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THEMODAL LOGIC OF ó-CENTERED FORCING

AND RELATED FORCING CLASSES

UR YA’AR

Abstract. We consider the modality “ϕ is true in every ó-centered forcing extension,” denoted �ϕ,

and its dual “ϕ is true in some ó-centered forcing extension,” denoted ♦ϕ (where ϕ is a statement in set

theory), which give rise to the notion of a principle of ó-centered forcing. We prove that if ZFC is consistent,

then the modal logic of ó-centered forcing, i.e., the ZFC-provable principles of ó-centered forcing, is exactly

S4.2. We also generalize this result to other related classes of forcing.

§1. Introduction and preliminaries. In this work we continue the investigation
of the Modal Logic of Forcing, initiated by Joel Hamkins and Benedikt Löwe
in [7], where they consider the modal logic arising from considering a statement
as necessary (respectively possible) if it is true in any (respectively some) forcing
extension of the world. Here we restrict the modality only to extensions obtained
by ó-centered forcing notions, and prove that the modal logic arising from this
interpretation is S4.2 (see below). We then show that our techniques can be
generalized to other related classes of forcing notions.
We begin by setting some preliminaries—first we cite common definitions and

theorems of forcing and of modal logic; and then present the main tools developed
in [5, 7] for the research of the modal logic of forcing; we add one new notion
to this set of tools, the notion of an n-switch, and show its utility; and prove a
general theorem (Theorem1.15)which provides the framework for themain theorem
(Theorem 3.14). In Section 2 we present the class of ó-centered forcing and some
of its properties which give us the easy part of the theorem—that the modal logic of
ó-centered forcing contains S4.2, and present the technique of coding subsets using
ó-centered forcing. The hard part of the main theorem will be proved in Section 3,
where we begin by defining a specific model of ZFC, and then present two forcing
constructions that would allow us to establish that the modal logic of ó-centered
forcing is contained in S4.2. We conclude with the above-mentioned generalizations
and some open questions.
We begin by presenting some notations and background that will be used in

this work. Our forcing notation is standard, and will usually follow Kunen’s
[11, Chapter 4].
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2 UR YA’AR

We work with propositional modal logic as presented in [3], in which we add to
standard propositional logic twounary operators—� and♦, where�ϕ is interpreted
as “necessarily ϕ” and ♦ϕ as “possibly ϕ.”
The modal axioms which will be used are:

K �(ϕ→ ø)→ (�ϕ→�ø),
Dual ♦ϕ↔¬�¬ϕ,
T �ϕ→ ϕ,
4 �ϕ→��ϕ,
.2 ♦�ϕ→�♦ϕ,
.3

(

♦ϕ∧♦ø
)

→ ♦
[(

♦ϕ∧ø
)

∨
(

ϕ∧♦ø
)]

,
5 ♦�ϕ→ ϕ,

and the modal theories discussed are: S4, axiomatized by K, Dual, T, and 4, S4.2,
axiomatized by adding axiom .2, S4.3 by adding axiom .3, and S5 by adding axiom 5.
We assume the reader is familiar with Kripke Semantics for modal logic, where a

Kripke model is a tripletM= 〈W,R,V 〉 such thatW is a non-empty set (the set of
worlds), R is a binary relation onW (the accessibility relation), and V is a function
from the propositional variables to subsets of W (the valuation); F = 〈W,R〉 is
called the frame on whichM is based; and the satisfaction relationM,w � ϕ (for
w ∈W ) is defined in the usual inductive way, using

M,w � �ϕ iff for every u ∈W such that wRu,M,u � ϕ.

We say that ϕ is valid in M (M � ϕ) if M,w � ϕ for every w ∈W , and that ϕ
is valid on a frame F (F � ϕ) if ϕ is valid in every model based on F . A class of
frames C characterizes a modal theory Λ if a formula is in Λ iff it is valid on every
frame in C.
We will use the following class of frames to characterize S4.2:

Definition1.1. Let 〈F,≤〉 such that≤ is a reflexive and transitive binary relation
on F. 〈F, ≤〉 is called a pre-Boolean-algebra (pBA) if 〈F/≡ , ≤〉 is a Boolean-algebra
(BA), where≡ is the natural equivalence relation onF defined byx ≡ y iffx ≤ y ≤ x,
and ≤ denotes also the induced order relation.

A pBA can be thought of as a BA where every element is replaced by a cluster of
equivalent elements. We will use the following:

Theorem 1.2 ([7, Theorem 11]). S4.2 is characterized by the class of all finite
pBAs.

1.1. The modal logic of forcing. We now review the framework of the modal logic
of forcing, based on [5] and [7]. The reader who is familiar with these works may
wish to skip to Definition 1.10 where we define the new notion of an n-switch.
In the context of set-theory, the possible world semantics suggest a connection

between modal logic and forcing, as we can imagine all generic extensions of the
universe (or of a specific model of ZFC) as an enormous Kripke model (called
“the generic multiverse”). This leads naturally to the forcing interpretation of modal
logic, in which we say that a sentence of set theory ϕ is necessary (�ϕ) if it is true in
all forcing extensions, and possible (♦ϕ) if it is true in some forcing extension. Given
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THEMODAL LOGIC OF ó-CENTERED FORCING 3

some definable class of forcing notions Γ, we can also restrict to posets belonging
to that class, to get the operators �Γ and ♦Γ. The following definitions, based on
[5] and [7], allow us to formally ask the question—what statements are valid under
this interpretation?

Definition 1.3. 1. Given a formula ϕ = ϕ(q0,...,qn) in the language of modal
logic, where q0,...,qn are the only propositional variables, appearing in ϕ, and
some set-theoretic sentences ø0,...,øn, the substitution instance ϕ(ø0,...,øn) is
the set-theoretic statement obtained recursively by replacing qi with øi and
interpreting the modal operators according to the forcing interpretation (or
the Γ-forcing interpretation).

2. LetΓbe a class of forcing notions. TheZFC-provable principles of Γ-forcing are
all the modal formulas ϕ such that ZFC ⊢ ϕ(ø0,...,øn) for every substitution
qi 7→ øi under the Γ-forcing interpretation. This will also be called the modal
logics of Γ-forcing, denoted MLF(Γ). If we discuss the class of all forcing
notions we omit mention of Γ.

Theorem 1.4 (Hamkins and Löwe [7]). If ZFC is consistent then the ZFC-
provable principles of forcing are exactly S4.2.

We will now present the main tools which were developed to prove the theorem
above, and which can be used to prove similar theorems. To prove such a theorem,
we need to establish lower and upper bounds, i.e., find a modal theory Λ such that
MLF(Γ)⊇Λ andMLF(Γ)⊆Λ, respectively. Each type of bound require a different
set of tools, which will be presented below.

1.1.1. Lower bounds. A simple observation is that the ZFC-provable principles
of Γ-forcing are closed under the usual deduction rules for modal logic, so if a modal
theory is given by some axioms, to show it is contained in MLF(Γ) it is enough to
check that the axioms are valid principles of Γ-forcing. So, for example, axioms K
and Dual are easily seen to be valid under the Γ-forcing interpretation for every
class Γ. The validity of other axioms depends on specific properties of Γ:

Definition 1.5. A definable class of forcing notions Γ is said to be reflexive if it
contains the trivial forcing; transitive if it is closed under finite iterations, i.e., if P∈Γ
and Q̇ is aP-name for a poset such that
P Q̇∈Γ, thenP∗Q̇∈Γ; persistent ifP,Q∈Γ

implies Q ∈ ΓV
P

; and directed if P,Q ∈ Γ implies that there is some R ∈ Γ such that

R is forcing equivalent to P∗ Ṡ and to Q∗ Ṫ, where Ṡ ∈ ΓV
P

and Ṫ ∈ ΓV
Q

.
Note that if a Γ is transitive and persistent, we can show it is directed by taking

R= P×Q for any P,Q ∈ Γ.

Theorem 1.6 [5, Theorem 7]. Axiom T is valid in every reflexive forcing class,
axiom 4 in every transitive forcing class, and axiom .2 in every directed forcing class.
Thus, if Γ is reflexive, transitive, and directed thenMLF(Γ)⊇ S4.2.

1.1.2. Upper bounds. To establish that Λ is an upper bound forMLF(Γ), we need
to show that every formula not in Λ is also not inMLF(Γ). To do so, we would need
to find a model of ZFC and some substitution instance of ϕ that fails in this model.
In the case that Λ is characterized by some class of frames C, ϕ /∈Λmeans that there
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is some Kripke model based on a frame in C where ϕ fails. So our goal would be to
find a suitable model of set theoryW such that the Γ-generic multiverse generated
byW (i.e., all Γ-forcing extensions ofW) “looks like” the model where ϕ fails. The
main tool for that is called a labeling:

Definition 1.7. A Γ-labeling of a frame 〈F,R〉 for a model of set theory W is an
assignment to each w ∈ F a set-theoretic statement Φw such that:

1. The statements form a mutually exclusive partition of truth in the Γ-generic
multiverse over W, i.e., every Γ-generic extension of W satisfies exactly one
Φw .

2. The statements correspond to the relation, i.e., ifW [G ] is a Γ-forcing extension
ofW that satisfies Φw , thenW [G ] � ♦Φu iff wRu.

3. W �Φw0 where w0 is a given initial element of F.

Lemma 1.8 (The labeling lemma—[5, Lemma 9]). Suppose w 7→ Φw is a Γ-
labeling of a finite frame 〈F,R〉 for a model of set theory W with w0 an initial world of
F, andM a Kripke model based on F. Then there is an assignment of the propositional
variables p 7→ øp such that for every modal formula ϕ(p0,...,pn),

M,w0 � ϕ
(

p0,...,pn
)

⇐⇒ W � ϕ
(

øp0,...,øpn
)

.

Corollary 1.9. If every finite pBA has a Γ-labeling over some model of ZFC,
thenMLF(Γ)⊆ S4.2.

Proof. By Theorem 1.2, every modal formula ϕ /∈ S4.2 fails in a Kripke model
based on some finite pBA. So, given a Γ-labeling for this frame over a modelW, by
the labeling lemma, there is a substitution instance of ϕ which fails atW under the
Γ-forcing interpretation. So ϕ /∈MLF(Γ). ⊣

Hence to establish upper bounds, we try to find labelings for specific frames.
Various labelings can be constructed using certain kinds of set-theoretic statements,
called in general control statements.

Definition 1.10 (Control statements). LetW be some model of set theory, and
Γ some class of forcing notions.

1. A switch for Γ-forcing over W is a statement s such that necessarily, both s and
¬s are possible. That is, over every Γ-extension ofW one can force s or ¬s as
one chooses using Γ-forcing.

2. An n-switch for Γ- forcing over W is a set of statements {si | i < n} (where
n > 1) such that every Γ-generic extension W ′ of W satisfies exactly one si ,
and every sj is necessarily possible, i.e., over every Γ-extension ofW one can
force sj using Γ-forcing. The n-switch value in some W [G ] is the i such that
W [G ] � si . Note that a 2-switch is essentially just a switch.

1

3. A button for Γ- forcing over W is a statement b which is necessarily possibly
necessary, i.e., W � �♦�b. This means that in every Γ-extension of W, we
can force b to be true using Γ-forcing and to remain true in every further

1In [6], Hamkins and Linnebo independently define the notion of a “dial,” which is essentially the
same as an n-switch, and prove results similar to our Theorem 1.11 and Lemma 1.13. Our results were
independent of these.
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THEMODAL LOGIC OF ó-CENTERED FORCING 5

Γ-extension. A button is called pushed if �b holds, otherwise it is called
unpushed. A pure button is a button b such that �(b → �b) (i.e., if it is
true then it is pushed). If b is an unpushed button then�b is an unpushed pure
button.

4. A ratchet for Γ- forcing over W is a collection of pure buttons {ri | i ∈ I },
possibly with i as a parameter, where I is well-ordered, such that pushing ri
pushes every rj for j < i , and necessarily, every unpushed ri can be pushed
without pushing any rj for j > i . An infinite ratchet {ri | i ∈ I } is called strong
if there is no Γ-extension ofW satisfying every ri . The ratchet value inW [G ]
is the first i ∈ I such thatW [G ] � ¬ri .

5. A family of control statements (switches, n-switches, buttons, and ratchets) is
called independent over W (for Γ-forcing) if in W, all buttons are unpushed
(including the ones in any ratchet), and necessarily, using Γ-forcing, each
button can be pushed, each switch can be turned on or off, the value of each n-
switch can be changed, and the value of every ratchet can be increased, without
affecting any other control statement in the family.
Note the “necessarily”—the independence needs to be preserved in any

Γ-forcing extension ofW.

n-switches are less naturally occurring in set theory than the other notions, and
indeed they were not explicitly defined in [5] and [7]. However, by examining the
proofs of some of the main theorems there, one can see that what was implicitly
used was an n-switch, which was constructed using switches (cf. [5, Theorems 10,
11, and 13]). Additionally, in some cases switches were constructed from ratchets
and then transformed into n-switches (e.g., in [5, Theorems 12 and 15]). So, in the
definition of some of the central labelings, n-switches turn out to be themore natural
notion, and we will show how to construct them using either switches or a ratchet
independently. Hence the following theorem, which gives sufficient conditions for
the existence of labelings for finite pBAs, generalizes some of the above-mentioned
theorems from [5], and they can be inferred from it. We will not be able to use the
theorem as it is to prove our main theorem, but we will use its proof as a model, so
it has instructive value in itself.

Theorem 1.11. Let Γ be some reflexive and transitive forcing class andW a model
of set theory. If for everym,n < ù there is a family of m buttons mutually independent
from an n′-switch for some n′ ≥ n then there is a Γ-labeling over W for every frame
which is a finite pBA.

Proof. Let 〈F, ≤〉 be a finite pBA. As noted earlier, it can be viewed a finite
BA, where each element is replaced by a cluster of equivalent worlds. We can add
dummy worlds to each cluster without changing satisfaction in the model, so we
can assume that each cluster is of size n for some 1 < n < ù.2 It is known that
any finite BA is isomorphic to the BA 〈P(B), ⊆〉 for some finite set B. Let B be
such that 〈F/ ≡ , ≤〉 ∼= 〈P(B), ⊆〉, and set m = |B |. We can assume that in fact
B = {0,...,m – 1}. There is a correspondence between subsets A⊆ B and clusters in

2If every cluster has only one element then we actually don’t need the n-switch, and we can label the
BA only with the buttons.
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〈F, ≤〉. Each cluster is of size n, so by enumerating each cluster, all the elements of

F can be named wAi for i < n and A ⊆ B , where wAi ≤ wA
′

j iff A ⊆ A′. An initial
world in F must be in the bottom cluster, which corresponds to ∅ ⊆ B so without
loss of generality it is enumerated as w∅

0 .
By the assumption, adding more dummy worlds to each cluster if needed

and increasing n, there are buttons {b0,...,bm–1} and an n-switch {s0,...,sn–1} all
independent of each other overW. We can assume the buttons are pure. To define a
labeling, each cluster, corresponding to someA⊆B , will be labeled by the statement
that the only buttons pushed are the ones with indexes from A. Inside each cluster,
each world will be labeled by the corresponding value of the n-switch. Formally,
we set

Φ
(

wAi
)

=
∧

j∈A

bj ∧
∧

j /∈A

¬bj ∧ si

and claim that this is a labeling as required by verifying the conditions:

1. IfW [G ] is a Γ-generic extension ofW, defineA= {j <m |W [G ] � bj}. By the
definition of the n-switch,W [G ] � si for some unique i < n. So it is clear that
W [G ] � Φ(wAi ), and that for any other pair (A

′,i ′) 6= (A,i) with A′ ⊆ B , and

i ′ < n,W [G ] 2Φ(wA
′

i′
). So these statements indeed form a mutually exclusive

partition of truth in the Γ-generic multiverse overW.
2. Assume W [G ] is a Γ-generic extension of W such that W [G ] � Φ

(

wAi
)

. If

wAi ≤ u, then as we have seen, u =wA
′

i′
for some i ′ < n andA⊆A′ ⊆ B . By the

assumption of independence of the control statements, we can, by Γ-forcing,
push all the buttons in A′\A (and only them) and change the n-switch value

to i ′ (if needed), to obtain an extension ofW [G ] satisfying Φ
(

wA
′

i′

)

. Note that
by the transitivity of Γ, the bis are still independent pure buttons in W [G ],
since every Γ-extension ofW [G ] is also a Γ-extension ofW. In particular, any

button true in W [G ] remains true in the extension. So W [G ] � ♦Φ
(

wA
′

i′

)

as
required.

IfW [G ] � ♦Φ
(

wA
′

i′

)

, then there is some extensionW [G ][H ] � Φ
(

wA
′

i′

)

. By
the definition of pure buttons and the reflexivity of Γ,W [G ] �

∧

j∈A bj implies

W [G ] �
∧

j∈A�bj , so W [G ][H ] �
∧

j∈A bj . Therefore by the definition of

Φ
(

wA
′

i′

)

, we must have A⊆ A′, so wAi ≤ wA
′

i′
.

3. A part of the definition of independence is that no button is pushed inW (since
they are pure and Γ reflexive, it is equivalent to saying none is true). We can
assume without loss of generality thatW � s0. SoW �Φ

(

w∅
0

)

. ⊣

Corollary 1.12. Under the assumptions of Theorem 1.11,MLF(Γ)⊆ S4.2.

Proof. Apply Corollary 1.9. ⊣

Lemma 1.13. An n-switch can be produced using the following control statements:

1. Independent switches s0,...,sm–1 if n = 2
m;

2. A strong ratchet
{

ri | i ∈ I
}

where I is either a limit ordinal or Ord , the class of
all ordinals, and i ∈ I is a parameter in ri .

3. A family of independent buttons 〈bi | i ∈ I 〉where I is as above, with no extensions
where all of the buttons are pushed.
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THEMODAL LOGIC OF ó-CENTERED FORCING 7

Proof. For (1), if j < 2m let s̄j be the statement that the pattern of switches
corresponds to the binary digits of j, that is,

∧

{

si | the i th binary digit of j is 1
}

∧
∧

{

¬si | the i th binary digit of j is 0
}

.

Clearly in any extension exactly one pattern of the switches holds, so exactly one
s̄j holds. By the independence of the switches, any pattern can be forced over any
extension.
For (2), every i ∈ I is an ordinal, so of the form ù ·α+k for some α ∈Ord and

k < ù. Then we let s̄j be the statement “if i =ù ·α+k is the first such that ¬ri then
k mod n = j.” Since no extension satisfies all the ris, there is always some i which is
the first such that ¬ri , and therefore there is some unique j such that s̄j holds. Since
it is a ratchet, in every extension, for every j′ < n, we can increase its value to some
i ′ =ù ·α′+k′ for some k′ > k such that k′ mod n = j (we use the assumption that
if I is an ordinal then it is a limit).
(3) is similar to (2) by setting ri = (∀j < i)bj ∧¬bi . ⊣

So with our previous theorem, we get the following:

Corollary1.14 ([5, Theorems 13 and15]3). LetΓ be some reflexive and transitive
forcing class and W a model of set theory. If there are arbitrarily large finite families
of buttons mutually independent with arbitrarily large finite families of switches, with
a strong ratchet as above or with another family of independent buttons as above, then
there is a Γ-labeling for every frame which is a finite pBA over W. So in such cases,
MLF(Γ)⊆ S4.2.

Note that in the above corollary, we must have independent buttons which are
not all pushed. However, the following theorem shows that we can weaken this
assumption, given that we have some n-switch—not necessarily independent. It is
this modification which will eventually be used to find a ó-centered labeling for finite
pBAs.

Theorem 1.15. Let Γ be some reflexive and transitive forcing class andW a model
of set theory. If there is a family 〈bi | i ∈ ù〉 of independent buttons for Γ-forcing over
W, where i is a parameter in bi , and for every n there is an n-switch for Γ-forcing over
W, then there is a Γ-labeling for every finite pBA, and thusMLF(Γ)⊆ S4.2.

Proof. Let 〈F, ≤〉 be a pBA. As before Let B = {0,...,m – 1} be such that
〈F/ ≡ , ≤〉 is isomorphic to 〈P(B), ⊆〉, and every cluster is without loss of
generalization of size n or some 1 < n < ù. So every world in F is of the form

wCj for some j < n and C ⊆ B , and we have wCj ≤ wC
′

j′
iff C ⊆ C ′.

Let 〈bi | i ∈ ù〉 be as in the assumption, and using i 7→ i – m+1 we rename it
as 〈bi | m – 1 ≤ i < ù〉. We will imitate the proof of Theorem 1.11 by using the
statements bi for m – 1 ≤ i ≤ 0 as the buttons, and obtaining from 〈bi | 0 < i < ù〉
an “almost” n-switch as in Lemma 1.13. It might not be a real n-switch, if there

3In [5, Theorem 15] the authors have a slightly different convention, where the ratchet value is the
last button which is pushed, and they use the notion of a uniform ratchet, but the theorem is essentially
the same.
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8 UR YA’AR

is some Γ-extension in which unboundedly many buttons are pushed, and for that
reason we need the additional n-switch from the assumption.
So let {sj | j < n} be the n-switch from the assumption. To define the “almost”

n-switch, define the following statements:

R0 = “¬bi holds for every 0< i < ù.”

Rj = “j is the largest such that bj holds”(for j < ù).

Rù = “sup{n | bn holds}= ù.”

So R0 holds iff no button is pushed, and if in some Γ-extension of W we have
Rj for 0 < j < ù, then in particular we have bj ∧¬bl for any l > j. So by the
independence of the buttons, if some extension satisfies Ri ( i < ù), we can force
with some Γ-forcing to push only bl for any l > i and obtain exactlyRl . Note that if
some Rj for j < ù holds, it means in particular that the number of pushed buttons
is bounded. Now, for every j < n we define the statement:

tj = “There is some k < ù such that k ≡ j mod n and Rk holds.”

So in any Γ-extension of W, if tj holds for some j, there is some k be such that
Rk holds, and for every j

′ < n we can find k′ > k with k′ ≡ j′ mod n and then
force to push only b′k to obtain Rk′ and thus tj′ . It is also clear that no two distinct
tjs can hold at the same time, and that if the number of is such that bi holds is
bounded, then some tj holds. So, {tj | j < n} functions as an n-switch, but only as
long as the number of pushed buttons is bounded. If in some Γ-extension there are
unboundedly many buttons pushed (which we allow as a possibility), no Rk holds,
so also no tj holds. Hence this is “almost” an n-switch.
Now we are ready to define the labeling. For every C ⊆ B , define

ΨC =
∧

i∈C

b–i ∧
∧

i /∈C

¬b–i,

which states that the pushed buttons out of {b–i | i ∈ B} are exactly the ones
corresponding to the elements in C. These statements label the cluster we are in. To
move within each cluster below the topmost one, we will use the “almost” n-switch
{tj | j < n}, and if we can no longer use it, that is, if there are unboundedly many
bis pushed, we put ourselves in the top cluster, and there we move using the n-switch
{sj | j < n}: for every C ⊆ B and j < n set

Φ
(

wCj
)

=

{

ΨC ∧ tj C 6= B,
(

ΨC ∧ tj
)

∨
(

Rù ∧ sj
)

C = B.
(1.1)

In this way, the fact that {sj | j < n} is not independent of the buttons will not affect
us, as we will always stay in the top cluster anyway. We will now show that this is
indeed a labeling as required.
The statements are mutually exclusive: It is clear that the statements {ΨC |C ⊆B}

are mutually exclusive, so Φ
(

wCj
)

,Φ(wC
′

j′
) for C 6=C ′, both different than B, clearly

exclude each other. If we look at Φ
(

wCj
)

and Φ
(

wB
j′

)

for some C 6= B , they exclude

each other since if Φ
(

wB
j′

)

holds, then either ΨB holds which excludes ΨC , or we

have sup{n | bn holds} = ù, which excludes tj . Now for j 6= j
′ if C ( B , Φ

(

wCj
)
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THEMODAL LOGIC OF ó-CENTERED FORCING 9

and Φ
(

wC
j′

)

exclude each other since tj and tj′ exclude each other; and if C =B ,

if sup{n | bn holds}= ù then sj and sj′ exclude each other, and otherwise again tj
and tj′ exclude each other.
The statements exhaust the truth over Γ-extensions of W: Let W [G ] be some Γ-

extension of W. If W [G ] � sup{n | bn holds} = ù, then there is some j such that
W [G ] � sj , and so W [G ] � Φ

(

wBj
)

. Otherwise, the number of buttons pushed is
finite, so there is some j such thatW [G ] � tj , and there is also some specific subset
of the buttons {b–i | i ∈B} which are pushed inW [G ], so there is some C ⊆ B such
thatW [G ] �ΨC , and together we getW [G ] �Φ

(

wCj
)

.

W satisfies Φ
(

w∅
0

)

: InW we have ¬bi for all m – 1≤ i < ù, soW �Ψ∅ and also
W �R0, and therefore alsoW � s0.
The statements correspond to the relation: Assume we are in U which is a Γ-

extension ofW where Φ
(

wCj
)

is true.
Assume first that C 6= B .

• Assume♦Φ(wC
′

j′
)—there is a Γ-extensionU ′ ofU satisfyingΦ(wC

′

j′
). IfC ′ 6=B

then

U ′ �ΨC ′ =
∧

i∈C ′

b–i ∧
∧

i /∈C ′

¬b–i .

But U �
∧

i∈C b–i , which are buttons, so they remain pushed in U
′, i.e., U ′ �

∧

i∈C b–i . So we must get C ⊆ C ′, so wCj ≤ wC
′

j′
. If C ′ = B then clearly we

have wCj ≤ wC
′

j′
.

• Assume wCj ≤ wC
′

j′
, hence C ⊆ C ′. We have

U �ΨC =
∧

i∈C

b–i ∧
∧

i /∈C

¬b–i,

so for every i ∈ C ′\C , by the independence of the buttons we can force b–i , to
obtain an extensionU ′ satisfyingΨC ′ (the buttons fromC will remain pushed).
In U, which satisfies tj , there is some k such that k mod n = j and U �Rk . In
U ′ we still have Rk , since pushing the (finitely many) buttons corresponding
to C ′ does not push any button bi for i > 0. If j

′ = j we are done, otherwise
we can find some k′ > k, such that k′ mod n = j′, push bk′ , and thus obtain
an extension U ′′ satisfying tj′ . Again this forcing does not affect the truth of

b–i s for i ∈ B , so U
′′ also satisfies ΨC ′ , so it satisfies Φ(wC

′

j′
). By transitivity

of Γ, we get that indeed U � ♦Φ(wC
′

j′
).

Now assume C = B , i.e., U �Φ(wBj ). We distinguish the two cases.

• U � (ΨB ∧ tj):

– Assume ♦Φ(wC
′

j′
). Since U � ΨB , any extension of it also satisfies ΨB , so

we cannot have ♦Φ(wC
′

j′
) for any C ′ 6= B . Therefore C ′ = B and indeed

wBj ≤ wB
j′
= wC

′

j′
.
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– Assume wCj ≤wC
′

j′
. So C ′ = B as well. U � tj , so as we have seen before, we

can force over U to obtain a generic extension satisfying tj′ . This extension

will still satisfyΨB since these are buttons, so it will satisfyΦ(w
B
j′
) as required.

• U �
(

sup{n | bn holds}= ù
)

∧ sj :

– Assume ♦Φ(wC
′

j′
). SinceU � sup{n | bn holds}=ù, any extension ofU also

satisfies this, since these are buttons, so we cannot have ♦Φ(wC
′

j′
) for any

C ′ 6= B . Therefore C ′ = B and indeed wBj ≤ wC
′

j′
.

– Assume wCj ≤ wC
′

j′
. So C ′ = B as well. U � sj , so by the definition of an

n-switch, we can force over U to obtain a generic extension satisfying sj′ .
This extension will still satisfy sup{n | bn holds}=ù since these are buttons,
so it will satisfy Φ(wB

j′
) as required.

Hence we have defined a Γ labeling for the frame 〈F, ≤〉 overW. This was for every
pBA, so by Corollary 1.9,MLF(Γ)⊆ S4.2. ⊣

We end this section by citing another theorem of this sort, which we will use in
Section 4.2:

Theorem 1.16 ([5, Theorem 12]). If there is a long ratchet over a model of set
theoryW , i.e., a strong ratchet 〈r(α)|0<α ∈Ord〉, where r(α) is obtained by a single
formula with parameter α, thenMLF(Γ)⊆ S4.3.

§2. ó-Centered forcing. We now proceed to the investigation of the modal
logic of a specific class of forcing notions—the class of all ó-centered forcing
notions.

Definition 2.1. Let P be any poset.

1. A subset C ⊆ P is called centered if any finite number of elements in C have a
common extension in P.

2. A poset is called ó-centered if it is the union of countably many centered
subsets.

Remark 2.2. For convenience we will always assume that the top element 1P

is in each of the centered posets. This does not affect the generality since every
element is compatible with it. It will also sometimes be convenient to assume that
if P =

⋃

n∈ù Pn where each Pn is centered, then each Pn is upward closed, i.e.,
if q ∈ Pn and q ≤ p then p ∈ Pn. This also doesn’t affect the generality since if
q1,...,qk ∈ Pn and qi ≤ pi then a common extension for the qis will also extend
the pis.

The following is a central example for a ó-centered forcing, versions of which will
be used later on:

Definition 2.3. Let Y be a subset of P(ù). We define a poset PY as
follows:

• The elements are of the form 〈s,t〉 where s is a finite subset of ù and t a finite
subset of Y.

• 〈s,t〉 is extended by 〈s ′,t′〉 if s ⊆ s ′ and t ⊆ t′ and for everyA∈ t, s∩A= s ′∩A.
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So we think of the first component as finite approximations for a generic
real x ⊆ ù, while the second component limits our options in extending the
approximation. A condition p = 〈s,t〉 tells us that s ⊆ x and that for every A ∈ t,
x∩A= s ∩A, so that the intersection of xwith any set inY will turn out to be finite.

Lemma 2.4. For any Y ⊆ P(ù), PY is ó-centered.

Proof. Note that if t1,...,tn are finite subsets of Y, then for any s ∈ [ù]
<ù , the

conditions 〈s,t1〉,...,〈s,tn〉 are all extended by 〈s,t1 ∪ ··· ∪ tn〉. So P is the union of
the centered posets Ps = {〈s,t〉 | t ⊆ Y finite}. Since there are only countably many
finite subsets of ù, we get that P is ó-centered. ⊣

We will explore the properties of this kind of posets in Section 2.1. The following
lemma lists a few well-known properties of ó-centered forcing.

Lemma 2.5. 1. Every ó-centered poset has the c.c.c. and thus preserves cardinals
and cofinalities.

2. Assume ë ≥ ℵ0, 2
ë = κ, and let P be some ó-centered forcing notion. Then

V P � 2ë = κ.
3. Let 〈Pα | α < ë〉 for some ë <

(

2ℵ0
)+
be a collection of ó-centered posets. Let

P =
∏

α<ëPα be the finite support product
4 of 〈Pα | α < ë〉. Then P is also

ó-centered.
4. If P is a ó-centered posets and Q̇ is a P-name such that P forces that Q̇ is a
ó-centered posets, then also P∗ Q̇ is ó-centered.

Note that (2.5) shows that Γó-centered, the class of all ó-centered forcing notions,
is transitive. It is also reflexive since the trivial forcing is trivially ó-centered, and
persistent since being the union of countably many centered subsets is an upward
absolute notion. So, using Theorem 1.6, we have the following:

Theorem 2.6. The ZFC-provable principles of ó-centered forcing contain S4.2.

Finally, it will be of use to know that essentially, ó-centered forcing notions are
“small,” so there aren’t too many of them:

Lemma 2.7. Let P be a ó-centered forcing notion. Then the separative quotient of
P is of size at most 2ℵ0 .

Proof. Let P =
⋃

n∈ù Pn where each Pn is upward closed. Recall that the
separative quotient is the quotient of P by the equivalence relation: x,y ∈ P, x ∼ y
iff {z ∈ P | z ‖ x} = {z ∈ P | z ‖ y}. We denote the equivalence class of x by [x].
Define for every x ∈ P

A(x) = {n ∈ ù | x ∈ Pn}.

We claim that for every x,y ∈ P, [x] 6= [y] impliesA(x) 6=A(y). [x] 6= [y] means that
(without loss of generality) there is some z ‖ x such that z⊥y. Let z ′ be a common
extension of z and x. So z ′⊥y as well (otherwise z would be compatible with y).
Let n ∈ ù such that z ′ ∈ Pn. Since we assumed Pn is upward closed, also x ∈ Pn,

4All products in this paper are of finite support.
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so n ∈ A(x). Assume towards contradiction that n ∈ A(y), i.e., y ∈ Pn. But Pn is
centered, so y and z ′ must be compatible, which is a contradiction.
So we get that |P/∼ | ≤ |{A(x) | x ∈ P}| ≤ |P(ù)|= 2ℵ0 . ⊣

Corollary 2.8. Up to forcing-equivalence, there are at most 22
ℵ0ó-centered

forcing notions.

Proof. Every poset is forcing equivalent to its separative quotient and by the

previous lemma there are at most 22
ℵ0 of those. ⊣

2.1. Almost disjoint forcing. In this section we present one of the tools for labeling
frames with ó-centered forcing—almost disjoint forcing (a.d.), which is a version of
the example introduced in the previous section. The results in this section are due
to Jensen and Solovay in [10].
Two infinite sets are called a.d. if their intersection is finite. We would like to

have a way to construct a.d. subsets of ù in a very definable and absolute way. For
that, we fix some recursive enumeration t = 〈ti | i < ù〉 of all finite sequences of ù
(which we will also use later on, note that t∈L and is absolute), and define for every
f : ù→ ù

S(f) =
{

i < ù | ti is an initial segment of f
}

.

If f,g are distinct then S(f) and S(g) are a.d. Hence, {S(f) | f : ù → ù} is a
family of 2ℵ0 pairwise a.d. subsets of ù.
From the discussion at Section 2.4 of [10] we have the following:

Theorem 2.9. Let F ∈M be a family of a.d. subsets of ù, Y ⊆F (in M), and PY
the forcing fromDefinition 2.3. Then forcing with PY adds a real x such that for every
y ∈ F , x∩y is finite iff y ∈ Y .

So PY adds a generic real x which is a.d. from each member of Y. Furthermore,
if x is obtained by the generic filter G, then clearly M [G ] =M [x]. This gives us a
method to code subsets of 2ù using subsets of ù. Let M be some model of ZFC,

set an enumeration {fα | α < κ} ∈M of ùù (where κ =
(

2ù
)M
), and define as

before F = {S(fα) | α< κ} which are a.d. So for eachA⊆ κ,A ∈M , we can define
Y = Y (A) = {S(fα) | α ∈ A}, and force with PY to obtain a generic real x = xA,
and by the previous theorem, α ∈A iff S(fα)∈Y iff x∩S(fα) is finite. So, inM [x],
we get that

A=
{

α < κ | S(fα)∩x is finite
}

(note that PY preserves both cardinals and the continuum, so κ = (2
ù)M [x], and if

κ = ℵMα for some α, then also κ = ℵM [x]α ). In this case, we say that “x codes A.”

§3. Control statements for ó-centered forcing. Our goal in this section is to prove
that the modal logic of ó-centered forcing is contained in S4.2 by producing control
statements for ó-centered forcing that will meet the requirements of Theorem 1.15.
We begin by describing a specific model W which will be our ground model, and
then construct the independent family of buttons and the n-switches required in the
theorem.
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3.1. The groundmodel. Webeginwith the constructible universeL, anduseCohen
forcing to obtainmutually generic reals 〈aα,i |α<ù

L
1 ,i <ù〉, i.e., each aâ,j is generic

over L[〈aα,i | α < ù
L
1 ,i < ù,(α,i) 6= (â,j)〉]. Let

Z = L
[〈

aα,i | α < ù
L
1 ,i < ù

〉]

.

Our ground model W is a generic extension of Z, which preserves the mutual
genericity of 〈aα,i | α < ù

L
1 ,i < ù〉, such that these reals are ordinal-definable with

a definition which is absolute for generic extensions of W by ó-centered forcing.
This can be done, e.g., by using Easton forcing to code the reals in the power
function above some large enough cardinal. Any extension of W for which the
above definition is absolute will be called an appropriate extension. We will also
require that inW we do not collapse cardinals and add no new subsets below ℵù ,
so, e.g., ùL1 = ù

W
1 . From now on we’ll deal with forcings which do not collapse

cardinals (by c.c.c.), and also do not change the continuum (by Lemma 2.5(2)), so
we omit such superscripts.

3.2. The buttons. Now overW we can define Ti , for i < ù as the statement:

For every real x and for all but boundedly many α < ù1,

aα,i is Cohen generic over L
[

x,〈aâ,j | â < ù1,j 6= i〉
]

.

Since the reals aα,i and the sequences 〈aâ,j | â < ù1,j 6= i〉 are ordinal definable in
W and its appropriate extensions, also L[x,〈aâ,j | â < ù1,j 6= i〉] is definable with
x as a parameter. So, formally, Ti includes the definitions of these elements, which
will be interpreted as we expect in all relevant models. The question whether a real
r is generic over some definable submodel is also expressible in the language of set
theory, as it just means that r is in every open dense subset of ùù which is in that
model. So Ti is indeed a sentence in the language of set theory. Note that if we want,
by slight abuse of notation we can treat i as a “variable” denoting a natural number,
rather than a definable term; thus we would be able to phrase sentences such as
∀i < ùTi . This will be used in the next section. In this section when we talk about a
specific Ti , we take i to be a fixed term.

Remark 3.1. 1. W � Ti for every i: We required that we do not add any new
subsets of ùù or any new real. So every real x ∈W is already in Z. Fix some
i < ù and a real x ∈W . This real was introduced by at most boundedly many
aα,i , that is, there is some ã < ù1 such that

x ∈ L
[〈

aα,j | α < ù1,j 6= i
〉

∪
〈

aα,i | α < ã
〉]

.

All the reals aα,i for α > ã are generic over the above model so also above
L[x,〈aâ,j | â < ù1,j 6= i〉].

2. ¬Ti is a pure button for appropriate extensions: if for some aα,i there is some
real x such that aα,i is not generic over L[x,〈aâ,j | â < ù1,j 6= i〉], then it will
never again be generic over this model. So, if we destroy Ti , we can never
get it back as long as it keeps its above meaning. Note that if an extension
is not appropriate, then Ti might have a completely different meaning than
what is intended, as the definitions we use will give some different sets, so it is
paramount we stick with appropriate extensions.
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Wewill now define forcing notions which will allow us to destroyTi , by destroying
the genericity of the relevant aα,is.

Definition 3.2. InW, we define Pi to be the forcing notion with conditions of
the form {Us1,...,Usn,aα1,i,...,aαl ,i} where n,l < ù, sk ∈ ù

<ù and Usk ⊆ ù
ù is the

basic open set {x ∈ ùù | sk E x}; and for conditions p,q ∈ Pi , q ≤ p iff p ⊆ q and
whenever aα,i ∈ p and Us ∈ q\p, aα,i /∈ Us . That is, to extend a condition, we can
add any finite number of the reals, and we can add any finite number of basic open
sets, as long as the new sets do not include any of the old reals.

We will show that the forcing Pi destroys the genericity of all the aα,is, by adding
dense open sets (approximated by theUss) that do not include them. So, intuitively,
a condition p = {Us1,...,Usn,aα1,i,...,aαl ,i} states which reals will be avoided in
subsequent stages.

Remark 3.3. Given some distinct aα1,i,...,aαl ,i and s ∈ ù
<ù we can always find

some s ′ D s such that aα1,i,...,aαl ,i /∈ Us′ : let t =
⋂l
k=1aαk,i , i.e., the longest initial

segment common to aα1,i,...,aαl ,i . If s E t or t E s , let t
′ be the longer of the two and

assume it is of length n. Take some j ∈ ù\
{

aα1,i(n),...,aαl ,i(n)
}

and set s ′ = t′⌢〈j〉,
then aα1,i,...,aαl ,i /∈Us′ and s

′ D s . Otherwise s ′ = s will do.

LetG ⊆Pi be a generic filter. Note that by the former remark, the set of conditions
having at least n basic-open sets in them is dense in Pi (given a condition p, we can
find an s such that Us does not contain any of the reals in p, and then add to p,
e.g., Us,Us⌢〈0〉,Us⌢〈0,0〉... to obtain an extension with at least n basic-open sets).
So, the conditions in G give us an infinite sequence 〈Usk | k < ù〉 of basic-open
sets. We assume that 〈sk | k < ù〉 forms a subsequence of the recursive enumeration
〈ti | i < ù〉, i.e., there are indexes 〈nk | k < ù〉 such that sk = tnk for every k.

Lemma 3.4. For every k < ù, the set
⋃

n≥kUsn is open-dense in ù
ù .

Proof. It is clearly open as a union of open sets. To show it is dense, let s ∈ù<ù

and we need to find some n ≥ k such that sn D s . Note that as in Remark 3.3, for
every p ∈ Pi we can extend s to some s

′ D s such that p∪{Ut} ≤ p, and we can
also make sure that |s ′| > N for any fixed N. So by genericity there is some p ∈ G
containing someUs′ where s

′ D s and |s ′|>max{|sl | | l < k} so in particular s
′ = sn

for n ≥ k as required. ⊣

Lemma 3.5. For every α < ù1 there is some k such that aα,i /∈
⋃

n≥kUsn .

Proof. Fix α<ù1 and letDα = {p ∈ Pi | aα,i ∈ p}. SoDα is clearly open, and it
is dense since for every p, p∪{aα,i} is a legitimate extension of p (we did not limit the
addition of aâ,is). So there is some p ∈G ∩Dα . Let k be larger than any n such that
Usn ∈ p. We want to show that aα,i /∈

⋃

n≥kUsn . Otherwise, there is some n ≥ k such
that aα,i ∈ Usn . So there is some q ∈ G with Usn ∈ q, and by moving to a common
extension we can assume q ≤ p. In fact, q < p, since Usn /∈ p by the choice of k and
n. But aα,i ∈ p, q < p and Usn ∈ q\p imply that aα,i /∈Usn , by contradiction. ⊣

So indeed, Pi adds open-dense sets which destroy the genericity of every aα,i . This
will show that Ti is destroyed, once we show that Ti still means the same thing after
forcing with Pi .
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Lemma 3.6. Pi is ó-centered.

Proof. For every t1,...,tn ∈ ù
<ù , let P(t1,...,tn) be the set of all conditions in Pi

containing exactly the basic-open sets Ut1,...,Utn . Note that there are only ù such
sets {t1,...,tn}, and that clearly Pi =

⋃

{P(t1,...,tn) | t1,...,tn ∈ù
<ù}. Now notice that

every P(t1,...,tn) is centered, since if p1,...,pl ∈ P(t1,...,tn), then p1 ∪ ··· ∪pl is still
a legitimate condition in Pi , and it extends each pj since the only limitation on
extension concerned the basic-open sets, which we did not change. ⊣

Corollary 3.7. Let W ′ be some appropriate extension of W. Let G ⊆ Pi be
generic overW ′. ThenW ′[G ] � ¬Ti .

Proof. By ó-centeredness, after forcingwithPi themeaning of all the definitions
in Ti remain the same. So we will find a real x ∈W ′[G ] such that all the aα,is are
already not generic over L[x], so surely Ti fails. Recall the enumeration 〈tn | n < ù〉
we fixed earlier, and define x = {m | ∃p ∈G(Utm ∈ p)}. So, if as before 〈Usn | n<ù〉
is the sequence of basic-open sets given by G, we assumed it is a subsequence of
〈tn | n<ù〉, so inL[x] we can already define each union

⋃

n≥kUsn . Hence, as we have
shown above, each aα,i is not in some dense-open set of ù

ù in L[x], and therefore
not generic over L[x] as required. ⊣

Our next task will be to show that forcing with some Pj does not affect the truth
of Ti for any i 6= j.

Lemma 3.8. Let W ′ be an appropriate extension of W, such that W ′ � Ti . Let
G ⊆ Pj be generic overW

′ for j 6= i . ThenW ′[G ] � Ti .

Proof. Assume otherwise. Then there is some x ∈W ′[G ] such that unboudedly
many aα,i are not generic over L[x,〈aâ,k | â < ù1,k 6= i〉]. Let ẋ ∈W

′ be a Pj-name
for x. Since x is a real, we can assume that ẋ is a name containing only elements of
the form 〈q,ň〉 for n ∈ ù and q ∈ Pj . Furthermore, since Pj is c.c.c., we can assume
that there are only countably many elements of the form 〈q,ň〉 for each n. So ẋ is a
countable collection of elements of the form 〈q,ň〉. We wish to “code” ẋ by some
real y ∈W ′. We do this in the usual way: Let ã be the supremum of all α < ù1 such
that aα,j ∈ q for some 〈q,ň〉 ∈ ẋ. Since ẋ is countable and each such q contains only
finitely many aα,js, ã < ù1. Each q ∈ Pj is of the form {Us1,...,Usn,aα1,j,...,aαl ,j}, so
it is determined by a finite subset of ù<ù and a finite subset of ordinals no larger
than ã. This information can be coded by a finite sequence of natural numbers zq .
Each pair 〈zq,ň〉 can be coded by a natural number. So the entire ẋ can be coded by
a set of natural numbers y. All these codings are done inW ′ so y ∈W ′.
Now assume that W ′[G ] � “aα,i is not generic over M

′ := L[x,〈aâ,k | â <
ù1,k 6= i〉].” We’ll show that alreadyW

′ � “aα,i is not generic overM :=L[y,〈aâ,k |
â < ù1,k 6= i〉].”
M ⊆W ′, and since the definition of Pj requires only the reals 〈aâ,j | â < ù1〉,

Pj ∈M . In addition, since we can decode y in this model, we have ẋ ∈M . Since
Pj ∈M ⊆W ′, G is generic also over M. The fact that aα,i is not generic over M

′

means that there is a dense open setU ∈M ′ such that inW ′[G ], aα,i /∈U . From the
perspective ofM andM ′, aα,i ismerely aCohen generic overL[〈aâ,k | â<ù1,k 6= i〉].
Since ẋ ∈M , M ′ ⊆M [G ], so U ∈M [G ] ⊆W ′[G ]. So there is some p ∈ G and
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some Pj-name U̇ ∈M such that p 
 “U̇ is an open-dense subset of ùù , which does
not contain reals which are Cohen generics over L[〈aâ,k | â < ù1,k 6= i〉].” Define

Ū =
{

r ∈ ùù | ∃p′ ≤ p(p′ 
 ř ∈ U̇ )
}

.

So Ū ∈M . We claim first that Ū is open-dense.
Open: let r ∈ Ū , witnessed by p′ ≤ p s.t. p′ 
 ř ∈ U̇ . Since p′ also forces that U̇

is open, there is some p′′ ≤ p′ and some s ∈ù<ù such that p′′ 
“ ř ∈Us ⊆ U̇ ,” that
is p′′ 
 š E ř ∧

(

š E ṙ′ → ṙ′ ∈ U̇
)

. The initial segment relation does not change, so

s E r. If r′ ∈Us , then in particular we’ll get p
′′ 
 ř′ ∈ U̇ , so by definition r′ ∈ Ū . So

Us ⊆ Ū . So Ū is open.
Dense: Let s ∈ ù<ù . Since p forces that U̇ is open-dense, there is some p′ ≤ p

and some t D s such that p′ 

(

ť E ṙ → ṙ ∈ U̇
)

. So let some t E r ∈ ùù , then in

particular we get p′ 
 ř ∈ U̇ , so r ∈ Ū and r D s as required.
Second, we claim that inW ′, aα,i /∈ Ū . Otherwise, there is some p

′ ≤ p such that
p′ 
 ǎα,i ∈ U̇ . But p forced that no Cohen generic over L[〈aâ,k | â < ù1,k 6= i〉] is in

U̇ , a contradiction.
So, we have found an open-dense set Ū ∈M such that aα,i /∈ Ū , so aα,i is not

generic overM. This was for every aα,i not generic over L[x,〈aâ,k | â < ù1,k 6= i〉],
and we assumed there are unboundedly many of these. So there are unboundedly
many aα,is which are not generic overM =L[y,〈aâ,k | â<ù1,k 6= i〉], where y ∈W

′.
But this contradicts the assumption that W ′ � Ti . So, we indeed get that also
W ′[G ] � Ti . ⊣

To conclude, packing up what we have done in this section, we obtain the
following:

Proposition 3.9. {¬Ti | i < ù} is a family of independent buttons over W for
ó-centered forcing.

Remark 3.10. In fact, we can replace “ó-centered” with any reflexive and
transitive class of forcing notions, containing all the Pis, such that every extension
ofW with a forcing from the class yields an appropriate extension.
Note that if it were the case that in no extension ofW by ó-centered forcing all

these buttons are pushed, we could have finished the proof of our main Theorem
using Corollary 1.14. However, by Lemma 2.5(3),

∏

i<ù Pi is ó-centered, and it
pushes all the buttons, so we will have to use Theorem 1.15.

3.3. The n-switches.

Proposition 3.11. Let M be a model of ZFC such thatM � 2ℵ0 = ℵ1∧2
ℵ1 = ℵ2

and every subset of ù2 is ordinal-definable using a definition which is absolute to ó-
centered forcing extensions. Then for every n > 1 there is an n-switch for ó-centered
forcing over M.

Proof. Let 〈fα | α < ù1〉 ∈M be a definable enumeration of all the functions
f : ù→ ù inM and define yα = S(fα) as in Section 2.1. Let 〈Aî | î < ù2〉 ∈M be
some fixed definable enumeration of all the subsets of ù1 inM. Let C (x,î) be the
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statement

x ⊆ ù and (α ∈ Aî ↔ x∩yα is finite) (3.1)

referred to as “x is a real codingAî .” By the discussion at the end of Section 2.1, for
every î there is a ó-centered forcing notion Qî ∈M such that Qî 
 ∃xC (x,î). We
would like to define a ratchet by using the statements “α=sup{î<ù2 | ∃xC (x,î)}.”
By defining so, we can indeed always increase the value of alleged ratchet by forcing
withQα , but in a certain extension, forcing withQα might also add a real codingAî
some î > α. To fix that, we will define an unbounded set E such that adding a code
for Aα for some α ∈ E doesn’t add a code for any larger Aî .
We work now withinM, and fix some ó-centered poset Q ∈M . Let α < ù2. We

define by induction {αæ | æ < ù1}. Set α0 = α. If αæ <ù2 is defined for æ < ù1, let

αæ+1 = sup
{

â < ù2 |Q×
∏

î≤αæ

Qî 1 ¬∃xC
(

x,â̌
)

}

+1.

The above set is not empty since Qαæ 
 ∃xC (x,α̌æ). In particular, αæ < αæ+1.

Claim 3.12. αæ+1 <ù2. ⊣

Proof. Let P = Q×
∏

î≤αæ
Qî . Since αæ < ù2 = (2

ℵ0)+, this is ó-centered by

Lemma 2.5(3) so by Lemma 2.5 and our assumptions on M, P 
 2ℵ1 = ℵ2 > 2
ℵ0 .

In particular, P 
“ sup{â | ∃xC (x,â)} < ù2,” since there cannot be ℵ2 reals each
coding a different subset of ù1. Note that by the c.c.c. of P there can only be
ℵ0 many possible values for sup{â | ∃xC (x,â)}. Hence there is some âP < ù2
bounding all these possible values, so it is forced by P that sup{â | ∃xC (x,â)} ≤ âP .
Now, if for some ã, P 1 ¬∃xC (x,ã̌), then there is p ∈ P such that p 
 ∃xC (x,ã̌),
but also p 
“sup{â | ∃xC (x,â)} ≤ âP” so ã ≤ âP . So by the definition, αæ+1 ≤
âP+1<ù2. ⊣

For æ < ù1 limit, set αæ = sup{αî | î < æ} (ù2 is regular so also in this case
αæ <ù2), and finally let α

∗ = sup{αæ | æ < ù1}. Again α
∗ <ù2.

Claim 3.13. Let G be generic for Q=Q×
∏

î<α∗
Qî such thatM [G ] � ∃xC (x,â).

Then â < α∗.

Proof. Let x ∈ M [G ] such that M [G ] � C (x,â). So there is a Q-name ô

and some p∗ ∈ G which forces C (ô,â̌). For every n, let Cn ⊆ Q be a maximal
antichain below p∗ of conditions deciding the statement ň ∈ ô. By the c.c.c.
each Cn is countable, so also C =

⋃

n∈ùCn is countable. Every element of Q
is of the form 〈q,(pã)ã<α∗〉 where only for finitely many ãs pã 6= 1Qã . So for
each p ∈ C , denote this finite set of ordinals by Fp, and let ã

∗ = sup
⋃

p∈C Fp.
Each Fp is a set of ordinals less than α

∗, so ã∗ ≤ α∗. But since C is countable
and each Fp is finite, ã

∗ has at most countable cofinality, while α∗ is the limit
of an increasing ù1 sequence 〈αæ | æ < ù1〉, so ã

∗ < α∗, and furthermore, there
is some æ < ù1 such that ã

∗ ≤ αæ . Let Q̄ = Q ×
∏

î≤αæ
Qî . For every p ∈ Q,

if p = 〈q,(pã)ã<α∗〉, let p̄ = 〈q,(pã)ã≤αæ 〉, and let Ḡ = {p̄ | p ∈ G}. Ḡ is Q̄-

generic over M. We claim that x ∈ M [Ḡ ] and M [Ḡ ] � C (x,â). Define the
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Q̄-name

ó̄ =
⋃

n∈ù

({

p̄ | p ∈ Cn,p 
 ň ∈ ô
}

×
{

ň
})

.

Remark. By the choice of αæ ≥ ã
∗, for every p ∈ Cn, if it is of the form

〈q,(pã)ã<α∗〉, then pã = 1 for every ã > αæ . ⊣

If n ∈ x then there is some p ∈ G , p ≤ p∗ that forces ň ∈ ô. By the maximality
of Cn, it intersects G, which is a filter, so a condition in the intersection must also
force ň ∈ ô (and not ň /∈ ô). So we can choose such p ∈ Cn ∩G , and by definition
〈p̄,ň〉 ∈ ó̄. In addition, p̄ ∈ Ḡ , so n ∈ ó̄Ḡ .
If n ∈ ó̄Ḡ there is some p ∈Cn, p 
 ň ∈ ô such that p̄ ∈ Ḡ . So, there is some r ∈G

such that r̄ = p̄. Note that by the remark r and p are equal in every coordinate where
p is not trivial, so r ≤ p. Therefore also r 
 ň ∈ ô, and r ∈G so n ∈ x.
So, we get that ó̄Ḡ = x, so x ∈M [Ḡ ]. M [Ḡ ] ⊆M [G ], and in M [G ] we have

C (x,â), i.e.,

Aâ =
{

α | x∩yα is finite
}

,

so we can already have this equation in M [Ḡ ] (since the yαs don’t change), so
M [Ḡ ] � C (x,â). Therefore, we have that Q×

∏

î≤αæ
Qî 1 ¬∃xC (x,â), so by the

definition of αæ+1, â ≤ αæ+1 < α
∗, as required.

Sowe have defined an operationα 7→α∗ for everyα<ù2 (note that this operation
was relative toQ). Since for every α<ù2 we have α<α

∗ <ù2, the set {α
∗ | α<ù2}

is unbounded in ù2, so the set CQ consisting of all limit points of this set is a club.

By Corollary 2.8, inM there are at most (22
ℵ0 )M ó-centered forcing notions up to

equivalence, or to be exact, at most (22
ℵ0 )M separative ó-centered forcing notions.

By our assumptions onM, this cardinal is ℵ2. Note that
{
∏

α<îQα | î ∈ CQ
}

where
Q is the trivial forcing are non-equivalent ó-centered posets, so we get exactly ℵ2
posets. Since every separative ó-centered poset has size atmostℵ1, each can be coded
as binary relations onù1, so by our assumption we can have a definable enumeration
〈Qæ | æ < ù2〉 of all the separative ó-centered forcing notions inM. Define C as be
the diagonal intersection of 〈CQæ | æ < ù2〉:

C := △
æ<ù2

CQæ =
{

α < ù2 | α ∈
⋂

æ<α

CQæ

}

,

which is also a club in ù2. Now we let

E = C ∩
{

α < ù2 | cf(α) = ù1
}

.

E is unbounded: it is known that the set {α < ù2 | cf(α) = ù1} is stationary in ù2
so it intersects the club {α ∈ C | α > ã} for each ã < ù2. Let 〈eα | α < ù2〉 be a
(definable) ascending enumeration of E .

Remark. We would have preferred to work with C rather than E . The problem
is that the ∗ operation may not be continuous at limits of countable cofinality—to
prove continuity, we would like to imitate the proof of Claim 3.13, but it requires
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that the limit is of uncountable cofinality. If the length of the product is of countable
cofinality, there might be a real that is not introduced in any bounded product.

Now we can define the following statements

r(α) = “α =min
{

â < ù2 | ¬∃xC (x,eâ)
}

.”

These are indeed statements (with ordinal parameters perhaps) invoking the
definition of 〈eα | α < ù2〉, which retains its intended meaning in every extension of
M by ó-centered forcing. Now given n > 1, define for every j < n

Φj = “r(ù ·α+k)→ (k mod n = j).”

We claim that {Φj | j < n} is an n-switch for ó-centered forcing overW.
Let Q ∈M be some ó-centered poset, and G ⊆ Q generic over M. By Lemma

2.5(1) M [G ] satisfies 2ℵ0 = ℵ1 and 2
ℵ1 = ℵ2, so in particular the set {â < ù2 |

∃xC (x,eâ)}
M [G ] is bounded, since there are onlyù1 reals, and therefore there cannot

be unboundedly many subsets of ù1 coded by them. So there is some unique ã < ù2
such that M [G ] � r(ã). There are some unique j,k < n such that ã = ù ·α+ k
and k mod n = j, soM [G ] � Φj . Hence every ó-centered extension ofM satisfies
exactly one Φj . Now we need to show that for every j

′ 6= j there is some ó-centered
extension ofM [G ] satisfying Φj′ . Recall the club CQ from the above construction.
Q = Qî for some î < ù2. By the unboundedness of E , we can find some ã

′ such
that eã′ > î and ã

′ = ù ·α+j′ for some α. We want to show that we have a generic
extension ofM [G ] satisfying r(ã ′).
Let H ⊆

∏

æ<eã′
Qæ be generic overM [G ]. By the product lemma,M [G ×H ] =

M [G ][H ] and G ×H is Q ×
∏

æ<eã′
Qæ generic over M. So for every â < eã′ ,

∏

æ<eã′
Qæ 
 ∃xC (x,â), so M [G ][H ] � ∃xC (x,â). On the other hand, recall that

eã′ is in the diagonal intersection of the clubs CQæ , so by definition, and since eã′ > î,
eã′ ∈

⋂

æ<eã′
CQæ ⊆ CQî . So, by the definition of CQî , eã′ is either of the form ä

∗ for

some ä and the ∗ operation corresponding to Qî , or a limit point of such points.
In the first case, we can just apply Claim 3.13. In the second case, since eã′ ∈ E is
of uncountable cofinality, we can repeat the proof of Claim 3.13 with a sequence
〈ä∗æ | æ < ù1〉 that witnesses eã′ ∈ CQî , and get that the statement in Claim 3.13 is

true in this case as well. That is, in both cases, we get that ifM [G×H ] � ∃xC (x,â)
then â < eã′ . So eã′ is the first â such that M [G ×H ] � ¬∃xC (x,â). Since the
enumeration of E is increasing, we get that ã ′ = min{â < ù2 | ¬∃xC (x,eâ)}. So
M [G×H ] � r(ã ′), and since ã ′ = ù ·α+j′,M [G ×H ] �Φj′ as required.

The forcing notions used in this n-switch add real numbers in a rather
uncontrollable way, so it is indeed likely that theymight add some real which destroys
the genericity of the aα,is, therefore it is unlikely that this n-switch is independent
of the buttons ¬Ti . However, by using both constructions presented in this section,
we can overcome the drawbacks each of them has, and obtain our main result:

Theorem 3.14. If ZFC is consistent, then the ZFC-provable principles of ó-
centered forcing are exactly S4.2.
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Proof. If ZFC is consistent thenwe canobtain themodelW andbyPropositions
3.9 and 3.11 we obtain the buttons and n-switches required for using Theorerm 1.15.
So the ZFC-provable principles of ó-centered forcing are contained in S4.2, and by
Theorem 2.6 we get equality. ⊣

§4. Generalizations and open questions.

4.1. Forcing overL. Inmost of the calculations of the modal logic of a certain set-
theoretic construction, the upper bound was obtained using control statement over
the constructible universe L (e.g., all the calculations in [5]). A notable exception is
the upper bound for the modal logic of grounds obtained in [8] using Reitz’s model,
which is a class-forcing extension of L. Similarly, for our construction we also first
had to build a special model of ZFC—a set-forcing extension of L, over which we
could obtain the desired control statements. Whether we could have avoided this
and work over L itself remains an open question, which leads to the following more
exact one:

Question 4.1. What is the modal logic of ó-centered forcing over L?

This question relates to a second line of inquiry introduced in [7]—the calculation
of the valid principles of forcing over a specific model. In the case of all forcing
notions, it has been shown in [7] that these principles always contain S4.2 and are
contained in S5, where both bounds can be realized. Models having other validities
have been recently announced by Block and Hamkins (see discussion in [12, p.
32]). It has also been shown (see [6, 12]) that any model has a ground whose valid
principles of forcing are S4.2. However, in the case of ó-centered forcing we have
only limited results: S4.2 is still a lower bound over any model, as this class is
reflexive, transitive, and persistent. As for an upper bound—note that any model
satisfying the assumptions of Proposition 3.11, L in particular, has n-switches for
ó-centered forcing for every n. Such n-switches can be used, as in [5, Theorem 10], to
show that the valid principles of ó-centered forcing for such a model are contained
in the modal theory S5. So we do have:

Proposition 4.2. The modal logic of ó-centered forcing over L (or any model
satisfying the assumptions of Proposition 3.11) is between S4.2 and S5.

However in the case of L we do not expect to be able to raise the upper bound to
S5, as not even axiom .3:

(

♦ϕ∧♦ø
)

→ ♦
[(

♦ϕ∧ø
)

∨
(

ϕ∧♦ø
)]

,

which corresponds to the linearity of the forcing class (see [5]), holds over L: by a
result of Błaszczyk and Shelah [4], in L there is a ó-centered forcing notion which
does not add a Cohen real. So let P be the L-least such forcing notion, consider the
statements:

ϕ′ = “There is a Cohen real over L”,

ø′ = “There is a P-generic filter over L”

and set ϕ = ϕ′ ∧¬ø′ and ø = ø′ ∧¬ϕ′. So clearly L � ♦ϕ ∧♦ø but (♦ϕ ∧ø)∨
(ϕ ∧♦ø) is not forceable since a generic for one of these forcings will stay generic
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in further extensions. Hence Question 4.1 is still open, as well as the more general
question:

Question 4.3. What modal theories can be realized as the valid principles of
ó-centered forcing over some model of ZFC?

4.2. Related forcing classes. Throughout this work, we have focused on ó-
centered forcing notions.However, by examining the proofs, one can see thatwe have
not used the full strength of ó-centeredness. To obtain the lower bound, we used the
reflexivity, transitivity, and persistence of ó-centered posets. And to obtain the upper
bound, we defined labelings using two main ingredients—the posets constructed
Section 3.2, giving us the independent buttons, and the n-switch of Proposition
3.11. To work with the buttons, we also required that all extensions of W will be
appropriate. Assuming this, once we had an n-switch, we did not use its specific
construction in defining the labeling. So in fact we have the following:

Theorem 4.4. Let W the model constructed in Section 3.1 and Γ a class of forcing
notions with the following properties:

1. Γ is reflexive, transitive, and persistent.
2. Every extension of W by a Γ-forcing is appropriate.
3. All posets constructed in Section 3.2 are in Γ.
4. There is an n-switch for Γ-forcing over W for any n.

ThenMLF(Γ) = S4.2.

Now let’s see what was needed to obtain the n-switch of Proposition 3.11. We
relied heavily on the c.c.c. of all posets in question; we used all posets coding subsets
ofù1, as well as products of at most ℵ1 of them; we relied on the fact that ó-centered
posets cannot enlarge 2ℵ0 or 2ℵ1 ; we used the fact that there were (inW) only ℵ2 ó-
centered posets up to equivalence, and that theywere all already in the smallermodel
Z. So, this construction can be carried with any class of forcing notions satisfying
these requirements. To conclude:

Theorem 4.5. Let Γ be a class of forcing notions with the following properties:

1. Γ is reflexive, transitive, and persistent.
2. Every extension of W by a Γ-forcing is appropriate.
3. All posets constructed in Section 3.2 are in Γ.
4.1. Each poset in Γ has the c.c.c., and does not enlarge 2ℵ0 or 2ℵ1 .

4.2. |Γ| ≤ 22
ℵ0 (where the size is measured up to equivalence of forcing).

4.3. ΓW ⊆ Z.
4.4. All posets which are used to code subsets of ù1, and products of at most ℵ1 of
them, are in Γ.

ThenMLF(Γ) = S4.2.

Remark. Conditions 3 and 4.4 will hold for any class containing every ó-
centered forcing.

Definition 4.6. A subset C ⊆ P is called n-linked if any n elements of C are
compatible, i.e., have a common extension (perhaps not in C itself). 2-linked is also
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called simply linked. A poset is called ó-n-linked if it is the union ofù many n-linked
subsets. Again, ó-linked means ó-2-linked.

It is clear that we have the following implications:

ó-centered → ó-n-linked for every n → ··· → ó-n-linked → ó-linked,

and it is known that the other directions do not hold (cf. [1]).

Corollary 4.7. LetΓ be either the class of alló-n-linked posets ( for somefixed n),
or the class of all posets which are ó-n-linked for every n. ThenMLF(Γ) = S4.2.

Proof. Lemmas 2.5 and 2.7 hold for these classes as well, so they are all
transitive, preserve cardinals and the continuum function, and have size at most

22
ℵ0 (up to equivalence). These classes are also clearly reflexive and persistent, and
they contain the class of all ó-centered forcings, so they satisfy all the conditions of
Theorem 4.5. ⊣

Parallel to this hierarchy of properties, we can define the following hierarchy
(cf. [1]):

Definition 4.8. 1. Given n ∈ù, P has propertyKn if everyA∈ [P]ℵ1 contains
an uncountable n-linked subset. K2 is also called the Knaster property.

2. P has pre-caliberù1 if everyA∈ [P]ℵ1 contains an uncountable centered subset.

Note that pre-caliber ù1 implies property Kn, and Kn implies Km for m ≤ n. So
these form a hierarchy of properties. Furthermore, if P is ó-centered then it has
pre-caliberù1, and if it is ó-n-linked then it has property Kn. So we get the following
implications:

ó-centered //

''P
P

P

P

P

P

P

P

P

P

P

P

P

∀n
(

ó-n-linked
)

// ó-n-linked //

��

ó-2-linked

��

pre-caliberù1 // Kn // K2 // c.c.c.

.

Let P be either pre-caliber ù1 or Kn for some n.

Corollary 4.9. Let ΓP<ä the class of all P-forcing notions of size < ä, for some

regular ä > 2ℵ
ℵ0
0 . ThenMLF(ΓP<ä ) = S4.2.

Proof. We verify the conditions of Theorem 4.4. It is standard to verify that
ΓP<ä is reflexive, transitive, and persistent (hence directed), so condition (1) holds.
Note that the coding of the reals aα,i can be started as high as we want, so by limiting
ourselves to forcing notions of a bounded size, we can do this coding somewhere high
enough that will not be affected by these forcings, and therefore obtain condition (2)

(note that by c.c.c. cardinals are not changed). Since ä > 2ℵ
ℵ0
0 these classes contain

all ó-centered forcings, so condition (3) holds.
Since these forcings do not preserve the continuum, we cannot obtain an n-switch

for these classes using the same methods. However, note that for every I, the poset
Fn(I ,2) consisting of finite functions from I to 2, ordered by reverse inclusion, has
pre-caliber ù1 (cf. [11, p. 181]), and forces 2

ℵ0 > |I |, which by c.c.c. is a button for
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P-forcing. Therefore the statements 〈2ℵ0 ≥ ℵα | α < ä〉 form a strong ratchet, and
we can use it to construct an n-switch as in Lemma 1.13, to obtain condition (4). So
all the conditions of Theorem 4.4 can be met, giving us the result. ⊣

Note that bounding the size of the forcings was essential, since otherwise the
classes contain all posets of the form Fn(I ,2), so extensions of W using such
forcings may not be appropriate. We can however get some result on the full classes
of P-forcings:

Theorem4.10. LetΓP be the class of all P-forcings. ThenS4.2⊆MLF(ΓP)⊆ S4.3.

Proof. As we noted, these classes are reflexive, transitive, and persistent, hence
the left inclusion. Now, the statements r(α) = 2ℵ0 ≥ ℵα for any α ∈ Ord such that
cf(α)>ù form a long ratchet over L in the sense of [5]: these are indeed statements
obtained by a single formula using parameter α; each of them is a pure button for
every class of c.c.c. forcings, since once 2ℵ0 ≥ ℵα is true, it cannot be made false
without collapsing cardinals; clearly r(α)→ r(â) for any â < α; we can push r(α)
without pushing any further r(â) using the c.c.c. poset Fn(ℵα ×ù,2) of all finite
functions from ℵα×ù to {0,1}, which forces 2

ℵ0 = ℵα (whenever cf(α)>ù, see [11,

Theorem IV. 3.13]. Note that the requirement there is ℵ
ℵ0
α = ℵα , which is implied by

cf(α)>ù so will not change by c.c.c. forcing); and clearly no forcing extension can
satisfy every r(α). So by [5, Theorem 12] (Theorem 1.16) we get the inclusion on
the right. ⊣

To get an exact result would require a different method, so the following is open:

Question 4.11. Let P be either pre-caliberù1 or Kn for some n.What is the modal
logic of all P-forcing notions?

Finally, the only property in the above diagram we did not discuss yet is c.c.c.

Question 4.12. What is the modal logic of all c.c.c. forcing notions?

This natural question was already raised in [7]. The difficulty in answering it is
that the class of all c.c.c. forcing notions is not directed, so it does not contain S4.2.
It is reflexive and transitive, soHamkins and Löwe conjectured that the answer is S4.
To prove this, one would probably need to find a labeling for models based on trees,
as the class of all trees is a class of simple frames characterizing S4. It should be
mentioned that in [9], a labeling of models based frames which are “spiked pBAs”
(denoted S4sBA, cf. [9] for exact definition) was provided, thus establishing an upper
bound which is strictly between S4 and S4.2. However it is not known whether this
modal theory is finitely axiomatizable, so it is not yet clear whether this can be shown
to be a lower bound as well by the current methods. So, this question remains open.
To conclude, we list the current knowledge concerning all the classes in the

diagram.

Theorem 4.13. 1. The modal logic of the following classes of forcing is exactly
S4.2:
(a) ó-centered;
(b) ó-n-linked for all n;
(c) ó-n-linked for some n;
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(d) Pre-caliber ù1 of bounded size;
(e) Kn ( for some n) of bounded size.

2. The modal logic of the following classes contains S4.2 and is contained in S4.3:
(a) Pre-caliber ù1;
(b) Kn for some n.

3. The modal logic of c.c.c. forcing contains S4 and is contained in S4sBA.
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