Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-11T05:58:05.920Z Has data issue: false hasContentIssue false

THE MODAL LOGIC OF $\sigma $-CENTERED FORCING AND RELATED FORCING CLASSES

Published online by Cambridge University Press:  03 December 2020

UR YA’AR*
Affiliation:
EINSTEIN INSTITUTE OF MATHEMATICS HEBREW UNIVERSITY OF JERUSALEM EDMOND J. SAFRA CAMPUS GIVAT RAM, JERUSALEM91904, ISRAELE-mail: ur.yaar@mail.huji.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the modality “ $\varphi $ is true in every $\sigma $ -centered forcing extension,” denoted $\square \varphi $ , and its dual “ $\varphi $ is true in some $\sigma $ -centered forcing extension,” denoted $\lozenge \varphi $ (where $\varphi $ is a statement in set theory), which give rise to the notion of a principle of $\sigma $ -centered forcing. We prove that if ZFC is consistent, then the modal logic of $\sigma $ -centered forcing, i.e., the ZFC-provable principles of $\sigma $ -centered forcing, is exactly $\mathsf {S4.2}$ . We also generalize this result to other related classes of forcing.

Type
Article
Copyright
© The Association for Symbolic Logic 2020

References

REFERENCES

Barnett, J. H., Weak variants of Martin’s axiom . Fundamenta Mathematicae , vol. 141 (1992), no. 1, pp. 6173.Google Scholar
U. Ben-Ari-Tishler (now Ya’ar), The modal logic of $\boldsymbol{\sigma}$ - centered forcing and related forcing classes , M.Sc. thesis, Hebrew University of Jerusalem, 2016.Google Scholar
Blackburn, P., de Rijke, M., and Venema, Y., Modal logic , Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Błaszczyk, A. and Shelah, S., Regular subalgebras of complete Boolean algebras , this Journal, vol. 66 (2001), no. 2, pp. 792800.Google Scholar
Hamkins, J. D., Leibman, G., and Löwe, B., Structural connections between a forcing class and its modal logic . Israel Journal of Mathematics , vol. 207 (2015), no. 2, pp. 617651.CrossRefGoogle Scholar
Hamkins, J. D. and Linnebo, Ø., The modal logic of set-theoretic potentialism and the potentialist maximality principles, arXiv preprint, 2017, arXiv:1708.01644 Google Scholar
Hamkins, J. D. and Löwe, B., The modal logic of forcing . Transactions of the American Mathematical Society , vol. 360 (2008), no. 4, pp. 17931817.CrossRefGoogle Scholar
Hamkins, J. D. and Löwe, B., Moving up and down in the generic multiverse , Logic and its Applications , Lecture Notes in Computer Science, vol. 7750, Springer, Heidelberg, 2013, pp. 139147.CrossRefGoogle Scholar
Inamdar, T. C., On the modal logics of some set-theoretic constructions , M.Sc. thesis, Universiteit van Amsterdam, 2013.Google Scholar
Jensen, R. B. and Solovay, R. M., Some applications of almost disjoint sets , Mathematical Logic and Foundations of Set Theory (Bar-Hillel, Y., editor), North-Holland, Amsterdam, 1970, pp. 84104.Google Scholar
Kunen, K., Set Theory , Studies in Logic, vol. 34, College Publications, London, 2011.Google Scholar
Piribauer, J., The modal logic of generic multiverses , M.Sc. thesis, Universiteit van Amsterdam, 2017.Google Scholar