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Abstract. The proton bunch-driven plasma wakefield acceleration (PWFA) has been
proposed as an approach to accelerate an electron beam to the TeV energy regime
in a single plasma section. An experimental program has been recently proposed to
demonstrate the capability of proton-driven PWFA by using existing proton beams
from the European Organization for Nuclear Research (CERN) accelerator complex.
At present, a spare Super Proton Synchrotron (SPS) tunnel, having a length of 600 m,
could be used for this purpose. The layout of the experiment is introduced. Particle-
in-cell simulation results based on realistic SPS beam parameters are presented.
Simulations show that working in a self-modulation regime, the wakefield driven by
an SPS beam can accelerate an externally injected ∼10 MeV electrons to ∼2 GeV
in a 10-m plasma, with a plasma density of 7 × 1014 cm−3.

1. Introduction

Over the past decade, there has been significant progress
in developing the advanced accelerator concepts and
possible technologies needed to produce and accelerate
particle beams to high energies in short distances [1, 2].
These so-called plasma accelerators have opened new
research frontiers and hold great promise to decrease
the scale and therefore the cost of future machines.
Developments in these research areas have paved the
way for a new generation of plasma accelerators not
only for high-energy physics [3] but also for many other
applications such as table-top x-ray Free Electron Lasers
(FELs) [4], compact proton (carbon) treatment facilities,
etc [5]. By employing an ultra-short, ultra-intense laser
pulse as a driver, the Laser Wakefield Acceleration
(LWFA) at Lawrence Berkeley National Laboratory
(LBNL) has successfully demonstrated generation of
1 GeV electron beam in a few centimeter long plasma
cell [6]. With rapid progress in laser technology and laser
guiding technique in plasmas, it is foreseen to reach a
few tens of GeV electron acceleration for high-energy
physics application [7]. Meanwhile, the electron beam-
driven plasma wakefield acceleration (PWFA) experi-
ment, conducted at the Final Focus Test Beam (FFTB)
at SLAC, has doubled the energy of some fraction of
electrons of the Stanford Linear Collider (SLC) beam
[8] in only 85 cm of plasma, which corresponds the
wakefield amplitude in excess of 50 GeV/m, more than

two orders of magnitude higher than the current radio-
frequency technology in use. The next generation PWFA
experiment foreseen at FACET will accelerate a separate
witness electron bunch to high energy with narrow
energy spread and preserved emittance [9]. However,
to reach the energy frontier of Teraelectron volts (or
TeV) energy regime, both LWFA and PWFA still face
some practical challenges, for instance, synchronizing
and aligning of many similar accelerating modules may
become difficult.

In general, plasma acts as an energy transformer
in both LWFA and PWFA. The plasma itself cannot
produce the net energy. However, it is a perfect medium
to transfer energy from a driver pulse (beam) to the
witness beam. Since plasma is already an ionized (broken
down) medium, there is no further breakdown. It can
therefore sustain very large electric fields. In contrast,
the metallic radiofrequency (RF) structures, from which
the particles gain energies in conventional accelerators,
are subject to material breakdown in high electric field.
Generally, the conventional RF cavity cannot endure
the electric field higher than 200 MeV/m [10].

More recently, Caldwell et al. [11] proposed a new
scheme, the so-called ‘proton-driven plasma wakefield
acceleration’. The underlying physics is similar to the
other beam-driven plasma wakefield acceleration. That
is, the space charge of the drive beam sets the ambient
plasma electrons in motion. The heavy plasma ions
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are stationary and therefore provide restoring forces
to plasma electrons and make them bounce in and
out from the beam propagation axis. The very quick
movement of plasma electrons corresponds to a very
high-frequency electric field. Sitting in the right phase,
some particles, either on the rear part of the drive
beam or an externally injected witness beam will gain
energies from this wakefield (wake). For a longitudinally
symmetric bunch, the transformer ratio (ratio of electric
field seen by the witness particles to that seen by the
drive particles) is limited to 2 [12]. That is to say,
when the drive and witness beams start with the same
energy, the drive beam can lose all of its energy, and
in return the witness beam could at most triple its
energy. Employing the present most energetic electron
beam from the SLC as a drive beam, the maximum
energy that can be achieved through PWFA is around
150 GeV in a single stage of acceleration. This energy
is lower than what the high-energy physics community
requires, and hence staging is required. Taken this into
consideration, using TeV protons as the drive beam,
it should be possible to reach the TeV scale energy
gain for the injected electron beam. The advantage of
using a proton beam as a driver is that nowadays there
are a few TeV proton synchrotron facilities around the
world, e.g. Tevatron, HERA, and the LHC. The energy
stored in a typical TeV scale proton bunch (∼100 kJ)
is two or three orders magnitude higher than that of
the highest energy electron beam from SLC (∼100 J).
The idea behind this proton-driven plasma wakefield
acceleration scheme is to transfer energy from high-
energy protons to the plasma and then to the electrons.
In this scenario, a proton beam is sent into a pre-formed
plasma. Particle-in-cell (PIC) simulations show that a
1 TeV proton bunch with a drive bunch population of
1011 and a bunch length of 100 µm injected in a pre-
ionized uniform plasma with density of 6 × 1014 cm−3

excites a wakefield with an amplitude of ∼2 GeV/m. An
externally injected 10 GeV electron bunch witnesses this
accelerating field and reaches a final energy greater than
600 GeV in a single plasma section of 450 m [11]. If this
could be demonstrated, it would potentially open a new
research frontier to accelerate electron beams to TeV
energy regime (energy frontier). This exciting simulation
result has aroused great interests in the community. A
wide collaboration has been formed to investigate the
underlying physics and the key issues in realizing an
experimental test of the proton-driven plasma wakefield
acceleration [13].

2. Self-modulation of a long beam
In the plasma wakefield acceleration, an efficient excit-
ation of wakefield requires the bunch length σz close
to the plasma wavelength λp = 2πc/ωp, where c is

the speed of light. ωp =
√
npe2/ε0m is the plasma

frequency, np is the plasma density, e, m, and ε0 are
electron charge, electron mass, and the permittivity of

free space, respectively. However, for the proton-driven
plasma wakefield acceleration, the available high-energy
beams from current proton synchrotrons are quite long.
For example, the proton bunch length for Tevatron,
HERA, and LHC are 50, 8.5 and 7.55 cm, respectively,
which is much longer than the plasma wavelength of in-
terest for high-gradient acceleration. The proton bunches
are long so as to avoid beam instabilities in the ring.
For example, in the European Organization for Nuclear
Research (CERN) accelerator complex, the longitudinal
emittance is blown up intentionally by noise injection in
order to create the Landau damping against instabilities.
Meanwhile, another limiting factor on the bunch length
is the beam current (that scales as the charge divided by
the bunch length), which gives some constraints due to
transverse single- and multi-bunch instabilities.

Compression of high-energy proton bunches to sub-
millimeter length, the conventional magnetic chicane
seems very challenging, since it requires large amounts of
RF powers to introduce the necessary energy chirp along
the beam and large dipoles to create a dispersive sec-
tion for path modulation. Preliminary simulation studies
show that to compress a 1-TeV, 1-cm proton bunch to
∼100 µm requires a 4-km linac to provide enough energy
chirp. It is therefore too expensive and impractical [13].
However, when a beam with a bunch length much longer
than the plasma wavelength is injected into a high-
density plasma, the particles in the bunch head will excite
wakefields. The transverse wakefield will modulate the
bunch current. Subject to the density modulation effect,
the long proton beam will be split into many short bunch
slices due to the transverse focusing and defocusing
field [14]. After propagating some distances, a full self-
modulation will be formed. These bunch slices will
coherently excite the wakefield and eventually the fields
add up to a higher amplitude. PIC simulation shows
that working in self-modulation regime, the wakefield
amplitude (on-axis electric field) can reach from several
hundred MeV/m up to 1 GeV/m by employing the
available proton beam from Super Proton Synchrotron
(SPS) at CERN. This process very much resembles the
self-modulated laser wakefield acceleration scheme (SM-
LWFA), in which a long laser pulse (compared with the
plasma wavelength) is modulated by the wakefield and
in turn a long laser pulse is split into many short pulses.
Therefore a high-density plasma can be used to excite
large amplitude wakefields even with long laser pulses
[15, 16].

3. SPS beam for the experiment
In order to demonstrate the capability of the proton-
driven plasma wakefield acceleration, we proposed an
experimental test of this scheme based on the CERN
accelerator complex. Fortunately, there is currently a
spare tunnel from the SPS, with a footprint of 620 m
in the West Area, which could be used for the proposed
experimental program. As an injector, the SPS can
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Table 1. Parameters for SPS–LHC and SPS–optimum beams.

SPS–LHC SPS–optimum

Beam energy (GeV) 450 450

Bunch population (1011) 1.15 3.0

Beam radius (µm) 200 200

Angular spread (mrad) 0.04 0.04

Normalized emittance (µm) 3.5 3.5

Bunch length (cm) 12 12.4

Energy spread (%) 0.03 0.03

provide very intense and high-energy proton beams for
the LHC and other experiments such as CNGS and
HiRadMat. The maximum beam energy from SPS is
450 GeV, with a nominal bunch population of 1.15×1011

and an rms bunch length of 12 cm. The transverse
normalized emittance is about 3.5 mm · mrad and the
relative energy spread is 3 × 10−4. The SPS-LHC beam
parameters are listed in Table 1.

Based on the linear theory of PWFA, a short drive
beam with a bunch length fraction of the plasma
wavelength is needed to resonantly excite a large amp-
litude wakefield. However, compression of SPS beam
from initially 12 cm to hundred microns approximately
(the same scale as the plasma wavelength at a density of
around 1015 cm−3) seems difficult [17]. In order to keep
the cost of the first experiment as modest as possible,
the beam will not be compressed, but rather a long
proton beam will be directly sent into the plasma and
we will study interactions between a long proton bunch
and the plasma. Since the proton bunch is much longer
than the plasma wavelength, we expect that a strong
self-modulation will occur within the body of beam
due to transverse instability. Subject to this modulation
effect, the long proton bunch splits into many ultra short
beam slices, with periodicity of a plasma wavelength
[14]. Figure 1 shows the on-axis SPS beam density
profile (X = 0) after 5-m propagation in plasma with a
density of 1014 cm−3. The proton bunch density is clearly
modulated by the plasma wakefield. The length of each
bunch is around one-half of the plasma wavelength.
These ultra-short bunches resonantly excite the plasma
wakefield, and the wakefield can potentially be used
to accelerate both some of the protons and externally
injected electrons.

In the first experiment, we anticipate demonstrating
the acceleration of an externally injected ∼10 MeV

Figure 1. On-axis (X = 0) beam density profile after 5-m propagation in plasma.

electron beam to 1 GeV with an SPS proton bunch as
driver in a 5–10-m plasma. Based on the success of first
round of experiments, we will further study acceleration
of an electron bunch to 100 GeV in a 100-m plasma. The
schematic of the beam line layout for our demonstration
experiment is shown in Fig. 2. After being switched
into the proposed experimental tunnel TT61, the SPS-
extracted beam will follow a 400-m transfer line with
a slope of 6–7% (in the future experiment, this tunnel
may also be used for beam manipulation, e.g. bunch
length and density shaping) and finally reach the ground
surface areas TT4 and TT5. The beam properties, such
as transverse size, beam angular spread, etc., will also be
adjusted to match plasma parameters. We assume that
a 5–10-m-long homogenous plasma is produced either
by a laser-ionized metal vapor [18], a helicon plasma
source [19], or a discharge plasma source. To witness the
wakefield, we will inject a long electron beam (in future,
we may also employ a compact laser plasma injector to
produce high quality electrons with ultra-short bunch
length), with an energy of tens of MeV (relativistic
regime) before a plasma cell. Electrons injected at a right
phase will reach high energies, while others will be decel-
erated. Exiting the plasma cell, an energy spectrometer
will be used to analyze the electron beam energy vari-
ation after the plasma. Diagnostics will be used to char-
acterize beam properties (beam size, current, emittance,
self-modulation effect, electron/proton energy variation,
etc.) with and without the plasma present. The spent
proton beam will be absorbed in the beam dump area.

4. Wakefield driven by SPS beam
The main parameters of a nominal SPS beam (or a
standard SPS-LHC beam for injection into the LHC)
and an optimum SPS beam (or SPS-optimum beam,
a high-density beam that can be produced in a single
bunch operation mode in SPS) are listed in Table 1. The
beam density for an optimum SPS is ∼2.5 times higher
than that of the SPS–LHC beam. It is expected that
the optimum SPS beam can therefore initially excite
a larger electric field in the plasma. Various PIC and
hybrid codes have been used to simulate interactions
between the SPS beams and the plasmas. Most results
have already been compared and benchmarked and
found to be in good agreement with each other. Figure 3
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Figure 2. (Colour online) Schematic of a beam-line layout for proton-driven PWA experiment at CERN.

Figure 3. (Colour online) Beam density distribution at 10-m plasma, as obtained from the numerical code QuickPIC [20]. The
proton bunch propagates from top to bottom.

https://doi.org/10.1017/S0022377812000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812000086


Demonstration of experiment of proton-driven plasma wakefield acceleration based on CERN SPS 351

Figure 4. (Colour online) Longitudinal electric field at 10-m plasma, as obtained from the numerical code QuickPIC [20]. The
proton bunch propagates from top to bottom.

shows an uncompressed SPS–LHC beam density distri-
bution (normalized to plasma density in the right color
bar) after 10-m plasma with a density of 1014 cm−3. It
was obtained using the quasi-static particle-in-cell code
QuickPIC [20]). Here ξ(ξ = ct− z) denotes the distance
in the beam frame (beam propagating downwards along
ξ axis) with ξ = 0 in the middle of the bunch and X
denotes the transverse horizontal direction. It is clearly
seen that the beam density is fully modulated after 10-m
plasma (with a maximum beam density = ∼0.09np, note
that the ratio between the initial SPS–LHC beam density
and the plasma density is 0.015 np). Some particles
in the bunch (in the focusing phase of the wake) are
focused and the beam density becomes denser locally.
Other particles (in the defocusing phase of the wake) are
defocused and scattered transversely leading to a large
transverse size and lower beam density regions. Since it
takes some time for the self-modulation effect to develop,
we found that protons in the bunch tail reach very large

modulation, while some fraction of protons in the bunch
head are scattered transversely due to less focusing
field from the plasma wakefield. This modulated bunch
pattern can propagate for a long distance. Figure 4
shows the longitudinal electric field (normalized to the
wave breaking field, Ewb ≈ 100

√
np(V/m), here np is in

units of cm−3) excited by an uncompressed SPS–LHC
beam after 10 m of plasma. It shows that the field
amplitude of ∼100 MeV/m can be achieved with a
relatively low plasma density of 1014 cm−3.

More recently, we performed 2D cylindrically symmet-
ric OSIRIS simulations [21] and compared the wakefield
amplitude driven by a half-cut SPS–LHC beam and a
half-cut SPS–optimum beam. The purpose of using a
half-cut beam is to seed instability. In this case, the
plasma will see the proton bunch with a very sharp
current flank. The instability seeded by this flank quickly
modulates the density of the proton bunch. Figure 5
shows that with a plasma density of 7 × 1014 cm−3, the
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Figure 5. (Colour online) The maximum longitudinal electric
fields for SPS–LHC and SPS–optimum beams with respect to
the travelled distance.

maximum longitudinal electric field driven by a half-
cut SPS–LHC beam is beyond 500 MeV/m after 6 m.
For the SPS–optimum beam, the wakefield amplitude
is over 1.5 GeV/m after 5 m in the plasma. Compared
with Fig. 4, we found that a higher amplitude wakefield
can be achieved at higher plasma density. However, the
proton beam is subject to a severe hosing instability at
high plasma density and a compromise will be worked
out to choose an optimum plasma density for stable
high-gradient acceleration.

5. Simulation of electron injection
Based upon PIC simulation results, the energy change
of the SPS proton beam in a 10-m plasma (with a
plasma density of 1014 cm−3) is around 1–2 GeV, which
is not significant compared with the initial proton beam
energy, and therefore it is difficult to be observed in
the experiment. We therefore plan to inject an external
electron beam for the diagnostic of the wakefield (as
shown in Fig. 2). We have performed a 2D cylindric-
ally symmetric simulation using OSIRIS to check the
electron acceleration process in the wakefield driven
by a self-modulated proton bunch. Figure 6 shows the
maximum electron energy gain as a function of the
distance travelled in the plasma. The injected electron
beam energy is 10 MeV, which is in the relativistic
regime. The other electron beam parameters are as
follows: number of particles: 106, rms length: 100 mm,
rms transverse normalized emittance: 2 mm · mrad,
beam size: 200 µm, and the divergence angle: 0.1 mrad.
The electron beam co-propagates with the proton beam
and some electrons will gain energy from the wakefields.
The simulation shows that after the 10-m plasma (with
a density of 7 × 1014 cm−3), some electrons have gained
energies greater than 0.5 GeV (blue curve) with the
nominal SPS–LHC beam as a drive beam. For the SPS–
optimum beam, the maximum energy gain is beyond
2.0 GeV in a 10-m plasma (red curve). Figures 7 and
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Figure 6. (Colour online) Maximum energy of externally
injected electrons as a function of the travelled distance in
plasma.
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Figure 7. (Colour online) Spectrum of an externally injected
electron beam after 10 m of propagation using nominal
SPS–LHC beam as driver.
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Figure 8. (Colour online) Spectrum of an externally injected
electron beam after 10 m of propagation using SPS-optimum
beam as driver.

8 give the energy spectra of injected electrons after
10-m propagation in the plasma with a density of
7 × 1014 cm−3 for SPS–LHC beam and SPS–optimum
beam, respectively. It can be seen that the electron
beam has a wide energy spread in both cases. For
the SPS–optimum beam, the maximum electron en-
ergy reaches up to 2 GeV. We expect that a larger
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energy gain and a narrow energy spread beam can be
achieved by optimizing the electron beam and plasma
parameters (beam energy, bunch charge, bunch length,
emittance, plasma density, etc.) and by controlling the
injection position of a short electron bunch with re-
spect to the phase of the wakefields [22]. This op-
timization work is still underway and will be reported
elsewhere.

6. Conclusion
We presented a proposed experimental study of a
proton-driven plasma wakefield accelerator. By sending
a long proton bunch into a homogeneous plasma, self-
modulation occurs due to transverse instability result-
ing from the transverse plasma wakefields. The res-
ulting many ultra-short bunches excite the wakefield
coherently and the field amplitude grows. For our
proposed proton-driven plasma wakefield acceleration
experiment using the SPS beam as the driver, PIC
simulations show that an accelerating gradient of sev-
eral hundred MeV/m can be achieved. For the SPS–
optimum beam parameters, the wakefields amplitude
is much higher. An externally injected relativistic elec-
tron beam (∼10 MeV) can sample the wakefield and
gain energies up to 1∼2 GeV in a 10-m-long plasma
cell.
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