Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-06T00:43:27.158Z Has data issue: false hasContentIssue false

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

Published online by Cambridge University Press:  07 February 2012

G. XIA
Affiliation:
Max Planck Institute for Physics, Munich, Germany (xiaguo@mpp.mpg.de)
R. ASSMANN
Affiliation:
CERN, Geneva, Switzerland
R. A. FONSECA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
C. HUANG
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, USA
W. MORI
Affiliation:
University of California, Los Angeles, CA, USA
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
J. VIEIRA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
F. ZIMMERMANN
Affiliation:
CERN, Geneva, Switzerland
P. MUGGLI
Affiliation:
Max Planck Institute for Physics, Munich, Germany (xiaguo@mpp.mpg.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The proton bunch-driven plasma wakefield acceleration (PWFA) has been proposed as an approach to accelerate an electron beam to the TeV energy regime in a single plasma section. An experimental program has been recently proposed to demonstrate the capability of proton-driven PWFA by using existing proton beams from the European Organization for Nuclear Research (CERN) accelerator complex. At present, a spare Super Proton Synchrotron (SPS) tunnel, having a length of 600 m, could be used for this purpose. The layout of the experiment is introduced. Particle-in-cell simulation results based on realistic SPS beam parameters are presented. Simulations show that working in a self-modulation regime, the wakefield driven by an SPS beam can accelerate an externally injected ~10 MeV electrons to ~2 GeV in a 10-m plasma, with a plasma density of 7 × 1014 cm−3.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

References

[1]Esarey, E. et al. 2009 Rev. Mod. Phys. 81, 1229.Google Scholar
[2]Joshi, C. and Malka, V. 2010 New J. Phys. 12, 045003.Google Scholar
[3]Muggli, P. and Hogan, M. J. 2009 C. R. Phys. 10, 116.CrossRefGoogle Scholar
[4]Nakajima, K. et al. 1999 Nucl. Instrum. Meth. A 375, 593.Google Scholar
[5]Tajima, T. et al. 2009 Rev. Accel. Sci. Technol. 2, 201.CrossRefGoogle Scholar
[6]Leemans, W. P. et al. 2006 Nature Phys. 2, 696.CrossRefGoogle Scholar
[7]Leemans, W. P. et al. 2011 Proc. Particle Accelerator Conference, New York, USA, March 27–April 1.Google Scholar
[8]Blumenfeld, I. et al. 2007 Nature 445, 741.CrossRefGoogle Scholar
[9]Hogan, M. J. et al. 2010 New J. Phys. 12, 055030.CrossRefGoogle Scholar
[10]Braun, H. H. et al. 2003 Phys. Rev. Lett. 90, 224801.CrossRefGoogle Scholar
[11]Caldwell, A. et al. 2009 Nature Phys. 5, 363.CrossRefGoogle Scholar
[12]Ruth, R. et al. 1985 Part. Accel. 17, 171.Google Scholar
[13]Xia, G. et al. 2010 Advanced accelerator concepts. Proc. AIP Conf. 1299, 510.CrossRefGoogle Scholar
[14]Kumar, N. et al. 2010 Phys. Rev. Lett. 104, 255003.CrossRefGoogle Scholar
[15]Esarey, E. et al. 1994 Phys. Rev. Lett. 72, 2887.CrossRefGoogle Scholar
[16]Mori, W. B. 1997 IEEE J. Quantum Electron. 33, 1942.CrossRefGoogle Scholar
[17]Xia, G. and Caldwell, A. 2010 Proc. IPAC'10 Kyoto, Japan, p. 4395.Google Scholar
[18]Muggli, P. et al. 1999 IEEE Trans. Plasma Sci. 27, 791.CrossRefGoogle Scholar
[19]Arnush, D. and Chen, F. F. 1998 Phys. Plasmas 5, 1239.Google Scholar
[20]Huang, C. et al. 2006 J. Comp. Phys. 217, 658.CrossRefGoogle Scholar
[21]Fonseca, R. A. et al. 2002 Lect. Notes Comp. Sci. 2331, 342.Google Scholar
[22]Lotov, K. V. 2011 Phys. Plasmas 18, 024501.Google Scholar