Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T07:45:27.177Z Has data issue: false hasContentIssue false

Ultra-cold plasmas: a paradigm for strongly coupled and classical electron fluids

Published online by Cambridge University Press:  15 April 2009

CLAUDE DEUTSCH
Affiliation:
LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay, France
GUENTER ZWICKNAGEL
Affiliation:
Institut fuer Theoretische Physik II, Staudtstr. 7, 91058 Erlangen, Germany
ANTOINE BRET
Affiliation:
ETSI Industriales, Universidad de Castilla, La Mancha, 13071 Ciudad Real, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultra-cold plasmas obtained by ionization of atomic Rydberg states are qualified as classical and strongly coupled electron fluids. They are shown to share several common trends with ultra-cold electron flows used for ion-beam cooling. They exhibit specific stopping behaviour to charged particle beams, which may be used for diagnostic purposes. Ultra-cold plasmas are easily strongly magnetized. Then, one expects a strongly anisotropic behaviour of low ion velocity slowing down when the target electron cyclotron radius becomes smaller than the corresponding Debye length.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

References

[1]Vitrant, G., Raimond, J. M., Gross, M. and Haroche, S. 1982 Rydberg to plasma evolution in a dense gas of very excited atoms. J. Phys. B 15, L4955.Google Scholar
[2]Killian, T. C., Kulin, S., Bergeson, S. D., Orozec, L. A. and Rolston, S. L. 1999 Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83, 47764779.CrossRefGoogle Scholar
[3]Kulin, S., Killian, T. C., Bergeson, S. D. and Rolston, S. L. 2000 Plasma oscillations and expansion of an ultracold plasma. Phys. Rev. Lett. 85, 318321.CrossRefGoogle Scholar
[4]Killian, T. C., Lin, M., Kulin, S., Bergeson, S. D. and Rolston, S. L. 2001 Formation of Rydberg atoms in an expanding ultracold neutral plasma. Phys. Rev. Lett. 86, 37593762.CrossRefGoogle Scholar
[5]Robinson, M. P., Laburthe Tolra, N., Noel, M. W., Gallagher, T. F. and Pillet, P. 2000 Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 85, 44664469.CrossRefGoogle ScholarPubMed
[6]Killian, T. C., Ashoka, V. S., Gupta, P., Caha, S., Nagel, S. B., Simien, C. E., Kulin, S., Rolston, S. L. and Bergeson, S. D. 2003 Ultracold neutral plasmas:Recent experiments and new prospects. J. Phys. A 36, 60776085.Google Scholar
[7]Keller, M. L., Anderson, L. W. and Lin Chun, C. 2000 Electron-impact ionization crose-section measurements out of the 5 2P excited state of Rubidium. Phys. Rev. Lett. 85, 33533356.CrossRefGoogle Scholar
[8]Li, W., Tanner, P. J. and Gallagher, T. F. 2005 Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94, 173001.CrossRefGoogle Scholar
[9]Comparat, D., Vogt, T., Nahzam, N., Mudrich, M. and Pillet, P. 2005 Star cluster dynamics in a laboratory: Electrons in an ultracold plasma. Mon. Not. R. Astron. Soc. 361, 12271242.CrossRefGoogle Scholar
[10]Gouedard, C. and Deutsch, C. 1978 Dense electron-gas response at any degeneracy. J. Math. Phys. 19, 3240.CrossRefGoogle Scholar
[11]Zwicknagel, G. 1994 Energie Verlust Schwerer Ionen in Stark Gekoppelten Plasmen.Ph.D thesis. Theoretische Physik II, University of Erlangen.Google Scholar
[12]Deutsch, C. 1977 Nodal expansion in a real matter plasma. Phys. Lett. A 30, 317319. Deutsch, C., Furutani, Y. and Gombert, M. M. 1981 Nodal expansions for strongly coupled classical plasmas. Phys. Rep. 69, 86–193.CrossRefGoogle Scholar
[13]Stringfellow, G. S., DeWitt, H. E. and Slattery, W. L. 1990 Equation of state for the one-component-plasma derived from precise Monte-Carlo simulations. Phys. Rev. A 41, 11051111.CrossRefGoogle Scholar
[14]Bonitz, M., Zelener, B., Zelener, B. V., Manykin, E. A. N., Filinov, V. S. and Fortov, V. E. 2004 Thermodynamics and correlation functions of an ultracold nonideal Rydberg plasma. JETP 98, 719727.CrossRefGoogle Scholar
[15]Shumway, J. and Ceperley, D. M. 2000 Path integral Monte-Carlo simulations for fermion systems: Pairing in the electron-hole plasma. J. Phys. IV Fr. 10, 316.Google Scholar
[16]Zwicknagel, G., Toepffer, C. and Reinhard, P. G. 1999 Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208; Erratum 1999 Phys. Rep. 314, 671.CrossRefGoogle Scholar
[17]Zwicknagel, G. 2001 Nonlinear energy loss of heavy ions in plasma. Nucl. Instrum. Methods B 197, 2238.CrossRefGoogle Scholar
[18]Robichaux, F. and Hanson, J. D. 2002 Simulation of the expansion of an ultracold plasma. Phys. Rev. Lett. 88, 055002.CrossRefGoogle Scholar
[19]Bret, A. and Deutsch, C. 1993 Dielectric response function and stopping power of a two-dimansional electron-gas. Phys. Rev. E 48, 29943002.Google ScholarPubMed
[20]Nersisyan, H. B., Toepffer, C. and Zwicknagel, G. 2007 Interaction Between Charged Particles in a Magnetic Field. Springer-Verlag, Berlin-Heidelberg.Google Scholar
[21]Dufty, J. M. and Berkovsky, M. 1995 Electronic stopping of ions in the low velocity limit. Nucl. Instrum. Methods Phys. Res. B 96, 626632.CrossRefGoogle Scholar
[22] A fundamental restriction on the relations (17) arises a priori from the strong inequality M p/m ≫ 1 between ion projectile and electron masses. However, Dufty and Berkovsky [21] demonstrated how it can be considerably relaxed.Google Scholar
[23]Marchetti, M. C., Kikpatrick, T. R. and Dorfman, J. R. 1987 Hydrodynamic theory of electron transport in a strong magnetic field. J. Statist. Phys. 46, 679708; Erratum 1987 J. Stat. Phys. 49, 871–872. Marchetti, M. C., Kikpatrick, T. R. and Dorfman, J. R. 1984 Anomalous diffusion of charged particles in a strong magnetic field. Phys. Rev. A29, 2960–2962.CrossRefGoogle Scholar
[24]Cohen, J. S. and Suttorp, L. G. 1984 The effect of dynamical screening on self-diffusion in a dense magnetized plasma. Physica 126A, 308327.CrossRefGoogle Scholar
[25] The extension to a more general ion beam–plasma system requires us to replace the OCP by a binary ionic mixture (BIM) modelization.Google Scholar
[26]Goldston, R. J. and Rutherford, P. H. 1995 Introduction to Plasma Physics. Institute of Physics, Philadelphia, p. 318.CrossRefGoogle Scholar
[27]Montgomery, D., Liu, C. S. and Vahala, G. 1972 Three-dimensional plasma diffusion in a very strong magnetic field. Phys. Fluids 15, 815819.CrossRefGoogle Scholar