denominators and different numerators,
which shows that ø is one–one. In view of Corollary 3.5, the proof
that ø is an isomorphism of AQ onto AŁ,Q proceeds as follows: On the
one hand, by (32), ø(¬k.m⊸1) = ø((m – k).m⊸1) = (m – k).ø(m⊸1) =
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m–k
m = ¬Ł

k
m = ¬Łø(k.m

⊸1). On the other hand, by (34), ø(p.m⊸1 ⊕

q.n⊸1) = ø(min(mn,pn+ qm).(mn)⊸1) = min(mn,pn+ qm).ø((mn)⊸1) =
min(mn,pn + qm).( 1mn ) =

p
m ⊕Ł

q
n = ø(p.m

⊸1) ⊕ ø(q.n⊸1). Having thus
shown that ø is the desired isomorphism, (37) follows from (22).

(ii) For all p,q ∈ AQ, by (22) we have p ≤ q⇔ p→ q = 1⇔ ø(p→ q) = 1⇔
ø(p)→Ł ø(q) = 1⇔ ø(p)≤ ø(q).

(iii) If either p = 0 or q = 1, Proposition 3.3(d) provides the desired a. If both p
and q are A-rationals other than 0 or 1, by (33) we may assume they have the
same even denominator 2d, and even A-numerators, say, p = 2h.(2d)⊸1 <
q = 2k.(2d)⊸1. By (27), p < (h+ k)(2d)⊸1 < q and we are done. Next
let us assume 0 < p < q < 1 and p /∈ AQ. (The case q /∈ AQ is similar.)
For each m = 2,3, ... , let nm = the largest integer n such that n.m

⊸1 < p,
whose existence is established by Proposition 3.3(d). Thus in particular,AQ ∋
(nm+1).m

⊸1 > p /∈ AQ. As m tends to ∞, (m – 1).m⊸1 = ¬m⊸1 tends to
1, because m⊸1 tends to 0, by Proposition 3.3(d). Further, nm.m

⊸1 < p by
construction. Thus for all large integers m we have ¬m⊸1 > nm.m

⊸1. Using
(18) we get

(nm+1).m
⊸1⊙¬nm.m

⊸1 = ¬((nm+1).m
⊸1→ nm.m

⊸1)

= ¬((m⊸1⊕nm.m
⊸1)→ nm.m

⊸1)

= ¬((¬m⊸1→ nm.m
⊸1)→ nm.m

⊸1)

= ¬max(¬m⊸1,nm.m
⊸1)

= ¬¬m⊸1

=m⊸1.

Therefore, limn→∞((nm+1).m
⊸1⊖ nm.m

⊸1) = limn→∞m
⊸1 = 0. Next, in

view of Proposition 3.3(a), let l = sup{nm.m
⊸1 | m = 2,3, ...} ≤ p and r =

inf{(nm+1).m
⊸1 |m=2,3, ...}≥ p. From limn→∞(nm+1).m

⊸1⊖nm.m
⊸1=

0 and (nm+1).m
⊸1⊖nm.m

⊸1 ≥ r⊖ l=0, we obtain l= r by (26). Thus some
integer m̃will satisfy (nm̃+1).m̃

⊸1< q. Since nm̃.m̃
⊸1> p, letting a= nm̃.m̃

⊸1

the proof of (iii) is complete.
(iv) If x ∈ AQ then l = ø(x) = r by (i), and we are done. In case x /∈ AQ by way
of contradiction, suppose l 6= r, whence l < r. The denseness of the rationals
yields q ∈Q satisfying l < q< r. Sinceø–1(q) is a member ofAQ and x is not,
thenø–1(q) 6= x, say,ø–1(q)< x (the proof for the caseø–1(q)> x is similar).
By (iii) there is a ∈ AQ satisfying ø

–1(q) < a < x. Since a is a lower bound
for x, then ø(a) ∈ Lx, and hence, ø(a)≤ l. Thus ø(ø

–1(q)) = q< ø(a)≤ l,
whence q< l, a contradiction. ⊣

Corollary 4.2. For→ an arbitrary continuous implicative function, let A=A→ =
([0,1],0,¬,⊕) be the MV-algebra of Theorem 2.3. Let ø be the isomorphism of
Theorem 4.1(i). Let the [0,1]-valued function φ be defined by

φ(x) = sup{ø(l) | l ≤ x, l ∈ AQ}, (x ∈ [0,1]).
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(i) φ is a one–one order preserving (whence, a continuous) function of [0,1] onto
[0,1] extending ø, and for all x,y ∈ [0,1],

x→ y = φ–1(φ(x)→Ł φ(y)) = φ
–1(min(1,1 – φ(x)+φ(y))). (38)

(ii) φ is an isomorphism of A onto the standard MV-algebra AŁ.
(iii) φ is the only isomorphism of A onto AŁ.

Proof.

(i) First note that φ agrees withø overAQ. Applying Theorem 4.1(iii) twice, for
all x,y ∈ [0,1] with x< y there are l,r ∈AQ such that x< l < r< y. Thus, by
Theorem 4.1(ii), φ(x)≤ φ(l) =ø(l)<ø(r) = φ(r)≤ φ(y), which shows that
φ is one–one and order preserving. As a consequence, for all x∈ [0,1],φ(x) =
inf{ø(r) | r≥ x, r ∈ AQ}. To see that every y ∈ [0,1] belongs to the range of
φ, write y= sup{l ∈ [0,1]∩Q | l ≤ y}. LetQ= {ø–1(l) | l ∈ [0,1]∩Q, l ≤ y}.
Since φ is order preserving, then by Theorem 4.1(iv), φ(supQ) = y, thus
showing that φ is onto [0,1] . The continuity of φ follows upon noting that
the inverse image of any closed interval I ⊆ [0,1] is a closed interval in [0,1].
To prove (38), byTheorem4.1(i), the two continuous functions (x,y) 7→ x→ y
and (x,y) 7→ φ–1(φ(x)→Ł φ(y)) = φ

–1(min(1,1 – φ(x)+φ(y))) agree on AQ,
the latter being a dense subset of [0,1] . So these two functions agree over
[0,1]2 .

(ii) By (38), for all x,y ∈ [0,1] we have φ(x→ y) = φ(x)→Ł φ(y). It follows that
φ(¬x) = φ(x→ 0) = φ(x)→Ł φ(0) = φ(x)→Ł 0 = ¬Łφ(x) and φ(x⊕ y) =
φ(¬x→ y) = φ(¬x)→Ł φ(y) = ¬Łφ(x)→Ł φ(y) = φ(x)⊕Ł φ(y). Therefore,
φ is an isomorphism of A onto AŁ.

(iii) Supposeϕ 6= φ is another isomorphism ofA ontoAŁ (absurdum hypothesis).
Then the composite function α = ϕ(φ–1) is an automorphism ofAŁ different
from the identity. Fix n = 1,2, ... . By direct inspection (or by applying
Proposition 3.2(b) to AŁ), for each n = 2,3, ... the rational

1
n is the unique

solution z of the equation (n – 1) ·z= z⊕Ł ···⊕Ł z (n – 1 times) = ¬Łz= 1 – z.
The set AŁ,Q = {0,1}∪{ hn | n= 2,3, ... ; h= 1,2, ... ,n – 1} coincides with the

set of rational numbers in [0,1]. The automorphism α satisfies α( 1n ) =
1
n ,

because α fixes unique solutions of equations. As a consequence, α( kn ) =
k
n

for all rationals kn ∈ [0,1], k= 0, ... ,n. By our absurdum hypothesis, α(z) 6= z
for some z ∈ [0,1], say, α(z) < z (otherwise use ¬z in place of z). Pick a
rational d with z < d < α(z). Since α preserves order, α(z) < α(d) = d,
which is impossible. ⊣

§5. Concluding remarks.

5.1. Historical and bibliographical remarks. The Łukasiewicz implication was
originally introduced by Łukasiewicz in 1922 (see [2, pp. 129–130] for details).
The Łukasiewicz axioms for his infinite-valued calculus are as follows [2, p. 144]:
A→ (B→A), (A→ B)→ ((B→C)→ (A→C)), ((A→ B)→ B)→ ((B→A)→
A), (¬B→¬A)→ (A→ B). An additional axiom in his original list was proved to
follow from these four, by Chang and Meredith (see [3] for bibliographical details).
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The axioms of Wajsberg algebras, as well as those of MV-algebras, are an algebraic
counterpart of these axioms [3].
Readers familiar with the first chapters of [3] will immediately get a proof of

Corollary 4.2 from Theorem 2.3 and Proposition 3.3, using the fact that every
simple MV-algebra A is isomorphic to a subalgebra S of the standard MV-algebra
AŁ [3, Theorem 3.5.1]. In particular, when the underlying order ofA is also complete
and dense, so is S, whence S coincides with AŁ [3, 3.5.3]. In this paper, however,
a short direct proof has been given, with no MV-algebraic prerequisites. In this
way the reader has been introduced to the beautiful theory of MV-algebras and
Łukasiewicz logic without any prior mathematical background beyond knowledge
of the basic properties of continuous real-valued functions on [0,1] and [0,1]2.
The function ⊙ is an example of a continuous t-norm [4]. The identity (38)

in Corollary 4.2 is known as the Smets–Magrez theorem. Under the minimal
hypotheses of continuity and implicativeness used in the present paper, Baczyński
proved (38) building on earlier results by several people (see [1, p. 65] for details).
His proof in [1, Theorem 2.4.20] depends on the theory of t-norms, for which the
reader of [1] is referred to [4]. Our shorter elementary proof follows a different path,
via Theorems 2.3 and 4.1, without requiring any prior knowledge of t-norms.

5.2. The gist of continuity and implicativeness. Closing a circle of ideas, let
us spend some words on the significance of the continuity and implicativeness
hypotheses for [0,1]-valued logics. Our results in this paper will then automatically
show the pivotal role of Łukasiewicz logic among all infinite-valued logics.
While boolean logic L2 deals with facts that can only be true or false, with

yes–no events, and ultimately with {0,1}-observables, most observables in physics,
as well as most random variables in real life, are not {0,1}-valued, but have a
continuous spectrum of values. Since no assessment α of these observables can be
infinitely precise, α is specified by a real number together with an error interval.
And yet, all physical laws are formulated in terms of relations between real-valued
quantities rather than using relations between intervals. For this tomake sense, small
errors in the measurement of the basic observables (e.g., mass, speed) must have
*initially* 1 small effects on the evaluation of compound observables (e.g., energy,
momentum). In precise terms, any compound observable varies continuously with
the basic observables.
For any bounded observable O one may rescale the minimum value and the

measurement unit of O in such a way that the result of any measurement of O fits
into the real interval [0,1]. This makes O “dimensionless”, like angle amplitude.
Suppose a [0,1]-valued logic L is devised to deal with [0,1]-valued observables,
just as boolean logic L2 does for their {0,1}-valued counterparts. Compound L-
observables will be represented by applying the connectives of L to the variables,
which stand for the basic L-observables. In dealing with [0,1]-observables we do
not aim at discovering new physical laws. Mimicking what boolean logic does for
yes–no observables/events, our aim is the construction of an apparatus L where
consequences can be computed from premises concerning [0,1]-observables.

1In chaotic systems, arbitrarily small errors can have maximally large effects after some finite time.

https://doi.org/10.1017/jsl.2020.74 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.74


WHAT THE ŁUKASIEWICZ AXIOMSMEAN 917

OnceL2 is equippedwith the negation and implication connectives, the functional
completeness of L2 is to the effect that all {0,1}-valued functions on {0,1}n are
obtainable from the identity functions x1, ... ,xn defined on {0,1}

n by applying these
connectives. By contrast, no [0,1]-valued logic L with finitely many connectives can
express all continuous [0,1]-valued functions on [0,1]n starting from the identity
functions. Therefore, one must make a careful selection of the most appropriate
connectives of L. If Modus Ponens is to have a role in the formulation of the
L-consequence relation, then L must be equipped with a connective for a [0,1]-
valued “implication” function → defined on [0,1]2. The fault tolerance of L in
dealing with [0,1]-observables requires→ to be continuous. If, as is often the case,
the order of premises x and y in L is irrelevant in drawing a conclusion z, then
x→ (y→ z) = y→ (x→ z). For → to (minimally) abide by the total order of the
unit interval [0,1], it is natural to assume that x→ y= 1 iff x≤ y. Thus→ must be
implicative in the sense of Definition 2.1. Upon defining the derived function ¬ by
¬x = x→ 0, Theorem 2.3 shows that the algebra W = ([0,1],0,¬,→) satisfies the
Łukasiewicz axioms. Indeed, Corollary 4.2 shows thatW is uniquely isomorphic to
the standard Wajsberg algebra.
Having now understood the meaning of the Łukasiewicz axioms, our young

readers who have followed us thus far are encouraged to explore their deep
consequences. Proofs of some of the most important results of the theory of
MV-algebras, and their equivalents for Wajsberg algebras, can be found in the
introductory monograph [3]. Advanced topics are the subject matter of [5].
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