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Abstract. Ultra-cold plasmas obtained by ionization of atomic Rydberg states are
qualified as classical and strongly coupled electron fluids. They are shown to share
several common trends with ultra-cold electron flows used for ion-beam cooling.
They exhibit specific stopping behaviour to charged particle beams, which may be
used for diagnostic purposes. Ultra-cold plasmas are easily strongly magnetized.
Then, one expects a strongly anisotropic behaviour of low ion velocity slowing down
when the target electron cyclotron radius becomes smaller than the corresponding
Debye length.

1. Introduction
We intend to review some conspicuous features of the ultra-cold plasma (UCP)
observed in the quasi-reversible transformation of cold atomic Rydberg states into
an expanding fluid of free electrons neutralized by much slower residual ions. Such
a process is routinely observed since the first unambiguous identification due to
Vitrant et al. [1] as early as 1982. In the meantime, many accurate experiments [2–
6], performed on both sides of the Atlantic, have definitively settled an unexpected
territory in the temperature–density plane of current use by plasma physicists.
However, it seems to us that the potentialities of cross fertilization afforded by a
very unusual interplay of atomic physics with plasma collective phenomena have
been largely under appreciated, up to now.
Such a view explains the organization of the present work. In Sec. 2, we recall in

a non-technical presentation the physics of atomic cooling. This section is meant
essentially for a plasma physicists readership.
In Sec. 3, we show how the inclusion of binary particle correlation leads to specific

modellings of the expanding UCP. Sections 4 and 5 advocate charged particle
stopping and energy loss in the UCP as a possible diagnostic method.
A first approach when no applied magnetic field is present (B = 0) is presented

in Sec. 4, while the strongly magnetized case (B�0 and ωc � ωp) is detailed in
Sec. 5. Then, specific attention is given to low ion velocity slowing down (LIVSD)
in terms of the target plasma hydromodes. Conclusion and outlook are offered in
Sec. 6.
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Figure 1. Particle slowing down using chirped laser frequency.

2. Atomic cooling and ultra-cold plasma formation
We sketch here briefly for non-specialists the basic concepts underlining the pro-
duction of UCP through laser cooling of atomic species. We do so in a non-technical
way through a few selected pictures.
In Fig. 1, we picture a typical laser cooling process of Na atoms.
Toward this goal one uses a tunable laser and triggers the laser frequency well

below the natural frequency. Photons of this low frequency will interact with the
high-speed particles in the beam, slowing them down. The frequency of the laser
is then increased so that the slowed atoms and those atoms with a lower initial
velocity are both slowed. As the laser continues to ‘chirp’ upward in frequency,
it sweeps the velocity of all the particles downward. Then, all the particles in the
beam are slowed down to the same velocity. In Fig. 1, Na atoms come from an oven
with a wide spread in initial longitudinal and transverse velocities. As depicted in
‘before cooling’ and ‘after cooling’ scatter diagrams, the chirped laser sweeps all the
atoms but two to zero longitudinal frequency. The chirped laser light brings the
sodium beam to a stop and converts it into a slowly expanding cloud of Na atoms
with a density ∼106 atoms/cc with an expanding velocity ∼6m/s equivalent to a
50mK kinetic temperature.
Neutral particles are likely to remain in their ground state. They can be excited

to a higher state by a laser tuned to the resonance frequency corresponding to the
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Figure 2. Magneto-optical traps. A standard display including an electron beam for atomic
excitation [7].

transition to that state. The laser photons needed to excite the first excited states
for atomic and molecular hydrogen are in the vacuum ultraviolet (VUV) region.
Actually, the production of UCP [2–6] is obtained by combining three pairs of

laser beams acting in conjunction with an inhomogeneous magnetic field on alkali
(Rb for instance) atoms.
A standard setup is pictured in Fig. 2. It also includes an electron beam for

excitation of atomic levels [7].
In Fig. 2, the six laser beams (one pair is out of the screen) combined with an

inhomogeneous magnetic field trap 106 atoms, in a ball about 1/2 mm in diameter.
The relative number of atoms trapped is measured by the Rb (5p to 5s) fluorescence
using the photodiode. The trapping lasers are turned off, and the electron beam is
pulsed on. After a short delay, the trapping lasers are turned on. The decrease in
Rb fluorescence is proportional to the number of atoms lost from the trap due to
being hit by an electron. By knowing the electron current density at the trap and
the fraction of atoms lost from the trap various cross sections can be determined.
Some experimental specifications for this case run as follows:

Atoms in trap 106 atoms at 100 μK
Electron energy range 0 to 500 eV
Electron beam current 150 μA at 100 eV

In experiments performed very recently by Li et al. [8], one starts with 85Rb
atoms in a vapour-loaded magneto-optical trap (MOT), in which the atoms are at
300 μK and at 5p3/2 density of 5 × 1010 cm−3 . The atoms are excited from the
5p3/2 state to ns or nd Rydberg states at a 20 Hz repetition rate using a pulse-
amplified, frequency-doubled 960 nm continuous-wave Ti:sapphire laser. The laser
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pulses have a 10 ns duration, a 20 μJ energy, and a 200 MHz bandwidth, and the
beam is focused to a 0.2 mm diameter waist in the trap volume. About 10% of
the cold atoms are excited to Rydberg states, leading to a maximum density of
Rydberg atoms of 5 × 109 cm−3 .
The plasma formation is observed and also population transfer to higher dipole

coupled states starting from initially excited Rb ns and nd states as a function
of Rydberg atom density and time delay after laser excitation. One analyses the
final states of the atoms by applying a field ramp with a rise time of 2 μs. The ions
or electrons in an UCP are detected at the beginning of the field ramp, and the
atoms in a Rydberg state are detected after the ramped field reaches its ionization
threshold. In the time-resolved signals, it is straightforward to observe ionization
and state changing using electron detection.
Li et al. [8] interpreted their observations as follows.
In cold dense Rydberg atom samples, the dipole–dipole interaction strength ap-

pears resonant at the typical interatomic spacing in the sample, and the interaction
has a 1/R3 dependence on the interatomic spacing R. The dipole–dipole attraction
leads to ionizing collisions of initially stationary atoms, which produces hot atoms
and ions and initiates the evolution of initially cold samples of neutral Rydberg
atoms into plasmas. More generally, the strong dipole–dipole forces lead to motion.

3. Dense and strongly coupled electron fluid
3.1. A bit of numerology

A priori, the very low particle densities observed in the expanding UCP could lead
to a neglect of particle–particle correlations.
Such a view has been very recently stressed by Comparat et al. [9] through

an intriguing analogy between expanding UCP and gravitational equilibrium of
globular star clusters. These authors also advocated a time evolution monitored by
a Fokker–Planck kinetic equation putting in parallel binary star formation and
three-body recombination into Rydberg atoms. Such an approach might be well
suited for the description of these atomic and local processes, where correlations
are not fundamentally involved. However, to investigate genuine plasma physics
implying collective effects, one needs to include particle correlations.
Here, we proceed to a standard analysis for qualifying the UCP phases in a

density–temperature framework. In view of the Coulomb and long-range interac-
tions, it is recommended to evaluate carefully binary correlations between particles
within the UCP electron fluid. Such correlations are qualified for particles obeying
classical Boltzmann statistics by the dimensionless parameter

Γ =
(Ze)2

aT
= 2.69 × 10−5Z2

(
ne

1012 cm−3

)1/3(
Te

106 K

)−1

, (1)

with a = (4/3πne)−1/3 meaning interelectron distances and Z denoting the ion
charge neutralizing the UCP.
UCP maintains such a low Te as soon as ne � 106 cm−3 , Γ � 0.2, a fiducial figure

for most expanding UCP encountered in the literature. Therefore, it is appropri-
ate to include correlation effects in any quantitative estimate of equilibrium or
transport UCP properties.
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Simultaneously, at the ne values considered, the Wigner parameter

rs =
a

rB
≈

[
ne

1.6 × 1024 cm−3

]1/3

(2)

measuring a in numbers of the Bohr radius rB remains always much larger than
one, which pertains to a classical UCP, fulfilling Boltzmann statistics. This feature
is at variance with usual partially degenerate electron fluid [10] neutralizing and
polarizing as well as classical and strongly coupled ions with much larger ne values.
This a priori paradoxical situation is also highlighted by the degeneracy para-

meter

Θ =
kBTe
EF

=
2mekBTe

�2(3π2ne)2/3

= 2
(

4
9π

)2/3
rs
Γ

(3)

also being much larger than one.

3.2. Time evolution

Most of the significant physics encountered in the Rydberg–UCP transition has to
do with the expansion of the initial ultra-cold atoms and their subsequent ioniza-
tion. So, comprehending intricacies of the plasma phase time development appears
as a basic challenge involving dynamical correlations between charged particles.
Hopefully, the given UCP expansion may be rather convincingly modelled through
adequate molecular dynamics (MD) numerical simulations [11], provided that the
ultraviolet divergence associated with the short-range electron–ion interaction is
carefully taken care of. An accurate albeit simple expression validated by many
applications reads [12]

Vαβ (r) =
ZαZβ e2

4πe0

1 − exp(−καβ r)
r

, Vαβ (0) =
ZαZβ e2

4πe0
καβ , (4)

with καβ = 2π/λth(μαβ ) for a hydrogenic pair with charges Zα and Zβ and
thermal de Broglie wavelength λth(μαβ ) = �/

√
2mμαβ kBT , where μαβ =

mαmβ /(mα + mβ ). Interaction (4) is plotted in Fig. 3 as

V̄ (r)
V̄ (0)

=
1 − exp(−κr)

κr
, (5)

contrasted to the approximation

V̄ (r)
V̄ (0)

=

⎧⎪⎨
⎪⎩

(κr)2

27
− κr

3
+ 1, κr < 3,

1
κr

, κr � 3.

(6)

Time evolution per se is displayed in Fig. 4 for potential energy Upot and tem-
peratures renormalized by the thermal temperature T (= Te = Ti) at two distinct
Γ values. Running time t is given in numbers of τp = ω−1

p with ω2
p = 4πZ2

αnee
2/me.

The weak-coupling case (Fig. 4a) advocates steady temperatures Te #Ti and Upot �
0. The correlated situation (Fig. 4b) looks very different. The ion temperature
remains constant as previously. However, the electron temperature Te steadily
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Figure 3. Effective electron–ion interaction (4).

increases as a result of partial three-body recombination into Rydberg atoms, while
Upot becomes more and more negative.
At large t, one can expect that colder ions mimic the homogeneous and rigid

neutralizing background in the one-component plasma (OCP) models [13].

3.3. Rydberg matter

Another aspect of a two-component plasma (TCP) electron–ion system featuring
extensively the impact of Coulomb correlation on the plasma structure is the build-
ing up of the elusive phase of Rydberg matter. Again, we shall rely on numerical
simulations conducted very recently by Bonitz et al. [14] in the framework of the
path-integral Monte Carlo (PIMC) scheme [15] for investigating internal energy
pressure and pair correlation functions in the temperature range T = 0.1–10 K
with ne = 109–1015 cm−3 , spanning densities somewhat larger than those currently
accessible to present laboratory UCPs. At small Γ (Fig. 5), the considered TCP
remains clustered into quasi-molecules [14] featuring a few point-like charges of
either sign (see part (c) of Fig. 5).
Such a configuration retains only short-range ordering. On the other hand, at

high Γ (� 1), a reticulated organization takes place with either electrons or ions
(part (a) of Fig. 5) on the same quasi-lattice sites, or on distinct quasi-lattice sites
(part (b) of Fig. 5). These conspicuous numerical expectations are still awaiting a
decisive confrontation with bona fide experimental results. It should be finally
appreciated that the reticulated systems (a) and (b) in Fig. 5 are not genuine
crystalline structures with infinite propagation of the long range positional order.
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Figure 4. Temporal evolution of particle temperatures and potential energies in weakly [(a)
Γ = 0.0825] and coupled [(b) Γ = 1.08] plasmas under three-body recombination.

Also, the given electronic component significantly departs from the conduction
band of alkali metals, the closest realization of the OCPmodel in the laboratory. The
alluded to difference arises from the strong density inhomogeneity of the electron
fluid made of particles spending a lot of time very far from their parent nuclei
(Rydberg atom structure).

4. Ion stopping in ultra-cold plasmas (B = 0)
Up to now, only a few classical electron fluids have been identified experimentally.
One of them which seems to share a lot of common features with the UCP of the
present interest is the electron flow used for cooling of energetic ion beams (Fig. 6).
Very cold electrons stream parallel (or sometimes antiparallel) to the ion beam in a
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Figure 5. Rydberg matter particle coordinates pertaining to pair correlation functions
gee(r), gii(r), and gei(r). Open and filled circles represent ions and electrons, respectively:
(a) T = 0.1 K, r = 109 cm−3 , ions and electrons sit on the same lattice sites, (b) T = 0.1 K,
n = 1010 cm−3 , ions and electrons sit on distinct lattice sites, (c) T = 0.1 K, n = 1015 cm−3 ,
ions and electrons cluster into droplets [14].

Figure 6. Heidelberg Test Storage Ring (TSR). Electron cooling device. Electron energies
can be varied between 2 and 320 keV with a maximum design current of 10 A. The e-beam
diameter is 5 cm and the length of the electron–ion interaction region 250 cm.

given accelerating structure, to reduce the ion beam emittance (transverse entropy),
while raising it in the electron beam.
The quantitative understanding of the cooling process is well documented by now.

It essentially relies on a careful understanding of ion beam stopping and energy
loss into the parallel electron fluid.
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There are two conventional approaches to the stopping power, the dielectric linear
response (DLR) formalism and the binary collision treatment. In the dielectric
description the stopping power dE/ds is calculated as the force between the ion
and the polarization cloud created by the ion and can be expressed in terms of the
dielectric function ε(κ, ω):

−dE

ds

λD
κBT

= Z2
p

√
3Γ3/2 λ2

D

2π2 ×
∫

κ<κm

d3κ
κ · v̂

κ2 Im
[

1
ε(κ, κ · v)

]
, (7)

where v = projectile velocity.
For classical systems the dielectric function ε can be written in terms of the Fried–

Conte plasma dispersion function and represents the limit � → 0 of the classical
random phase approximation (RPA) dielectric function for any degeneracy of the
electron target. The classical linear response description, however, cannot treat close
ion–electron collisions. To correct for this, a cut-off km is introduced to incorporate
a Bloch correction for the stopping power which accounts for the contribution
of close collisions in an approximate manner for |Zp|Γ3/2/(1 + (v/vth)3) � 1. For
classical ion–electron collisions with n > 1 this cut-off is given by κm ≈ 1/〈b0〉 =
4πε0m〈vr〉2/|Zp|e2 = (1 + v2/v2

th)/
√

3|Zp|Γ3/2λD.
λD is the usual target electron Debye length λD = (kBT/4πnee

2)1/2 .
In the binary collision approach (BCA) the stopping power is obtained as the

average over the momentum transfer in isolated collisions between the ion and
target electrons. In terms of the transport cross section σtr for the ion–electron
collisions, the stopping power dE/ds (in KbT/Debye length) on heavy ions (i.e. in
the limit of an infinite projectile mass) reads

−dE

ds

λD
κBT

=
Z2
p

4π(
√

3)3

{∫
d3vr

2π3/2v3
th

exp
(

− (vr + v)2

2v2
th

)
vr
vth

v̂ · vr
vth

σtr(vr)
λ2
D

}
(8)

for an electron target with a Maxwell velocity distribution. vr denotes the relative
velocity between projectile and target electron.
Figure 7 exhibits stopping profiles according to (7)–(8) contrasted to molecular

dynamics (MD) and Vlasov simulations, in terms of projectile velocity divided
by target electron thermal velocity. The agreement between the four considered
approaches deteriorates somewhat with increasing Γ value, especially for moder-
ate or small projectile velocity. Clearly, the linear response (7) exhibits a marked
correlation hole, not confirmed by other estimates [16,17].
On the other hand, the Bethe-like high-v behaviour remains correct at any

Γ. An encouraging feature of these calculations is the good agreement for all Γ
and v values of simulation results obtained either through MD or particle-in-cell
(PIC) simulations. This allows us to benchmark quantitatively their given stopping
profiles before confrontation with experimental measurements.
In the limit of low velocities (v � 1), the stopping power behaves as

−dE

ds
= R1v + R3v

3 + O(v5),

where the friction coefficient R1 in the binary collision approximation is given by

R1 = Z2
pΓ

3 1
6

2
π

∫ ∞

0
dx e−x ln

(
1 +

4x2

3Z2
pΓ3

)
. (9)
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Figure 7. Normalized stopping power dE/ds/Z2
p in units of 31/2Γ3/2kBT/λD as a function

of the ion velocity υ in vth = (kBT/m)1/2 for an ion of charge ZD = 10 in electron plasmas
with Γ = 0.11 (top), 0.34 (centre), and 1.08 (bottom): MD simulations (Δ), with typical size
of error bars as indicated top right in each case, Vlasov simulations in the linear response
description (7) (dashed curve), and the binary collision treatment (8) (dash–dotted).
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Figure 8. Friction coefficients −dE/ds/υ as a function of the coupling parameter ZΓ3/2 .
Energies E and velocities v are in thermal units and distances are in Landau lengths e2/kbTe.
MD simulation results for Γ = 0.08 (Δ), Γ = 0.34 (�), and Γ = 0.11 (◦), with error bars
compared with the binary collision approximation (dash–dotted curve (9)) and the linear
dielectric response treatment (dotted curve (10)). The dashed line is a pure Z2

p law curve.

In the dielectric linear response formalism, it is given by

R1 = −
Z2
pΓ

3

3(2π)1/2

[
ln(κ2

m + 1) − κ2
m

κ2
m + 1

]
,

(10)

κm =
2

31/2 |Zp|Γ3/2 .

Corresponding friction coefficients −dE/ds/v are graphed in terms of the
coupling parameter ZpΓ3/2 in Fig. 8, together with MD simulation results and
a pure Z2

p law curve (straight dotted line).
Again, the BCA profile fits more closely the trustable simulation results than

dielectric DLR ones.
As a straightforward application of the present reasoning, let us consider the

simultaneous expansion of an ion cloud surrounded by free electrons [18], with

V expanding heavy ion
V thermalized free electron

≈ 1.2 × 10−4 .

So, practically, we can safely state that no friction is expected between expanding
ions and the expanding free electron fluid, which seems to confirm simulation
results [18] for the expansion process.
For diagnostic purposes, it might be useful to consider ion projectiles with an

impinging velocity v far above that of the expanding and thermalized electrons vth.
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So, restricting first to a three-dimensional expansion, the above expressions (7)
and (8) simplify to(

−dE

dx

)
3D

= 4π
Z2
pe

4ne

mev2

(
2mev

2

�ωp

)
+ O(1/v4). (11)

On the other hand, paying attention to a mostly planar expansion, one then has
to switch to a novel situation featuring a classical 2D electron fluid.
In this case [19], the RPA has to be reworked. So, the Bethe-like expression (11)

now becomes intrinsically quantum mechanical, under the form

−dE

dx
= 2π2 Z2

pe
4ne

�V
+ O(1/V 2), (12)

with corresponding linear range for complete stopping

D(cm) = 1.88 × 10−9 E
3/2
i

Z2neM
1/2
e

, (13)

with Ei (eV) the ion projectile energy, ion massM in g, and target electron density
ne in cm−2 . For instance, 10 keV protons in a plane and a classical electron fluid
with ne = 108 cm−2 will experience dE/dx ∼ 0.32 keV/cm and D ∼ 15 cm.
The MOT pictured in Fig. 2 illustrates the interaction geometry allowing energy

loss measurements for a slow electron beam stopped in a ball of UCP.

5. Low ion velocity slowing in a strongly magnetized ultra-cold
plasma

It is straightforwardly observed that it is rather easy to magnetize, even strongly,
an expanding UCP. This is achieved as soon as the electron cyclotron frequency
fulfils ωb � ωp with

B(G) � 3.203 × 10−3(ne(cm−3))1/2 , (14)

while the corresponding heavy-ion (Rb for instance) gyroradius ωb,i is obviously
fulfilling

rci = υT i/ωb,i

= 1.02 × 102μ1/2Z−1T
1/2
i B−1 cm� rL (15)

with μ = mi/mproton, Ti in eV, and B in gauss. rL denotes the electron Larmor
radius.
The combination of (14) and (15) highlights a strongly magnetized electron UCP

neutralized by an ion fluid hardly affected by the magnetic field B.
Ion-beam stopping in a dense plasma submitted to an arbitrary large and steady

magnetic field B is a recurrent topic encompassing a huge range of practical situ-
ations of very high interest. Here we focus attention on ultra-cold plasmas (UCPs)
and cold electron setups used for ion-beam cooling.
These interaction geometries also highlight low ion velocity slowing down

(LIVSD) as playing a fundamental role in asserting the confining capabilities and
thermonuclear burning efficiency in dense and strongly magnetized media.
Our present goal is to demonstrate that LIVSD transverse and parallel to Bmay

be given analytic expressions through a derivation free from ambiguities usually
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plaguing the most sophisticated combination of binary collision approximation and
dielectric response [20]. We thus implement a radically novel approach [21] to
LIVSD when the projectile velocity V remains smaller than the target electron
thermal velocity Vthe. We thus consider ion stopping

S(V ) ≡ dEb
dx

(V ) (16)

near V = 0. The ratio S(V )/V usually monitors a linear stopping profile, up to
100 keV/a.m.u. in cold matter. Similar trends were also reported in highly ionized
plasma with B = 0 or B�0 [20].
From now on, we intend to make use of a very powerful connection between very

low velocity ion stopping and particle diffusion through Einstein characterization of
ion mobility associated with thermal electron fluctuations in the target, around the
slow ion projectile visualized as an impurity immersed in a dense and homogeneous
electron fluid.
Technically, we are then led to use the recently proposed and exact Dufty–

Berkovsky relationship [21,22]

lim
V →0

S(V )
V

= kBTeD
−1 (17)

connecting the ratio of stopping to V in the zero-velocity limit with the ion-diffusion
coefficient in the target.
In a magnetized plasma D can be readily expressed in terms of Green–Kubo

integrands (GKIs) involving field fluctuations in the target electron fluid, under
the form

D =
c2

B2

∫ ∞

0
dτ〈 �E(τ) · �E(0)〉 (18)

in terms of an equilibrium canonical average of the two-point autocorrelation
function for fluctuating electric fields [23,24].
At this juncture we need to frame the GKI in suitable magnetized one component

plasma (OCP) models [23, 24] for the transverse and parallel geometries, respect-
ively. This procedure implies that the slowly incoming ions are evolving against
a background of faster fluctuating target electrons (V < Vthe) providing the OCP
rigid neutralizing background, thus validating the OCP assumption.
Moreover, restricting to proton projectiles impacting an electron–proton plasma

[25], we immediately perceive the pertinence of the diffusion-based LIVSD as
phrased by (17).
First, the proton beam can easily self diffuse amongst its target homologues,

while the same mechanism experienced by target electrons allows them to drag
ambipolarly the incoming proton projectiles [26].
So, the transverse electron LIVSD can be monitored either by the well-known

classical diffusion D⊥ ∼ B−2 or by the Bohm-like hydrodynamic one with D⊥ ∼
B−1 . In the first case, momentum conservation at the level of the electron–ion pair
implies that the ions will diffuse with the same coefficient as the electrons. On the
other hand, the hydro-Bohm diffusion across B is operated through clumps [27]
with a large number of particles involved in this collective process.
Transverse D⊥ and parallel D‖ diffusion coefficients have already been discussed

at length by Marchetti et al. [23] and Cohen and Suttorp [24]. Their derivation is
based on the specific features of four finite-frequency and propagating hydromodes
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in a strongly magnetized OCP with the ratio of plasma to cyclotron frequencies
ωp/ωb < 1.
First, two high-frequency modes generalize first Bernstein modes (B = 0) and

two finite-frequency modes extend the B = 0 shear modes.
So, exploring first the ωb � ωp domain, one can explore the parallel and B-

independent diffusion [23],

D
(0)
‖ =

3
√

πV 2
thi

νc
∼ 0(ω0

b), (19a)

yielding readily the unmagnetized (B = 0) LIVSD [16], where V 2
thi = kBT/Mi,

vc = ωpεp ln(1/εp) in terms of the redefined dimensionless plasma parameter εp =
1/neλ

3
D, and λD, the Debye length, in a beam–plasma system taken as globally

neutral with νc/ωb � 1.
At the same level of approximation, transverse diffusion reads [23]

D
(0)
⊥ =

r2
Lνc

3
√

π
∼ O(ω−2

b ), (19b)

in terms of the Larmor radius rL = Vthi/ωb.
With higher B values (ωb � ωp) one reaches the transverse hydro-Bohm regime

featuring [23]

D
(0)
⊥ = D0

⊥ +
0.5V 2

thi

ωb
ε2
p(ln(1/εp))3/2 , (20)

while parallel diffusion retains a ωb dependence through [24]

D−1
‖ =

Γ5/2

ωpa2 ·
(

3
π

)1/2

·
(

0.5 log(1 + X2) − 0.3 +
0.0235

r2

)
, (21)

where Γ = a2/3λ2
D with a = (3/4πne)1/3 , r = ωp/ωb, and X = (1/

√
3Γ3/2),Γ < 1

encompassing most, if not all, situations of practical interest.
When electron diffusion is considered, Vthe should be used in (20), and the above

ambipolar process has to be implemented.
TheD⊥ andD‖ expressions introduced in (17) are expected to document a strong

anisotropy between transverse and parallel slowing down. However, in both cases,
the B dependence is obviously increasing with B2 (classical) or B (Bohm like). The
temperature behaviour is much more intriguing, as respectively displayed in Figs. 9
and 10 for transverse and parallel LIVSD in a UCP considered for ion-beam cooling
(see Fig. 6). One then witnesses a monotonic increase for transverse stopping (Fig. 9)
contrasted to a monotonic decay for the parallel counterpart (Fig. 10).
As a summary, we implemented the very simple LIVSD expression (17) to the

a priori very involved ion beam–arbitrarily magnetized plasma interaction.We used
transverse and parallel diffusion coefficients [23,24] in suitably framed magnetized
one-component plasma (OCP) with target electrons building up the corresponding
neutralizing background. Thus, we reached analytic LIVSD transverse and parallel
expressions advocating contrasting temperature behaviour. These quantities are of
obvious significance in asserting the confinement capabilities of ultra-cold plasmas
at high B values.
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Figure 9.Proton transverse LIVSD in a cold plasma (n = 3.5×107 e cm−3 , 10 � T (K) � 105 ,
and B = 104 G) in terms of T (K). (a) Electron stopping (D⊥ ∼ B−2 ); (b) electron stopping
(D⊥ ∼ B−1 ); (c) ion stopping.

Figure 10. Proton parallel LIVSD in a cold plasma (n = 3.5 ×107 cm−3 e cm−3 , B = 104 G),
10 � T (K) � 105 ). (a) Target ion slowing down (B�0); (b) target ion slowing down (B = 0);
(c) target electron slowing down (B�0); (d) target electron slowing (B = 0). (b) and (c) stand
in a log (43) ratio.

6. Conclusion and outlook
Ultra-cold plasmas (UCPs) are thus seen as offering unique opportunities for ex-
ploring the specific static and dynamic properties of strongly coupled but mostly
classical electron fluids. Efficient experimental, numerical, and theoretical meth-
odologies are presently available to converge efficiently on the completion of these
goals. Interplay between laser-cooled UCPs and ion beam cooling experiments is
likely to provide an interesting cross-fertilization opportunity.

https://doi.org/10.1017/S0022377809007934 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809007934


814 C. Deutsch, G. Zwicknagel and A. Bret

Numerical MD and Monte Carlo simulations exhibit possible reticulated Rydberg
electron and ion phases, distinct from crystalline OCP, which could be explored in
the laboratory.
An expanding classical electron fluid could be specifically diagnosed through low

velocity ion stopping.
UCPs can be easily magnetized. This affords a unique opportunity for probing

ion stopping in the rather extreme location of the target space parameters, with
the electron cyclotron radius much smaller than the corresponding Debye length.
Then, one expects the OCP hydromodes to play a dominant role (Sec. 5). Other
topics not explored here include the recombination–ionization mechanisms under
a strong imposed magnetic field.
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