Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-11T21:34:42.265Z Has data issue: false hasContentIssue false

Instability of plasma waves caused by incoherent photons in dense plasmas

Published online by Cambridge University Press:  17 August 2010

P. K. SHUKLA
Affiliation:
Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr-University Bochum, D-44780 Bochum, Germany (profshukla@yahoo.de, ps@tp4.rub.de)
L. STENFLO
Affiliation:
Department of Physics, Linköping University, SE-58183 Linköping, Sweden
R. BINGHAM
Affiliation:
The Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the nonlinear instability of modified Langmuir and ion–sound waves caused by partially coherent photons in dense quantum plasmas. In our model, the dynamics of the photons is governed by a wave kinetic equation. The evolution equations for the Langmuir and ion–sound waves are deduced from the quantum hydrodynamic equations accounting for the incoherent photon pressure, the quantum statistical electron pressure, and the quantum Bohm force acting on the degenerate electrons. The governing equations are Fourier analyzed to obtain nonlinear dispersion relations. The latter are analyzed to predict instability of the modified Langmuir and ion–sound waves in the presence of partially coherent photons. Possible applications of our investigation to the next generation of intense laser–solid dense plasma experiments and compact dense astrophysical bodies are mentioned.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

References

Bingham, R., Mendonça, J. T. and Dawson, J. M. 1997 Phys. Rev. Lett. 78, 247.CrossRefGoogle Scholar
Bingham, R., Mendonça, J. T. and Shukla, P. K. 2004 Plasma Phys. Control. Fusion 46, R1.Google Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. and Rosenbluth, M. N. 1994 Phys. Fluids 17, 778.Google Scholar
Glenzer, S. H. and Redmer, R. 2009 Rev. Mod. Phys. 81, 1625.CrossRefGoogle Scholar
Gorbunov, L. M. 1973 Sov. Phys.-Usp. 16, 217.Google Scholar
Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic Press.Google Scholar
Lin, A. T. and Dawson, J. M. 1975 Phys. Fluids 18, 201.CrossRefGoogle Scholar
Lin, A. T. and Dawson, J. M. 1977 Phys. Fluids 20, 538.Google Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol: Institute of Physics.Google Scholar
Mendonça, J. T., Bingham, R. and Shukla, P. K. 2003 Phys. Rev. E 68, 016406.CrossRefGoogle Scholar
Santos, J. E., Silva, L. O. and Bingham, R. 2007 Phys. Rev. Lett. 98, 235001.CrossRefGoogle Scholar
Serbeto, A., Monteiro, L. F., Tsui, K. H. and Mendonça, J. T. 2009 Plasma Phys. Control. Fusion 51, 124024.CrossRefGoogle Scholar
Shapiro, S. L. and Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. New York: John Wiley & Sons.CrossRefGoogle Scholar
Sjölund, A. and Stenflo, L. 1967a Z. Phys. 204, 211.CrossRefGoogle Scholar
Sjölund, A. and Stenflo, L. 1967b Appl. Phys. Lett. 10, 201.CrossRefGoogle Scholar
Shukla, P. K. 2004 Nonlinear Physics in Action, Phys. Scr. T113, pp. 4111.CrossRefGoogle Scholar
Shukla, P. K. 2006 Phys. Lett. A 357, 229.CrossRefGoogle Scholar
Shukla, P. K. 2009 Nat. Phys. 5, 92.Google Scholar
Shukla, P. K. and Eliasson, B. 2010 Phys.-Usp. 53, 51.Google Scholar
Shukla, P. K. and Stenflo, L. 2006 Phys. Plasmas 13, 044505.Google Scholar
Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Phys. Fluids 18, 265.Google Scholar
Stenflo, L. 1990 Phys. Scr. T30, 166.Google Scholar
Stenflo, L. 2004 Phys. Scr. T107, 262.CrossRefGoogle Scholar
Stenflo, L. and Shukla, P. K. 2009 In: From Leonardo to ITER: Nonlinear and Coherence Aspects (ed. Weiland, Jan), AIP Conference Proceedings # 1177. New York: American Institute of Physics, pp. 49.Google Scholar
Yu, M. Y., Spatschek, K. H. and Shukla, P. K. 1974 Z. Naturforsch 29a, 1736.Google Scholar