Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-11T13:29:08.999Z Has data issue: false hasContentIssue false

ON THE SYMBIOSIS BETWEEN MODEL-THEORETIC AND SET-THEORETIC PROPERTIES OF LARGE CARDINALS

Published online by Cambridge University Press:  29 June 2016

JOAN BAGARIA
Affiliation:
ICREA (INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS) AND DEPARTAMENT DE LÒGICA, HISTÒRIA I FILOSOFIA DE LA CIÈNCIA UNIVERSITAT DE BARCELONA MONTALEGRE 6, 08001BARCELONA CATALONIA (SPAIN)E-mail:joan.bagaria@icrea.cat
JOUKO VÄÄNÄNEN
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF HELSINKIFINLAND INSTITUTE OF LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM THE NETHERLANDSE-mail:jouko.vaananen@cc.helsinki.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study some large cardinals in terms of reflection, establishing new connections between the model-theoretic and the set-theoretic approaches.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2016 

References

REFERENCES

Bagaria, J., C (n) -Cardinals . Archive for Mathematical Logic, vol. 51 (2012), pp. 213240.CrossRefGoogle Scholar
Barwise, J., and Feferman, S., editors, Model-theoretic logics, Perspectives in Mathematical Logic, Springer-Verlag, New York, 1985.Google Scholar
Farah, I., and Larson, P., Absoluteness for universally Baire sets and the uncountable. I . In Set theory: Recent trends and applications, vol. 17, Quaderni di Matematica, Department of Mathematics, Seconda Università degli Studi di Napoli, Caserta, 2006, pp. 4792.Google Scholar
Fuhrken, G., Skolem-type normal forms for first-order languages with a generalized quantifier . Fundamenta Mathematicae, vol. 54 (1964), pp. 291302.Google Scholar
Levy, A.,Basic Set Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, Heidelberg, New-York, 1979.Google Scholar
Lindström, P., First order predicate logic with generalized quantifiers . Theoria, vol. 32, pp. 186195, 1966.Google Scholar
Magidor, M., On the role of supercompact and extendible cardinals in logic . Israel Journal of Mathematics, vol. 10 (1971), pp. 147157.Google Scholar
Magidor, M., and Väänänen, J. A., On Löwenheim-Skolem-Tarski numbers for extensions of first order logic . Journal of Mathematical Logic, vol. 11 (2011), no. 1, pp. 87113.Google Scholar
Makowsky, J. A., Shelah, Saharon, and Stavi, Jonathan, D-logics and generalized quantifiers . Annals of Mathematical Logic, vol. 10 (1976), no. 2, pp. 155192.Google Scholar
Mostowski, A., On a generalization of quantifiers . Fundamenta Mathematicae, vol. 44 (1957), pp. 1236.CrossRefGoogle Scholar
Pinus, A. G., Cardinality of models for theories in a calculus with a Härtig quantifier . Siberian Mathematical Journal, vol. 19 (1978), no. 6, pp. 949955.Google Scholar
Shelah, Saharon, Models with second-order properties. II. Trees with no undefined branches . Annals of Mathematics, vol. 14 (1978), no. 1, pp. 7387.Google Scholar
Stavi, J., and Väänänen, J. A., Reflection Principles for the Continuum , Logic and Algebra (Zhang, Yi, editor), vol. 302, AMS, Contemporary Mathematics, pp. 5984, 2002.Google Scholar
Väänänen, J., Abstract Logic and Set Theory. I. Definability , Logic Colloquium 78 (Boffa, M., van Dalen, D., and McAloon, K., editors), North-Holland, Amsterdam, 1979.Google Scholar