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ON THE SYMBIOSIS BETWEEN MODEL-THEORETIC AND
SET-THEORETIC PROPERTIES OF LARGE CARDINALS

JOAN BAGARIA AND JOUKO VÄÄNÄNEN

Abstract. We study some large cardinals in terms of reflection, establishing new connections between
the model-theoretic and the set-theoretic approaches.

§1. Introduction. First-order logic alone cannot express important properties
such as finiteness or uncountability of the model, well-foundedness of a binary
predicate, completeness of a linear order, etc. This led to Mostowski [10] and
later Lindström [6] to introduce the concept of a generalised quantifier. This made
it possible to compare model-theoretic and set-theoretic definability of various
mathematical concepts. It turned out that there is a close connection between the
two. Following [14], we call this connection symbiosis.
A fundamental property of the universe of sets is reflection. Roughly speaking
reflection means that every property that holds of the entire universe of sets is
permitted already by a set-sized sub-universe. By qualifying what “property”means
one can relate reflection closely to large cardinal properties [1]. In model theory
the analogue of reflection is the Löwenheim–Skolem Theorem which in its various
variants says, roughly speaking, that if a sentence of a logic has a model then the
sentence has a “small” (sub)model, e.g. a countable model.
The purpose of this paper is to use symbiosis to relate set-theoretic reflection
principles to model-theoretic Löwenheim–Skolem Theorems. Our special interest is
in analogues of large cardinals. In [1] strong reflection principles are used to obtain
large cardinal properties at supercompactness and above. Here we focus on smaller
large cardinals.
By a logic L∗ we mean any model-theoretically defined extension of first-order
logic, such as infinitary logic Lκ�, a logic with generalised quantifiers L(Q) and
second order logic L2. It is not important for the purpose of this paper to specify
what exactly is the definition of a logic, but such a definition can be found e.g. in
[2, Chapter II]. What is important is that for any φ ∈ L∗ there is a formula Φ(x, y)
of ordinary first-order set theory such that for all models A of the vocabulary of φ
we have:

A |= φ ⇐⇒ Φ(A, φ). (1)
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Theorems, generalized quantifiers.

c© 2016, Association for Symbolic Logic
0022-4812/16/8102-0011
DOI:10.1017/jsl.2015.60

584

https://doi.org/10.1017/jsl.2015.60 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.60
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For φ ∈ L∞� the formula Φ(x, y) can be chosen to be ΔKP1 , where KP is the
Kripke–Platek axioms of set theory. For φ ∈ L2 we can take Φ(x, y) to be Δ2, but
in general not Δ1 (see Section 7 for details). If φ is in the extension of first order
logic by the Härtig-quantifier I (see Section 4.1 for the definition), then Φ(x, y) can
be taken to be Δ1(Cd ), that is, Δ1 with respect to the predicate Cd (x) ⇐⇒ “x
is a cardinal”. This works also in the other direction: If a Φ(x, y) is given and it is
ΔKP1 , Δ1(Cd ) or Δ2, then there is a sentence φ in the respective logic such that (1)
holds. This is indicative of a tight correspondence for properties of models between
expressibility in an extension of first-order logic and definability in set theory. We
call this tight correspondence symbiosis (see Definition 5.3).
The main reasons for studying symbiosis between model-theoretic and set-
theoretic definability are the following.
First of all, the study of strong logics has in general led to a variety of set-
theoretical difficulties. Results have turned out to be dependent on set-theoretical
assumptions such asV = L,CH ,♦, and large cardinals. It became therefore instru-
mental to uncover exactly what is the nature of the dependence on set-theoretical
hypotheses in each case. Symbiosis pinpoints the position of a given logic in the
set-theoretical definability hierarchy and thereby helps us understand better the
set-theoretical nature of the logic.
Secondly, strong logics give rise to natural set-theoretical principles. For example,
Completeness Theorems of various logics on uncountability (the quantifier Q1,
Magidor–Malitz quantifiers, stationary logic, etc) can be used as set-theoretical
principles which unify certain constructions and give rise to absoluteness results
(see e.g. [3]). As we show in this paper, Löwenheim–Skolem-type results for strong
logics give new types of reflection principles in set theory. A good early indication
of this is Magidor’s characterisation of supercompactness in terms of a strong
Löwenheim–Skolem theorem for second-order logic [7].
The structure of the paper is the following: After some preliminaries in Section 2
we consider a family of structural reflection principles in Section 3. These principles
arise from considering Π1-definitions of model classes in the extended vocabulary
{∈, R} of set theory obtained by adding a particular Π1-predicate R to {∈}.
In Section 4 we recall the Δ-operation on logics and give some examples. Intu-
itively speaking, the logic Δ(L∗) is a minor extension of L∗ obtained by adding
explicit definitions of some model classes that would otherwise be merely implicitly
definable.
Section 5.3 introduces the key concept of symbiosis and gives a proof of a basic
equivalence (Proposition 5.1) between set-theoretic definability andmodel-theoretic
definability. The Structural Reflection principle of set theory is then proved equiva-
lent to a Downward Löwenheim–Skolem Theorem (Theorem 5.5). The rest of the
paper refines and elaborates this basic equivalence.
In Sections 6 and 7 applications of Theorem 6 to particular logics are given.
In Section 8 a weaker “strict” form of Downward Löwenheim–Skolem Theorem
SLST (L∗) for a strong logicL∗ is formulated and related to large cardinal concepts.
For the Härtig-quantifier logic the least cardinal with SLST is shown to be the first
weakly inaccessible cardinal. It is interesting to compare this result with the stronger
form of Downward Löwenheim–Skolem Theorem, LST . The smallest cardinal for
which the logic with the Härtig quantifier satisfies the LST -property can be bigger
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than the first measurable cardinal but also equal to the first weakly inaccessible
cardinal [8]. We present a logic for which the first cardinal for which SLST holds is
the first weakly Mahlo, and another logic for which the least cardinal with SLST
is the least weakly compact cardinal.

§2. Preliminaries. By a model we mean a, possibly many-sorted, structure in
a language that may have countably-many relation and function symbols of any
finite arity, as well as constant symbols. The vocabulary of a model A is the set
of nonlogical symbols (including sort symbols) of the language of A. We usually
denote the universe of a model A by the capital letter A.
The theory ZFC−

n is ZFC minus the Power Set axiom, and with the axiom
schemata of Separation and Collection restricted to Σn formulas. ZFC−

n is finitely
axiomatizable. We denote the class of all ordinals by OR.
If A and B are models with the same vocabulary, then we use the notation
e : B � A to indicate that e is an elementary embedding of B into A, i.e., for
every formula ϕ(x1, . . . , xn) of the first-order language of A and B, and every
b1, . . . , bn ∈ B,

B |= ϕ(b1, . . . , bn) if and only if A |= ϕ(e(b1), . . . e(bn)).

§3. Small large cardinals from structural reflection. LetRbe a set ofΠ1 predicates
or relations. A class K of models in a fixed countable vocabulary is Σ1(R) if it is
definable by means of a Σ1 formula of the first-order language of set theory with
additional predicates fromR, but without parameters.
In this section we shall consider the following kind of principles, for R a set of
Π1 predicates or relations, and κ an infinite cardinal. The notation SR stands for
Structural Reflection.

(SR)R(κ) : IfK is a Σ1(R) class of models, then for everyA ∈ K, there exist B ∈ K
of cardinality less than κ and an elementary embedding e : B � A.

Note that if (SR)R holds for κ, then it also holds for any cardinal greater than κ.
Thus, what is of relevance here is the least cardinal for which (SR)R holds, hence
we shall write (SR)R = κ to indicate that κ is the least such cardinal.
Notation: If R = {R1, . . . , Rn}, then we may write (SR)R1,...,Rn for (SR)R.
We have that (SR)∅ = ℵ1 (cf. [1] 4.2). However, if R is the Π1 relation “x is an
ordinal and y = Vx”, then (SR)R = κ if and only if κ is the first supercompact
cardinal. Moreover, if κ is supercompact, then (SR)R holds for κ, for any set R of
Π1 predicates. (See [7], and [1], section 4.)

3.1. Weaker principles. Let Cd be the Π1 predicate “x is a cardinal”. Magidor
and Väänänen [8] show that the principle (SR)Cd implies 0

�, and much more, e.g.
there are no good scales. We shall also consider some weaker principles that are
consistent with V = L. The weakest one is the following.

(SR)−−
R : If K is a nonempty Σ1(R) class of models, then there exists A ∈ K of

cardinality less than κ.

Proposition 3.1. ZFC � ∃κ((SR)−−
R holds for κ).
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Proof. Let {Kn : n < �} list all nonempty Σ1(R) model classes. Pick An ∈ Kn ,
for each n < �. Let κ be the supremum of all the cardinalities of theAn, for n < �.
Then κ+ is as required. 

The next stronger principle is more interesting.

3.2. The principle (SR)−R. Another weakening of (SR)R is the following.

(SR)−R : IfK is a Σ1(R) class of models andA ∈ K has cardinality κ, then there
exists B ∈ K of cardinality less than κ and an elementary embedding
e : B � A.

As the next theorem shows, the existence of a cardinal κ for which (SR)−Cd holds
implies the existence of a weakly inaccessible cardinal, hence such a κ cannot be
proved to exist in ZFC, if ZFC is consistent.

Theorem 3.2. If (SR)−Cd holds forκ, then there exists aweakly inaccessible cardinal
� ≤ κ.
Proof. Let K be the class of structures (M,E) such that (M,E) |= ZFC−

n , for a
suitable n, and

∃�,N(N is transitive ∧
� : (M,E) ∼= (N,∈) ∧ ∀α ∈ N(CdN (α)→ Cd (α))).

Thus, K is Σ1(Cd ) (in fact it is Δ1(Cd )). Let A � H (κ+), with κ + 1 ⊆ A, be of
cardinality κ. We claim thatA ∈ K. For let N be the transitive collapse ofA. Since
the transitive collapsing map � is the identity on κ + 1, if α ≤ κ and N |= Cd (α),
then A |= Cd (α), hence α is a cardinal. But if α ∈ N is greater than κ, then
α = �(
), for some 
 ≥ α. And since A |= ¬Cd (
), we have thatN |= ¬Cd (α).
By (SR)−Cd , let B ∈ K be of cardinality less than κ, and let e : B � A be an

elementary embedding. Let N̄ be the transitive collapse of B, with i : N̄ → A being
the induced elementary embedding. Since A |= “κ is the largest cardinal”, there is
α ∈ N̄ such that i(α) = κ, so i is not the identity. Let � be the critical point of i .
We claim that � is regular in N̄ . For suppose N̄ |= “f : α → � is cofinal”, for some
α < �. Then A |= “i(f) : α → i(�) is cofinal”. Note that A |= “i(f)′′α ⊆ �”,
as for 
 < α we have f(
) < �, hence i(f)(
) = i(f(
)) = f(
) < �. Hence,
A |= “∃� < i(�)(i(f)′′α ⊆ �)”. Thus, N̄ |= “∃� < �(f′′α ⊆ �)”, and so N̄ |= “f
is not cofinal in �”, yielding a contradiction. So, N̄ |= “� is a regular cardinal”, and
therefore � is really a cardinal, although we do not know if it is really regular or not.
We claim that N̄ |= “� is a limit cardinal”. For suppose α < �. Thus, A |= “α <
� < i(�) and � is a cardinal”, and so N̄ |= “∃�(� is a cardinal and α < � < �)”. We
have thus shown that N̄ |= “� is a regular limit cardinal”, i.e., N̄ |= “� is weakly
inaccessible”. Hence,A |= “i(�) is weakly inaccessible”, and so i(�) is really weakly
inaccessible, and ≤ κ. 

A proof in [8] shows that, starting from a supercompact cardinal, it is consistent
that (SR)Cd holds for the first weakly inaccessible cardinal. So, we cannot prove
in ZFC that more large-cardinal properties beyond the existence of a weakly inac-
cessible cardinal hold for some cardinals ≤ κ just by assuming that (SR)Cd holds
at κ.
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3.3. The Regularity predicate. Let Rg be the predicate “x is a regular ordinal”.

Theorem 3.3. If κ satisfies (SR)−Rg , then there exists a weakly Mahlo cardinal
� ≤ κ.
Proof. Let K now be the class of structures (M,E) such that (M,E) |= ZFC−

n ,
for some suitable n, and

∃�,N(N is transitive ∧ � : (M,E) ∼= (N,∈) ∧
∀α ∈ N(RgN (α)→ Rg(α))).

Thus, K is Σ1(Rg) (in fact, Δ1(Rg)). Let A � H (κ+), with κ + 1 ⊆ A, be of
cardinality κ. Then A ∈ K. For if N is the transitive collapse of A, then the
collapsing map � is the identity on κ + 1, so if α ≤ κ and N |= Rg(α), then
also A |= Rg(α), and therefore α is regular. But if α ∈ N is greater than κ, then
α = �(
), for some 
 ≥ α, and so A |= ¬Rg(
), which implies N |= ¬Rg(α).
By (SR)−Rg , let B ∈ K of cardinality less than κ, and e : B � A. Let N̄ be the

transitive collapse of B and let i : N̄ → A be the induced elementary embedding.
SinceA |= “κ is the largest cardinal”, there is α ∈ N̄ such that i(α) = κ, so i is not
the identity. Let � be the critical point of i .
Arguing as in the proof of Theorem 3.2 , � is weakly inaccessible in N̄ . To show
that � is weakly Mahlo in N̄ , let C be a club subset of � in N̄ . Then i(C ) is a
club subset of i(�) in V . Since � is a limit point of i(C ), as C is unbounded in �
and i is the identity function below �, and since i(C ) is closed, � ∈ i(C ). Since N̄
thinks that � is regular, � is really regular, and thus A |= “i(C ) contains a regular
cardinal”. Hence, N̄ |= “C contains a regular cardinal”. This shows N̄ |= “� is
weakly Mahlo”. Hence A |= “i(�) is weakly Mahlo”, and so i(�) is weakly Mahlo
and ≤ κ. 

Let us observe that Cd is Δ1(Rg), and therefore (SR)Cd,Rg is equivalent to
(SR)Rg . By its definition, Cd is clearly Π1. And it is also Σ1(Rg), because we have:

Cd (α)↔ Rg(α) ∨ ∃A(α =
⋃
A ∧ ∀
 ∈ A Rg(
)).

A result in [8] shows that we cannot hope to get from (SR)Rg more than one
weakly Mahlo cardinal ≤ κ. Indeed, starting from a weakly Mahlo cardinal the
authors obtain a model in which (SR)Rg holds for the least weakly Mahlo cardinal.
We cannot hope either to obtain from (SR)Rg that κ is strongly inaccessible, for in
[13] it is shown that one can have (SR)Rg for κ = 2

ℵ0 .

3.4. TheWeakly Inaccessible predicate. There is a condition between (SR)−Cd and
(SR)−Rg , namely (SR)

−
Cd,WI , whereWI is theΠ1 predicate “x is weakly inaccessible”.

Proposition 3.4. Ifκ satisfies (SR)−Cd,WI , then there exists a 2-weakly inaccessible
cardinal � ≤ κ.
Proof. Similarly as before. 

Wemay also consider predicates α-WI , forα an ordinal. That is, the predicate “x
is α-weakly inaccessible”. Then, similar arguments would show that the principle
(SR)−Cd, α -WI implies that there is an (α + 1)-weakly inaccessible cardinal ≤ κ.
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3.5. Weak compactness. Let WC (x, α) be the Π1 relation “α is a limit ordinal
and x is a partial ordering with no chain of order-type α”.

Theorem 3.5. Ifκ satisfies (SR)−Cd,WC , then there exists a weakly compact cardinal
� ≤ κ.
Proof. Let K be the class of structures (M,E) such that (M,E) |= ZFC−

n , for
some suitable n, and

∃�,N(N is transitive ∧ � : (M,E) ∼= (N,∈) ∧
∀x, α ∈ N((CdN (α)→ Cd (α)) ∧ (WCN (x, α)→WC (x, α))).

Thus,K is Σ1(Cd,WC ) (in fact, Δ1(Cd,WC )). LetA � H (κ+) be of cardinality κ
and such thatOR∩A ∈ OR. We claim that A ∈ K. For suppose N is the transitive
collapse of A via the transitive collapsing map �. As in the proof of Theorem 3.2,
if α ∈ N and CdN (α), then α is a cardinal. Now suppose α is an ordinal in N ,
x ∈ N , and N |= WC (x, α). Since � is the identity on OR ∩ A, we have that
A |= WC (�−1(x), α). So, �−1(x) is a partial ordering with no chain of length α.
But since �−1 � x : x → �−1(x) yields a partial-ordering embedding, it follows that
x has no chain of length α either.
By (SR)−Cd,WC , let B ∈ K be of cardinality less than κ, and let e : B � A. Let N̄ be
the transitive collapse ofB and let i : N̄ → A be the induced elementary embedding.
Since A |= “κ is the largest cardinal”, there is α ∈ N̄ such that i(α) = κ, and so i
is not the identity. Let � be the critical point of i .
From Theorem 3.2 we know that N̄ |= “� is weakly inaccessible”. We will show
that N̄ |= “� is weakly compact”. For this it is sufficient to show that in N̄ every
tree of height � such that |T�| ≤ 2|�|, for all � < �, has a branch of length � (see [5],
IX, 2.35). So, suppose that T is such a tree in N̄ . Without loss of generality, T is a
tree on �. Then i(T ) is a tree of height i(�), so it has a node t of height �. The set of
predecessors of t in i(T ) form a chain of length �. Since � is the critical point of i ,
i(T )� = T , and so the set of predecessors of t form a chain ofT of length �. Since N̄
is correct about the pair (T, �) satisfying theWC relation, if N̄ |= “T has no chain
of length �”, then T has really no chain of length �. So, it follows that N̄ |= “T
has a chain of length �”. And this shows that N̄ |= “� is weakly compact”. Hence,
H (κ+) |= “i(�) is weakly compact”, and therefore i(�) is really weakly compact,
and i(�) ≤ κ. 

Since the first weakly Mahlo cardinal can satisfy (SR)Rg ([8]), we cannot get a
weakly compact cardinal≤ κ just from (SR)Rg . Hence, (SR)Cd,WC is stronger than
(SR)Rg .

In the next two sections we shall see how to formulate amodel-theoretic condition
equivalent to (SR)R, where R is a Π1 predicate or relation.

§4. Definable model classes. Suppose K is a class of models with vocabu-
lary L, and suppose L′ ⊆ L. Note that vocabularies can be many-sorted, so
L′ may have fewer sorts than L. Then we can take the projection of K to L′,
that is

K � L′ := {A � L′ : A ∈ K}.
Suppose L∗ is a logic. E.g.,
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• First-order logic (L��).
• Infinitary logic (Lκ�).
• Higher-order logic (Ln , n ≥ 2).
possibly extended with generalized quantifiers. In all cases of logics under
consideration, isomorphism of models implies L∗-equivalence.
A model class K (i.e., a class of models in some fixed vocabulary) is said to be

L∗-definable if there is a sentence ϕ ∈ L∗ such that K = Mod (ϕ), i.e., K = {A :
A |= ϕ}.
Sometimes, for some logic L∗, a model class is a projection of an L∗-definable
model class, and at the same time the complement of the model class is also a
projection of an L∗-definable model class. Then we say that the model class is
Δ(L∗)-definable [9].
The Δ-operation became popular in the 70s when it turned out that adding for
example the generalised quantifier Q1 (“there exist uncountably many x such that
. . . ”) to first-order logic does not lead to an extension with the Craig Interpolation
or theBethDefinability Theorem.So theΔ-operationwas introduced to “fill obvious
gaps” in logics. For example, the class of equivalence relations with uncountably
many uncountable equivalence classes is definable in Δ(L(Q1)) but not in L(Q1).
The Δ-operation preserves many properties (compactness, Löwenheim–Skolem,
axiomatisation, etc.) of logics (see [9] for details).

4.1. A paradigm example. The model class of structures (M,<), where < well-
orders M is Δ(L∗), where L∗ is L��(I ), i.e., first-order logic with the additional
quantifier I , known as the Härtig quantifier, given by

Ixyϕ(x)(y) ↔ |ϕ(·)| = |(·)|.
To see why this is so, look first at the model class K0 of models (M,<,X ), where <
is a linear ordering andX is a subset ofM that has no<-least element (a first-order
property). The projection K0 � {<} is the class of non-well-ordered structures.
Now we represent the class of well-ordered structures as the projection of a model
class that is definable using the generalized quantifier I . This “trick” is due to Per
Lindström [6]. The point is that a linear order (M,<) is a well-order if and only if
there are sets Aa , for a ∈M , such that a <M b if and only if |Aa | < |Ab |. So let K1
be the class of 2-sorted structures (A,M,<,R) such that (we denote the two sorts
by s0 and s1):

(1) A has sort s0,M has sort s1,
(2) M ⊆ A,
(3) (M,<) is a linear order,
(4) R ⊆M × A,
(5) a <M b implies |R(a, ·)| < |R(b, ·)|.

So, the class of well-ordered models is the projection K1 � {s1, <}. As a result, both
the class W of well-ordered (M,<) and the class of non-well-ordered (M,<) are
projections of L��(I )-definable model classes, i.e.,W is Δ(L��(I ))-definable.
4.2. Another example. The class of well-founded models (M,E) such that
(M,E) |= ZFC−

n , for some n, and if M̄ is the transitive collapse ofM , then M̄ |= “α
is a cardinal” if and only if α is really a cardinal, is Δ(L��(I )). Indeed, similarly as
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in the previous example, we can see that the class of well-founded models of ZFCn
is Δ(L��(I )). If α ∈ M̄ is a cardinal, then, of course, M̄ |= “α is a cardinal”. On
the other hand, if M̄ |= “α is a cardinal”, then we can say, using I , that α is a
cardinal in V , as follows:

∀x < α(¬Iyz(y ∈ x)(z ∈ α)).
That is, the set of elements of x has smaller cardinality than the set of elements of α.

§5. Symbiosis. Given a definable (but not necessarily Π1) n-ary predicate R of
set theory1, let

QR := {A : A ∼= (M,∈, ā1, . . . , ān),M transitive, and R(ā1, . . . , ān)}.
The classQR yields a generalized quantifier (in the sense of Lindström [6]). Namely,

A |= QRuvx1 . . . xn(uEv)(x1 = c1) . . . (xn = cn)
if and only if

〈A,EA, cA1 , . . . , c
A
n 〉 ∈ QR.

Proposition 5.1. SupposeR is an n-ary predicate of set theory. The following are
equivalent for any logic L∗ that contains first-order logic as a sublogic:
(1) Every Δ1(R)-definable model class that is closed under isomorphisms is Δ(L∗)-
definable.

(2) The model class QR is Δ(L∗)-definable.
Proof. (1)⇒(2): Notice first that the class QR is Σ1(R)-definable: Suppose A =
(A,E, a1, . . . , an). Then A ∈ QR iff

∃(M,∈, ā1, . . . , ān)(M is transitive ∧
A ∼= (M,∈, ā1, . . . , ān) ∧R(ā1, . . . , ān)).

Also, the complement of QR is Σ1(R)-definable: A �∈ QR iff
A is not a well-founded extensional structure ∨
[∃(M,∈, ā1, . . . , ān)(M is transitive ∧A ∼= (M,∈, ā1, . . . , ān) ∧
¬R(ā1, . . . , ān))].

Hence,QR is Δ1(R)-definable. SinceQR is (trivially) closed under isomorphism, (1)
yields (2).

(2)⇒(1): Suppose K is a Δ1(R)-definable model class that is closed under iso-
morphisms. Suppose the vocabulary of K is L0 which we assume for simplicity to
have just one sort s1 and one binary predicate P. The predicate P, which a priori
could be n-ary for any n, should not be confused with our set theoretical predicate
R. Let Φ(x) be a Σ1(R) formula of set theory such thatA ∈ K if and only if Φ(A).
Let s0 be a new sort, E a new binary predicate symbol of sort s0, F a new function
symbol from sort s1 to sort s0, and c a new constant symbol of sort s0. Consider the
class K1 of models

N := (N,B,EN , RN , cN , FN , PN ),

1To avoid trivialities, we assume ZFC � ∃x1 . . . xnR(x1, . . . , xn).
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where N is the universe of sort s0 and B the universe of sort s1, that satisfy the
sentence ϕ given by the conjunction of the following sentences:

(i) ZFC−
n (for suitable n ≥ 1) written in the vocabulary {E} (instead of ∈) in

sort s0.
(ii) Φ(c) written in the vocabulary {E} in sort s0.
(iii) ∀x1 . . . xn(R(x1 . . . xn) ↔ QRuvw1 . . . wn(uEv)(w1 = x1) . . . (wn = xn))

with the predicate R written in the vocabulary {E} and everything in sort
s0.

(iv) c is a pair (a, b), where b ⊆ a × a, all written in the vocabulary E in sort s0.
(v) F is an isomorphism between the s1-part (B,PN ) of the model and the
structure ({x ∈ N : xENa}, {(x, y) ∈ N 2 : (x, y)EN b}).

Note that ϕ is a sentence in the extension of first-order logic by the generalized
quantifier QR.

Claim 5.2. A ∈ K if and only if A = N � {s1, P}, for some N ∈ K1.
Proof of the claim. Suppose first A ∈ K. Pick m so that R is Σm-definable. Let
Vα �m+n V , with A ∈ Vα . Then, RN = R ∩ Vα, and so A = N � {s1, P}, where

N := (Vα,A,∈, R ∩ Vα,A, id, PA) ∈ K1.
Conversely, suppose N := (N,B,EN , RN , cN , FN , PN ) ∈ K1 with A = N �

{s1, P}. Clearly, the structure (N,EN ) is extensional andwell-founded (by condition
(iii)). Moreover, (N,EN ) |= Φ(cN ). SinceK is closed under isomorphisms, wemay
assume, w.l.o.g., thatN is a transitive set andEN =∈� N . Now,R is absolute forN :
for every a1, . . . , an in N , we have that R(a1, . . . , an) iff (N,∈, a1, . . . , an) ∈ QR iff

(N,∈, a1 . . . , an) |= QRuvx1 . . . xn(uEv)(x1 = a1) . . . (xn = an)
iff, by (iii),N |= R(a1, . . . , an). Since (N,∈) |= Φ(cN ) andN is transitive, and since
Φ is Σ1(R), we have that Φ(cN ) is true, i.e., it holds in V . Thanks to condition (v),
cN is a binary structure isomorphic to A. Since K is closed under isomorphism,
A ∈ K. 

Since, by assumption (2), the class QR is Δ(L∗)-definable, the model class K1 is
Δ(L∗)-definable. Hence, since by the claim above K is a projection of K1, K is a
projection of an L∗-definable model class. We can do the same for the complement
of K. Hence K is Δ(L∗)-definable. 

The following notion of symbiosis, between an abstract logic and a predicate of
set theory, is due to Väänänen [14].

Definition 5.3. A (finite set of) n-ary relation(s)R and a logic L∗ are symbiotic
if the following conditions are satisfied:

(1) Every L∗-definable model class is Δ1(R)-definable.
(2) Every Δ1(R)-definable model class closed under isomorphisms is Δ(L∗)-
definable.

By the proposition above, for a suitable L∗, (2) may be replaced by: The model
class QR, defined as an appropriate product of the models classes QR, for R ∈ R,
is Δ(L∗)-definable.
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5.1. Examples of symbiosis. Let us see some examples of symbiosis.

Proposition 5.4. The following pairs (R,L∗) are symbiotic.

(1) R: Cd
L∗: L��(I ), where Ixyϕ(x)(y) ↔ |ϕ| = || is the Härtig quantifier.

(2) R: Cd
L∗: L��(R), where Rxyϕ(x)(y) ↔ |ϕ| ≤ || is the Rescher quantifier.

(3) R: Cd
L∗: L��(WCd ), where WCdxyϕ(x, y) ↔ ϕ(·, ·) is a well-ordering of the
order-type of a cardinal.

(4) R: Cd ,WI
L∗: L��(I,WWI ), whereWWIxϕ(x)↔ |ϕ(·)| is weakly-inaccessible.

(5) R: Rg
L∗: L��(I,W Rg), where WRgxyϕ(x, y) ↔ ϕ(·, ·) has the order-type of a
regular cardinal.

(6) R: Cd ,WC
L∗: L��(I,QBr), whereQBrxyϕ(x, y) ↔ ϕ(·, ·) is a tree order of height some
α and has no branch of length α [12].

(7) R: Cd ,WC
L∗: L��(I, Q̄Br), where Q̄Brxyuvϕ(x, y)(u, v) ↔ ϕ(·, ·) is a partial order
with a chain of order-type (·, ·).

Proof. Notice that in all the examplesL∗ contains first-order logic. Also, it is easy
to see that every L∗-definable model class is Δ1(R)-definable. Let us check example
(1): supposeK is the class of models that satisfy a fixed sentence ϕ ∈ L��(I ). Then,
A ∈ K if and only if

∃M (M |= ZFC−
n ∧ M transitive ∧ A ∈M ∧ ∀α ∈M (CdM (α)→ Cd (α))

∧M |= “A |= ϕ”).
And also, A ∈ K if and only if

∀M ([M |= ZFC−
n ∧M transitive ∧A ∈M ∧ ∀α ∈M (CdM (α)]→ Cd (α))

→ M |= “A |= ϕ”).
Since the two displayed formulas above are Σ1(Cd ) and Π1(Cd ), respectively, K is
Δ1(Cd ). The other examples are similar.
So, by Proposition 5.1, it is sufficient to see that, in each case, the corresponding
model classes QR are Δ(L∗)-definable. In the case of the Cd predicate, (1) is done
in Example 4.2. The other cases are easy. 

Theorem 5.5. Suppose L∗ and R are symbiotic. Then the following are equiva-
lent:

(i) (SR)R holds for κ.
(ii) For any ϕ ∈ L∗ and any A that satisfies ϕ, there exists B ⊆ A of cardinality
less than κ that also satisfies ϕ.

Proof. (i)⇒ (ii): Suppose ϕ ∈ L∗ and A |= ϕ. Let K =Mod (ϕ). By symbiosis
(1), K is Δ1(R). In particular, K is Σ1(R). By (SR)R, there is B ∈ K of cardinality
less than κ and an embedding e : B � A. Note that since B ∈ K, B |= ϕ.
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Then, the pointwise image of B under the embedding e is a substructure of A that
has cardinality less than κ and which, being isomorphic to B, also satisfies ϕ.
(ii) ⇒ (i): Suppose K is a Σ1(R) class of models in a fixed vocabulary. Thus,

A ∈ K if and only if Φ(A), for some Σ1(R) formula Φ. Suppose Φ(A) holds, i.e.,
A ∈ K. We will find Ā of cardinality less than κ such that Φ(Ā) holds and there is
an elementary embedding e : Ā � A.
For each formula (x, y1, . . . , yn) without quantifiers, in the language {E, c},
where E is a binary relation symbol and c is a constant symbol, let f(x,�y) be an
n-ary function symbol.
Consider the class K∗ of well-founded models

(M,EM ,RM , cM , 〈fM(x,�y)〉(x,�y))
that satisfy the following sentences (with ∈ interpreted as EM ):
(1) ZFCn, for some suitable n.
(2) Φ(c).
(3) ∀a1, . . . , an(R(a1, . . . , an)↔ QRuvx1 . . . xn(uEv)(x1 = a1) . . . (xn = an)).
(4) ∀�z(∃x(x, �z)→ (f(x,�y)(�z), �z)), for each quantifier-free formula (x, �y).
Since the class of well-founded models is Δ1(R)-definable, and QR is also Δ1(R)-
definable (see the proof of Proposition 5.1), the class K∗ is Δ1(R)-definable. Since
K∗ is closed under isomorphisms, by symbiosis it is Δ(L∗)-definable. Let ϕ be the
L∗-formula that defines a model class of which K∗ is a projection.
Suppose R, as a set-theoretic predicate, is Σm. By Levy’s Reflection Theorem, let
α be such thatA ∈ Vα and Vα �m+n V . Note that RVα = R ∩ Vα .
For each quantifier-free formula(x, �y) in the language {E, c}, choose a Skolem
function fVα

(x,�y) : Vα → Vα for (Vα,∈,A), i.e., a function so that for every �b ∈ Vα ,
if (Vα,∈,A) |= ∃x(x,�b), where E is interpreted as ∈ and c as A, then

(Vα,∈,A) |= (fVα(x,�y)(�b), �b).
Then (Vα,∈, R ∩ Vα,A, 〈fVα(x,�y)〉(x,�y)) ∈ K∗, and hence some model expansion

(Vα,∈, R ∩ Vα,A, 〈fVα(x,�y)〉(x,�y), . . .) satisfies ϕ. By (ii), there is B ⊆ (Vα,∈, R ∩
Vα,A, 〈fVα(x,�y)〉(x,�y), . . .) of cardinality less than κ such that B |= ϕ. Let (M,∈,
R̄, Ā) be the transitive collapse of the corresponding projection of B. Thus, the
transitive collapse map � : B → M is an ∈-isomorphism that sends A to Ā. It
follows that (M,∈, R̄, Ā) |= Φ(Ā). Moreover, R is absolute for (M,∈, R̄, Ā): for
every a1, . . . , an inM , we have that R(a1, . . . , an) iff (M,∈, a1, . . . , an) ∈ QR iff

(M,∈, a1 . . . , an) |= QRuvx1 . . . xn(uEv)(x1 = a1) . . . (xn = an)
iff, by (3), (M,∈, R̄, Ā) |= R(a1, . . . , an). So, since Φ is Σ1(R), the sentence Φ(Ā) is
true, hence Ā ∈ K.
Since we added to the structure (Vα,∈,A) Skolem functions for quantifier-free
formulas in the language {E, c}, the structure (B,∈,A) is in fact a Σ1-elementary
substructure of (Vα,∈,A). Now, for every �a ∈ A, and every formula �(�x) in the
language of A, the set-theoretic sentence A |= �(�a) is Σ1, in the parameters A and
�a. So, if �a ∈ A ∩ B, then we have that A |= �(�a) iff (Vα,∈,A) |= “A |= �(�a)”
iff (B,∈,A) |= “A |= �(�a)” iff (M,∈, Ā) |= “Ā |= �( ��(a))” iff Ā |= �( ��(a)).
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Thus, the inverse transitive collapsing map �−1 yields an elementary embedding
e : Ā � A. 


§6. The Löwenheim–Skolem–Tarski property. The Löwenheim–Skolem–Tarski
property of cardinals, for a logic L∗, denoted by LST (L∗), is defined as follows.

Definition 6.1. A cardinal κ has the LST (L∗) property if for any L∗-definable
model class K and anyA ∈ K, there is B ⊆ A such that B ∈ K and |B| < κ.
Notice that if κ has the LST (L∗) property, then any larger cardinal also has it.
We call the least cardinal κ that has the LST (L∗) property, provided it exists, the
LST (L∗)-number, and we write LST (L∗) = κ to indicate this.

Examples 6.2.

• LST (L��) = LST (L�1�) = ℵ1.
• LST (L��(MMnℵ1 )) = ℵ2, where MMnℵ1 is the Magidor–Malitz quantifier.
Namely,

MMnℵ1x1, . . . , xnϕ(x1, . . . , xn, �y)

if and only if there exists X such that |X | ≥ ℵ1 and ϕ(a1, . . . , an, �y) holds for
all a1, . . . , an ∈ X .

• LST (L��(W )) = ℵ1, where
Wxyϕ(x, y, �z) iff ϕ(·, ·) is a well-ordering.

By Theorem 5.5, if L∗ andR are symbiotic, thenLST (L∗) holds for κ if and only
if (SR)R holds for κ. So, LST (L∗) = κ if and only if (SR)R = κ. Thus, writing ≡
to indicate that the corresponding cardinals are the same, assuming they exist, we
have:

(1) (SR)Cd ≡ LST (L��(I )).
(2) (SR)Cd,WI ≡ LST (L��(I,WWI )).
(3) (SR)Rg ≡ LST (L��(WRg)).
(4) (SR)Cd,WC ≡ LST (L��(I,QBr)).
Thus, the LST (L∗)-number yields a hierarchy of logics, and in the case of
symbiotic R and L∗ it also yields a hierarchy of (SR)R principles.

§7. The case of second-order logic. Let PwSet be the Π1 relation {(x, y) : y =
P(x)}. Let L2 be second-order logic. Then we have the following.
Lemma 7.1. The PwSet relation and L2 are symbiotic.
Proof. SupposeK =Mod (ϕ), for some L2-sentence ϕ. Then A ∈ K if and only
if 〈Vα,∈,A〉 |= “A |= ϕ”, for some (any) α greater than the rank of A. Since the
predicate x = Vα is Δ1(PwSet), K is Δ1(PwSet)-definable.
By Proposition 5.1 it only remains to show that the classQPwSet is Δ(L2)-definable.
But A ∈ QPwSet if and only if A = (A,E, a, b) satisfies the L2 sentence asserting
that E is well-founded and �(a) = P(�(b)), where � is the function on A given by
�(x) = {�(y) : yEx}. 

Theorem 7.2 ([7]). κ = LST (L2) iff κ = (SR)PwSet iff κ is the first supercompact
cardinal.
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Proof. The first equivalence follows from theorem 5.5 and the lemma above. For
the second equivalence, see [1]. 


§8. The strict Löwenheim–Skolem–Tarski property. For symbiotic R and L∗,
the weaker principles (SR)−R and (SR)

−−
R are also equivalent to weaker forms of

LST (L∗).

Definition 8.1. We say that a cardinal κ has the LS(L∗) property if for every
nonempty L∗-definable model class K there existsA ∈ K of cardinality less than κ.
Definition 8.2. We say that a cardinal κ has the strict Löwenheim–Skolem–
Tarski property for L∗, written SLST (L∗), if whenever A is a model and ϕ ∈ L∗ is
such thatA |= ϕ, and |A| = κ, then there is B ⊆ A such that B |= ϕ and |B| < κ.
Using similar (in fact, simpler) arguments to those in the proof of Theorem 5.5,
one can prove the following.

Theorem 8.3. If R and L∗ are symbiotic, then

(1) κ has the LS(L∗) property if and only (SR)−−
R holds for κ.

(2) κ has the SLST (L∗) property if and only (SR)−R holds for κ.

Thus, from our results in Section 3 we have the following:

(1)− (SR)−Cd ≡ SLST (L��(I )).
(2)− (SR)−Cd,WI ≡ SLST (L��(I,WWI )).
(3)− (SR)−Rg ≡ SLST (L��(WRg)).
(4)− (SR)−Cd,WC ≡ SLST (L��(I,QBr)).
We shall devote most of the rest of the paper to showing that the cardinals
corresponding to items (1)−−(4)− above are precisely the first weakly-inaccessible,
the first 2-weakly inaccessible, the first weaklyMahlo, and the first weakly compact.

The proof of Theorem 3.2, together with Example 4.2, shows that if the property
SLST (L��(I )) holds at κ, then there exists a weakly inaccessible cardinal less than
or equal to κ. The following theorem, which follows from a result of A. G. Pinus
([11], Theorem 3), shows that SLST (L��(I )) holds at every κ weakly inaccessible.
Although the ideas are quite similar, our proof bears some differences with that of
[11], e.g., it uses elementary submodels. We provide all details as they will be of
further use in the proofs of the last two theorems of this section.

Theorem 8.4. If κ is weakly inaccessible, then SLST (L��(I )) holds at κ.
Proof. We start with some little tricks due essentially to G. Fuhrken [4]. For
any infinite model A in a countable vocabulary L, we add two predicates S(x) and
R(x, y), as follows:

(1) S ⊆ A is arbitrary, except that
|S| = |{� : � is an infinite cardinal, and � ≤ |A|}|.

(2) R ⊆ S × A is arbitrary, except that
{|R(a, ·)| : a ∈ S} = {� : � is a cardinal and � ≤ |A|}.

(3) If a, b ∈ S are distinct, then |R(a, ·)| �= |R(b, ·)|.
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From (1) – (3) it follows that if X,Y ⊆ A, then the following are equivalent:
a) |X | = |Y |.
b) For all a, b ∈ S, if |X | = |R(a, ·)| and |Y | = |R(b, ·)|, then a = b.
We also add new functions F (a), for every a ∈ A, so that letting L1 be the
expansion ofL that containsS,R, and all the functionsF (a), the following holds:

(∗) For each L��(I ) formula ϕ(x, �z) in the vocabulary L1, and every �b ∈ A,
there is some a ∈ A and c ∈ S such that

F (a) : ϕ(·, �b)→ R(c, ·)
is a bijection.

Thus, for all ϕ and , and all �b,�b′ ∈ A, we have that
|ϕ(·, �b)| = |(·, �b′)|

if and only if there exist a, a′ ∈ A and c ∈ S such that the functions
F (a) : ϕ(·, �b)→ R(c, ·),
F (a′) : (·, �b′)→ R(c, ·)

are bijective.
We define a (Fuhrken-)translation ϕ �−→ ϕ∗ from L��(I ), in the vocabulary L,
into L�� , in the vocabulary L1, as follows:
(i) ϕ∗ = ϕ, if ϕ is atomic.
(ii) (¬ϕ)∗ = ¬ϕ∗.
(iii) (ϕ ∧ )∗ = ϕ∗ ∧ ∗.
(iv) (∃xϕ(x, �z))∗ = ∃xϕ∗(x, �z).
(v) (Ixyϕ(x, �z)(y, �z))∗ = ∃u∃v∃w(S(w) ∧
“F (u) : ϕ∗(·, �z)→ R(w, ·) is bijective” ∧
“F (v) : ∗(·, �z)→ R(w, ·) is bijective”).

If A∗ an expansion of A to an L1-model satisfying all occurrences of (∗), then
for all L��(I ) formulas ϕ, in the vocabulary L, and all �a ∈ A,

A |= ϕ(�a) if and only if A∗ |= ϕ∗(�a).

Notice that ifB∗ ⊆ A∗ is a model of the relevant cases of (∗) (i.e., for subformulas
of ϕ∗) and, in addition, B∗ satisfies (3) above (but not necessarily (1) or (2)), then
for the L-reduct B of B∗, all L-subformulas  of ϕ, and all �a ∈ B,

B |= (�a) if and only if B∗ |= ∗(�a).

To prove the Theorem, suppose A |= ϕ, where |A| = κ. We expand A to A∗

satisfying all occurrences of (∗), so that A∗ |= ϕ∗. We need to find B∗ ⊆ A∗ such
that B∗ |= ϕ∗ and |B∗| < κ. Then B = B∗ � L is the required model, provided that
B∗ satisfies all the relevant instances of (∗), and (3).
In the sequel we shall be taking elementary substructures B � A∗ of cardinality
< κ. By this we mean that B is an elementary substructure of A∗ for the language
L together with S,R and F (a), for all a ∈ B. Also, we shall always assume that
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B is closed under the operation that takes every L��(I ) formula ϕ(x, �z) in the
vocabulary of B, and every �b ∈ B, to some a ∈ A and c ∈ S such that

F (a) : ϕ(·, �b)→ R(c, ·).
Thus, B � A∗ automatically implies that B satisfies all instances of (∗).
We start with any B0 � A∗ countable. We shall produce, in fact, a continuous
chain 〈Bα : α < κ〉 of elementary submodels of A∗, each of size < κ, such that
any Bα, for α > 0, could be taken as our B∗. This is, of course, an overkill for the
purposes of the present proof, but the construction of the chain will be also useful
in the proof of the next two theorems.
If Bα � A∗ is already defined for α < 
 =

⋃

 < κ, then we let B
 = ⋃

α<
 Bα.
Now suppose Bα � A∗ is defined; we define Bα+1 as follows.
First, let us see what could go wrong with (3). There can be a, b ∈ SBα such that
a �= b but

|R(a, ·)Bα | = |R(b, ·)Bα |.
Of course,

|R(a, ·)A∗ | �= |R(b, ·)A∗|
say

|R(a, ·)A∗ | < |R(b, ·)A∗ |.
Note that since Bα � A∗,

|R(a, ·)Bα | ≤ |R(a, ·)A∗ |
hence

|R(a, ·)Bα | < |R(b, ·)A∗ |.
As κ is a limit cardinal, let X ⊆ R(b, ·)A∗

be such that

|R(a, ·)A∗ | < |X | < κ.
Then we choose B � A∗ such that (Bα ∪ X ) ⊆ B, and we have that

|R(a, ·)B| < |R(b, ·)B|.
Since κ is regular, by doing the same, repeatedly, with all a, b ∈ SBα such that a �= b,
in the end we have B1, still of size < κ, such that Bα ⊆ B1 � A∗, and

|R(a, ·)B1 | < |R(b, ·)B1 |
for all a, b ∈ SBα such that |R(a, ·)A∗ | < |R(b, ·)A∗ |.
Now, starting with B1, we repeat the process to get B2, still of size < κ and such
that B1 � B2 � A∗, so that (3) holds for all a �= b in SB1 . And so on. Finally, let
Bα+1 = ⋃

n Bn. So, Bα+1 has size less than κ. And if a, b ∈ SB
α+1
, then a, b ∈ SBn ,

for some n, and so if a �= b, then
|R(a, ·)Bα+1 | �= |R(b, ·)Bα+1 |. 


Corollary 8.5. SLST (L��(I )) = κ if and only ifκ is the first weakly inaccessible
cardinal.
We also have the following theorem, using similar arguments.

Theorem 8.6. If κ is 2-weakly inaccessible, then SLST (L��(I,WWI )) holds at κ.
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Corollary 8.7. SLST (L��(I,WWI )) = κ if and only if κ is the first 2-weakly
inaccessible cardinal.

Let us consider next the cases of a weaklyMahlo and a weakly compact cardinal,
which use ideas similar to the previous proof, and sowewill only provide the relevant
details.

Theorem 8.8. If κ is weakly Mahlo, then SLST (L��(I,W Rg)) holds for κ.

Proof. For any infinite model A in a countable vocabulary L, let S(x) and
R(x, y) be as in the proof of Theorem 8.4. Thus,

(∗) If a, b ∈ S are distinct, then |R(a, ·)| �= |R(b, ·)|.
Also, let S̄ = {a ∈ S : |R(a, ·)| is regular}, and let R̄ ⊆ S̄ × A × A be such that
for each a ∈ S̄, R̄(a, ·, ·) is a well-order of order-type |R(a, ·)|. We also add new
functions F (a) and F̄ (a), for every a ∈ A, so that, letting L1 be the expansion of
L by adding S, S̄, R, R̄, and the functions F (a) and F̄ (a), for every a ∈ A, the
following holds:

(∗∗) For each L��(I,WRg) formula ϕ(x, �z) in the vocabulary L1, and every
�b ∈ A, there are some a ∈ A and c ∈ S such that

F (a) : ϕ(·, �b)→ R(c, ·)
is a bijection.

(∗∗∗) For each L��(I,W Rg) formula ϕ(x, y, �z) in the vocabulary L1, and every
�b ∈ A, if ϕ(·, ·, �b) is a well-order whose order-type is an infinite regular
cardinal, then there are some a ∈ A and c ∈ S̄ such that

F̄ (a) : field(ϕ(·, ·, �b))→ field(R̄(c, ·, ·))
is an order-isomorphism.

We define a translation ϕ �−→ ϕ∗ from L��(I,W Rg), in the vocabulary L, into
L�� , in the vocabulary L1, as follows:
(i) ϕ∗ = ϕ, if ϕ is atomic.
(ii) (¬ϕ)∗ = ¬ϕ∗.
(iii) (ϕ ∧ )∗ = ϕ∗ ∧ ∗.
(iv) (∃xϕ(x, �z))∗ = ∃xϕ∗(x, �z).
(v) (Ixyϕ(x, �z)(y, �z))∗ = ∃u∃v∃w(S(w) ∧
“F (u) : ϕ∗(·, �z)→ R(w, ·) is bijective” ∧
“F (v) : ∗(·, �z)→ R(w, ·) is bijective”).

(vi) (WRgxyϕ(x, y, �z))∗ = ∃u∃w(S̄(w) ∧ “F̄ (u) : field(ϕ∗(·, ·, �z)) →
field(R̄(w, ·, ·)) is an order-isomorphism”).

If A∗ an expansion of A to an L1-model satisfying all occurrences of (∗), (∗∗),
and (∗∗∗), then for all L��(I,W Rg) formulas ϕ in the vocabulary L, and all �a ∈ A,

A |= ϕ(�a) if and only if A∗ |= ϕ∗(�a).

To prove the Theorem, suppose A |= ϕ, where |A| = κ. We first expand A to an
L1-model A∗ that satisfies all occurrences of (∗), (∗∗), and (∗∗∗), so thatA∗ |= ϕ∗.
We need to find B∗ ⊆ A∗ such that B∗ |= ϕ∗ and |B∗| < κ, for then B = B∗ � L
is the required model, provided B∗ also satisfies all the necessary instances of (∗),
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(∗∗), and (∗∗∗). We can ensure that B∗ satisfies (∗∗) by taking B∗ � A∗ (see
the proof of theorem 8.4). In order to ensure that B∗ satisfies (∗) and (∗∗∗) we
first proceed as in the proof of Theorem 8.4. As in that proof, we can produce a
continuous chain 〈Bα : α < κ〉 of elementary substructures of A∗ of size less than
κ, with A∗ =

⋃
α<κ Bα , and such that every Bα, for α > 0, satisfies all the relevant

instances of (∗).
Now, given any L��(I,WRg) formula (x, y, �z), in the vocabulary L1, the set
T of all α < κ such that for every �b ∈ Bα , if (·, ·, �b)Bα is a well-order whose
order-type is an infinite regular cardinal, then (·, ·, �b)A∗

is also a well-order whose
order-type is an infinite regular cardinal, is unbounded in κ. The reason is that,
given Bα, a witness to non-well-foundedness, or to nonregularity, is a subset of A∗

of size less than κ, and therefore can be added to Bα, while keeping it of size less
than κ. So, by closing off under this operation of adding witnesses, we eventually
obtain a desired Bα′ ⊇ Bα in T . Now suppose that α is a regular limit of ordinals
in T such that α = |Bα |. We claim that α is also in T. For suppose �b ∈ Bα is
such that (·, ·, �b)Bα is a well-order whose order-type is an infinite regular cardinal
�. If � < α, then by regularity of α, field((·, ·, �b)Bα ) is contained in some Bα′ , for
some α′ ∈ T smaller than α. But then(·, ·, �b)Bα = (·, ·, �b)Bα

′
, hence(·, ·, �b)A∗

is a regular cardinal. Now suppose � = α. Let a ∈ Bα and c ∈ S̄ be such that Bα
satisfies that

F̄ (a) : field((·, ·, �b))→ field(R̄(c, ·, ·))
is an order-isomorphism. Then Bα also satisfies that, for some a′,

F (a′) : {x : x = x} → R(c, ·)
is a bijection. But by elementarity, the same holds in A∗. Hence, (·, ·, �b)A∗

must
have order-type κ, which is regular.
Since κ is weakly-Mahlo, there is some α regular that is a limit point ofT , for all
the (finitely-many) relevant formulas . Then we can take B∗ = Bα , as it satisfies
ϕ∗ (because Bα � A1), has size less than κ, and satisfies all the necessary instances
of (∗∗∗). 

The proof of Theorem 3.3, together with a version of Example 4.2 using both the
I and WRg quantifiers, shows that if the property SLST (L��(I,W Rg)) holds at
κ, then there exists a weakly Mahlo cardinal less than or equal to κ. Thus, the last
theorem yields the following corollary.

Corollary 8.9. SLST (L��(I,W Rg)) = κ if and only if κ is the first weakly
Mahlo cardinal.

Theorem 8.10. If κ is weakly compact, then SLST (L��(I,QBr)) holds for κ.
Proof. For any infinite model A in a countable vocabulary L, let S and R be as
in the previous two proofs. Thus,

(∗) If a, b ∈ S are distinct, then |R(a, ·)| �= |R(b, ·)|.
Let �A be the supremumof all the heights of tree orders definable inAby formulas
of the language L��(I,QBr) in the vocabulary L, with parameters. Let R̄ ⊆ A× A
be a well-ordering of A of order-type some �A ≥ �A + 1.
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Also, let F (a) and F̄ (a), for every a ∈ A, be new functions so that, letting L1 be
the expansion of L by adding S, R, R̄, and the functions F (a) and F̄ (a), for every
a ∈ A, the following holds:
(∗∗) For eachL��(I,QBr) formulaϕ(x, �z) in the vocabularyL1, and every�b ∈ A,

there are some a ∈ A and c ∈ S such that
F (a) : ϕ(·, �b)→ R(c, ·)

is a bijection.

(∗∗∗) For each L��(I,QBr) formula ϕ(x, y, �z), in the vocabulary L1, and every
�b ∈ A, if ϕ(·, ·, �b) is a tree order with a chain of length some 
 < �A, then
there are some a, c ∈ A such that R̄(·, c) has order-type 
 and

F̄ (a) : R̄(·, c)→ field(ϕ(·, ·, �b))
is an order-homomorphism (i.e., F̄ (a) witnesses that the tree order has a
chain of length 
).

We define a translation ϕ �−→ ϕ∗ from L��(I,QBr), in the vocabulary L, into
L�� , in the vocabulary L1, as follows:
(i) ϕ∗ = ϕ, if ϕ is atomic.
(ii) (¬ϕ)∗ = ¬ϕ∗.
(iii) (ϕ ∧ )∗ = ϕ∗ ∧ ∗.
(iv) (∃xϕ(x, �z))∗ = ∃xϕ∗(x, �z).
(v) (Ixyϕ(x, �z)(y, �z))∗ = ∃u∃v∃w(S(w) ∧
“F (u) : ϕ∗(·, �z)→ R(w, ·) is bijective” ∧
“F (v) : ∗(·, �z)→ R(w, ·) is bijective”).

(vi) (QBrxyϕ(x, y, �z))∗ = ϕ∗(·, ·, �z) is a tree order2 ∧
∃u(∀w([w �= u ∧ (R̄(·, w) ⊆ R̄(·, u))]→
∃v(“F̄ (v) : R̄(·, w)→ field(ϕ∗(·, ·, �z))
is an order-homomorphism”)) ∧
∀x((R̄(·, u) ⊆ R̄(·, x))→
∀y(“F̄ (y) : R̄(·, x)→ field(ϕ∗(·, ·, �z))
is not an order-homomorphism”)))).

Suppose A∗ is an expansion of A to an L1-model satisfying all occurrences of
(∗), (∗∗), and (∗∗∗). Then for all L��(I,QBr) formulas ϕ in the vocabulary L, and
every �a ∈ A,

A |= ϕ(�a) if and only if A∗ |= ϕ∗(�a).

To prove theTheorem, supposeA |= ϕ, where |A| = κ. ExpandA to anL1-model
A∗ |= ϕ∗ satisfying all occurrences of (∗), (∗∗), and (∗∗∗), so thatA∗ |= ϕ∗.
Let us first observe that if B∗ � A∗ is a model of the relevant cases of (∗), (∗∗),
and (∗∗∗) (i.e., for subformulas of ϕ∗) and, in addition, B∗ satisfies that for every
subformula (x, y, �z) of ϕ∗ and every �b ∈ B, if (·, ·, �b)A∗

is a tree order of height
some limit ordinal but with no cofinal chain (i.e., a chain of order-type the height
of the tree), then (·, ·, �b)B∗

is also a tree order of height some limit ordinal with

2This can be expressed.
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no cofinal chain, then for the L-reduct B of B∗, all L-subformulas  of ϕ, and all
�a ∈ B,

B |= (�a) if and only if B∗ |= ∗(�a).

This can be easily checked by induction on the complexity ofϕ. So it will be sufficient
to find some such B∗ � A∗ of cardinality less than κ, for then the L-reduct of B∗

will be the required model of ϕ.
To ensure that B∗ satisfies (∗) we first produce, as in the proof of Theorem 8.4, a
continuous chain 〈Bα : α < κ〉 of elementary substructures of A∗ of size less than
κ, with A∗ =

⋃
α<κ Bα, and such that every Bα satisfies the relevant instances of

(∗). Note that since Bα � A∗, all α < κ, every Bα satisfies ϕ∗, and all the instances
of (∗∗) are also satisfied (see the proof of theorem 8.4).
Now, given any L��(I,QBr) formula (x, y, �z), in the vocabulary L1, the set
T of ordinals α < κ such that for every �b ∈ Bα , if (·, ·, �b)Bα is a tree-order of
height some limit ordinal, then (·, ·, �b)A∗

is a also a tree-order of height some
limit ordinal, is a club subset of κ. The reason is that, given Bα and �b such that
(·, ·, �b)Bα is a tree-order, any witness to the non-well-foundedness of the relation
(·, ·, �b)A∗

is a countable subset of A, which can be added to Bα. So we can close
off under the operation of adding witnesses to non-well-foundedness and obtain a
desired Bα′ ⊇ Bα with α′ ∈ T.
Suppose α ∈ T and �b ∈ Bα are such that (·, ·, �b)Bα is a tree order of height
some limit ordinal �. Note that � < κ ≤ �A. Then (·, ·, �b)A∗

is a also a tree-order
of height some limit ordinal≥ �. So, since (∗∗∗) holds forA∗, for every 
 < � there
are some a = a
 and c in A such that R̄(·, c)A∗

has order-type 
 and

F̄ (a)A
∗
: R̄(·, c)A∗ → field(ϕ(·, ·, �b)A∗

)

is an order-homomorphism. Since κ is strongly inaccessible, we may close Bα under
the operation of adding to it c and a
 , for all 
 < �, so that we obtain a club
C ⊆ T with the property that if α ∈ C, then for every �b ∈ Bα , if for any given

 < �B

α

there are some a, c witnessing (∗∗∗) for(·, ·, �b) inA∗, then there are some
such a, c in Bα . Then if α belongs to the club C := ⋂{C :  is an L��(I,QBr)
formula in the vocabulary L1}, we have that Bα satisfies all the instances of (∗),
(∗∗), and (∗∗∗).
Finally, since |A| = κ, we may as well assume that A ⊆ Vκ. Moreover, since L1
has also size κ, we may view A∗ as being in fact a subset of Vκ. The assertion that
some tree order defined in A∗ by some subformula of ϕ∗ does not have a cofinal
branch is Π11 over the structure 〈Vκ,∈,A∗〉. And since κ is weakly-compact, hence
Π11-indescribable, this must be also true in 〈Vα,∈,A∗ ∩ Vα〉 for a stationary set of
α’s. Now, since the set of α’s such thatBα = A∗∩Vα is a club, we can find stationary
many α’s in C with Bα satisfying that for every subformula (x, y, �z) of ϕ∗ and
every �b ∈ Bα , if (·, ·, �b)A∗

is a tree order of height some limit ordinal without
a cofinal chain, then (·, ·, �b)Bα is also a tree order of height some limit ordinal
without a cofinal chain. Thus we can take as B∗ any such Bα. 
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The proof of Theorem 3.5, together with a version of Example 4.2 using both
the I and QBr quantifiers, shows that if SLST (L��(I,QBr)) holds at κ, then there
exists a weakly compact cardinal less than or equal to κ. Thus, last theorem yields
the following.

Corollary 8.11. SLST (L��(I,QBr)) = κ if and only if κ is the first weakly
compact cardinal.

Let us conclude by observing that Scott’s method (i.e., the use of an elementary
embedding of V into the transitive collapse of the ultrapower of V given by a
κ-complete nonprincipal measure on κ) shows that if κ is a measurable cardinal,
then SLST (L2) holds for κ. However, it is still an open question if SLST (L2) is
exactly the first measurable cardinal, or even if SLST (L2) implies the existence of
an inner model with a measurable cardinal.
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Seconda Università degli Studi di Napoli, Caserta, 2006, pp. 47–92.
[4] G. Fuhrken, Skolem-type normal forms for first-order languages with a generalized quantifier.

Fundamenta Mathematicae, vol. 54 (1964), pp. 291–302.
[5] A. Levy, Basic Set Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin,

Heidelberg, New-York , 1979.
[6] P. Lindström, First order predicate logic with generalized quantifiers.Theoria, vol. 32, pp. 186–195,

1966.
[7]M. Magidor, On the role of supercompact and extendible cardinals in logic. Israel Journal of

Mathematics, vol. 10 (1971), pp. 147–157.
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ICREA (INSTITUCIÓ CATALANADE RECERCA I ESTUDIS AVANÇATS) AND
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