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Abstract. We consider the nonlinear instability of modified Langmuir and ion–
sound waves caused by partially coherent photons in dense quantum plasmas. In
our model, the dynamics of the photons is governed by a wave kinetic equation. The
evolution equations for the Langmuir and ion–sound waves are deduced from the
quantum hydrodynamic equations accounting for the incoherent photon pressure,
the quantum statistical electron pressure, and the quantum Bohm force acting on the
degenerate electrons. The governing equations are Fourier analyzed to obtain nonlin-
ear dispersion relations. The latter are analyzed to predict instability of the modified
Langmuir and ion–sound waves in the presence of partially coherent photons.
Possible applications of our investigation to the next generation of intense laser–solid
dense plasma experiments and compact dense astrophysical bodies are mentioned.

1. Introduction
It is well known that a large-amplitude coherent electromagnetic (EM) wave
propagating through a classical electron–ion plasma can initiate a great variety
of nonlinear effects. The latter include wave–wave and wave–particle interactions
in which coherent EM waves are either scattered off plasma eigenmodes or plasma
quasi-modes (electron and ion bunches). The nonlinear wave–wave and wave–particle
interactions belong to a class of parametric instabilities that are referred to as stimu-
lated Raman/Brillouin scattering (e.g. Sjölund and Stenflo 1967a, b; Gorbunov 1973;
Drake et al. 1974; Yu et al. 1974; Shukla et al. 1975), stimulated Compton scattering
(Drake et al. 1974; Lin and Dawson 1975, 1977), and modulational/filamentational
(e.g. Bingham et al. 2004) instabilities of EM waves. Stimulated scattering instabilities
of EM waves play a very essential role in the anomalous absorption of EM wave
energy and heating of magnetically and inertially confined fusion plasmas, as well
as in the ionospheric plasma modification by radio waves (e.g. Stenflo 1990; Shukla
2004; Stenflo 2004).

In reality, however, EM waves can have a broadband spectrum. The nonlinear
propagation of broadband partially coherent or incoherent ‘white’ light reveals new
interesting features (e.g. Bingham et al. 1977; Mendonça et al. 2003; Marklund and
Shukla 2006; Shukla and Stenflo 2006; Santos et al. 2007) of parametric interactions
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in classical plasmas. Specifically, in their classic paper, Bingham et al. (1997)
considered nonlinear couplings between partially coherent EM waves (photons) and
electrostatic Langmuir waves, and demonstrated anomalous damping of Langmuir
waves due to wave–quasi-particles (photons) interactions. The work of Bingham et
al. (1997) has been further extended by Santos et al. (2007) to include relativistic
electron mass variations and relativistic light pressure effects.

Recently, there has been an emerging interest (e.g. Shukla and Stenflo 2006;
Stenflo and Shukla 2009) in investigations of parametric instabilities of coherent
EM waves in dense plasmas where the electrons are degenerate. Due to the electron
degeneracy, one has to account for the forces (Manfredi 2005; Shukla 2006; Shukla
2009; Serbeto et al. 2009; Shukla and Eliasson 2010) associated with the quantum
statistical electron pressure and tunneling of electrons through the quantum Bohm
potential arising from the overlapping of the electron wave functions owing to the
Heisenberg uncertainty principle at nanoscales. It then turns out that the inclusion
of these quantum forces gives rise to new dispersive properties of electrostatic
Langmuir waves and electrostatic ion–sound oscillations in dense quantum plasmas.
Accordingly, the growth rates of stimulated Raman and Brillouin instabilities of
EM waves in dense quantum plasmas are drastically modified (Shukla and Stenflo
2006; Stenflo and Shukla 2009).

In this paper, we consider nonlinear interactions between partially coherent EM
waves (incoherent photons) and electrostatic dispersive Langmuir and ion–sound
perturbations in an unmagnetized dense quantum plasma. Since partially coherent
photons behave like quasi-particles, their dynamics in the presence of slowly varying
electron density perturbations is governed by a wave-kinetic equation. The evolution
equations for the electrostatic density perturbations in the presence of the photon
pressure light are then deduced from the quantum hydrodynamic equations. The
latter are composed of the continuity and momentum equations for the electrons
and ions, as well as the Poisson equation. The governing nonlinear equations
for partially coherent photon-electrostatic plasma density fluctuations are Fourier
analyzed to obtain the nonlinear dispersion relations. The latter admit instabilities
of the modified dispersive Langmuir and ion–sound waves due to wave–quasi-
particle (photon) resonant interactions. Explicit expressions for the growth rates are
presented. Our results may be relevant to understand the nonlinear propagation of
partially coherent EM waves through the dense plasmas, such as those in compact
astrophysical objects (Shapiro and Teukolsky 1983; Harding and Lai 2006) and in
the next generation of high-energy density plasmas created by powerful laser beams
(Glenzer and Redmer 2009).

2. Basic equations
We consider an unmagnetized dense electron–ion plasma in the presence of incoher-
ent photons. The electric fields of the latter are

E = Ek exp(−iωkt + ik · r) + c. c., (1)

where ω and k are the frequency and the propagation wave vector, respectively,
related by the linear dispersion relation

k2c2

ω2
k

= 1 −
ω2

pe

ω2
k

. (2)
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Here c is the speed of light in vacuum, ωpe = (4πnee
2/me)

1/2 is the electron plasma
frequency, ne is the electron number density, e is the magnitude of the electron
charge, and me is the rest mass of the electrons. Let us introduce the energy density

Ek =
ω2

pe

ω2
k

|Ek|2
4π

(3)

and the action

Nk =
Ek

ωk

=
ω2

pe

ω3
k

|Ek|2
4π

. (4)

The nonlinear interaction between the random phase incoherent photons is
governed by a wave-kinetic equation (Kadomtsev 1965; Bingham et al. 1997)

∂Nk

∂t
+ Vg · ∇Nk + Fk · ∂Nk

∂k
= 0, (5)

where Vg = kc2/ωk is the group velocity (Mendonça 2001) of incoherent photons,
and ωk = (k2c2 + ω2

pe)
1/2 the photon frequency. The force acting on the photon

quasi-particles due to the presence of the electron density fluctuation ne1 (�n0) is

Fk = −∇ωk = −
ω2

p0

2ωkn0
∇ne1, (6)

where ωp0 = (4πn0e
2/me)

1/2 is the unperturbed electron plasma frequency and n0

the equilibrium electron number density.
The electrostatic density perturbations associated with modified dispersive Lang-

muir and ion–sound disturbances in the presence of the photon pressure is governed
by the quantum hydrodynamic equations for non-relativistic degenerate electrons.
We have the electron continuity equation

∂ne1

∂t
+ n0∇ · ue = 0, (7)

the electron momentum equation

me

∂ue
∂t

+
e2

2meω
2
k

∇
∑

k

|E|2k = e∇φ − ∇pe
n0

+
�2

4men0
∇∇2ne1, (8)

the Poisson equation

∇2φ = 4πe(ne1 − ni1), (9)

where ue is the electron fluid velocity, φ is the scalar potential, � is the Planck
constant divided by 2π, and the quantum statistical electron pressure for the Fermi-
Dirac plasma is

pe = γekBTFene1, (10)

where γe is the adiabatic index, kB is the Boltzmann constant, and TFe is the electron
Fermi temperature.

Two comments are in order. First, the second term in the left-hand side of (8) is the
photon pressure arising from the ensemble average (over the period 2π/ωk) of the
advection and nonlinear Lorentz forces involving the photon induced electron quiver
velocity and the photon magnetic field. Second, the third term in the right-hand
side of (8) represents the contribution of electron tunneling through the quantum
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Bohm potential (Manfredi 2005; Shukla and Eliasson 2010). This term arises owing
to the overlapping electron wave functions due to the Heisenberg uncertainty
principle.

The ion density perturbation is obtained from the ion continuity equation

∂ni1

∂t
+ n0∇ · ui = 0, (11)

where the ion fluid velocity ui is given by the momentum equation

mi

∂ui

∂t
= −Zie∇φ, (12)

where mi is the ion mass. In dense quantum plasmas, non-degenerate ions can in
general be treated classically. The ion temperature is much smaller than the electron
Fermi temperature.

We now obtain the governing equations for the driven (by the pressure of
incoherent photons) modified dispersive Langmuir and ion–sound perturbations
in quantum plasmas. First, we consider modified Langmuir waves, which occur on a
time scale much larger than the ion plasma period, so that the ions do not respond.
Therefore, the ion number density perturbation is neglected. Accordingly, combining
(7), (8) and (9), we obtain

(
∂2

∂t2
+ ω2

p0 − 3

5
V 2
Fe∇2 +

�2

4m2
e

∇4

)
ne1

n0
=

2πe2

m2
eω

2
p0

∇2
∑

k

(ωkNk1), (13)

where VFe = (kBTFe/me)
1/2 is the electron Fermi speed and Nk1 is a small per-

turbation in the equilibrium action Nk0(= Nk − Nk1). In the absence of incoherent
photons, we neglect the right-hand side of (13) and obtain, by assuming that
ne1 ∼ exp(−iΩt + iK · r), the frequency of the modified Langmuir waves (Manfredi
2005; Shukla and Eliasson 2010):

Ω =
[
ω2

p0 + (3/5)K2V 2
Fe + �2K4/4m2

e

]1/2 ≡ ΩL. (14)

Second, we consider the low-phase velocity (in comparison with VFe) modified
ion–sound waves driven by the incoherent photons. Here we neglect the electron
inertia in (8) and combine the resultant equation with (9) and use

∂2ni1

∂t2
− Zien0

mi

∇2φ = 0, (15)

which is deduced from (11) and (12), to obtain the driven ion–sound wave equation
with ni1 = ne1

(
∂2

∂t2
− me

mi

V 2
Fe∇2 +

�2

4memi

∇4

)
ne1

n0
=

2πe2

memiω
2
p0

∇2
∑

k

(ωkNk1). (16)

We note that the quasi-neutrality condition ni1 = ne1 holds for long wavelengths (in
comparison with the Fermi electron Debye radius VFe/ωp0). Neglecting the right-
hand side in (16),we obtain after a Fourier analysis the frequency of the dispersive
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ion–sound waves (Shukla and Eliasson 2010):

Ω = K
(
C2
s + �2K2/4memi

)1/2 ≡ ΩI, (17)

where Cs = (kBTFe/mi)
1/2 is the ion–sound Fermi speed.

Suppose that Nk = Nk0 + Nk1 exp(−iΩt + iK · r), we obtain from (5),

Nk1 = −
ω2

p0ne1

2n0ωk(Ω − K · Vg)
K · ∂Nk0

∂k
. (18)

Furthermore, Fourier analyzing (13) and (16) we obtained, respectively,

ne1

n0
=

2πe2K2

m2
eω

2
p0(Ω

2 − Ω2
L)

∑
k

(ωkNk1) (19)

and

ne1

n0
=

2πe2K2

memiω
2
p0(Ω

2 − Ω2
I )

∑
k

(ωkNk1). (20)

Inserting (18) into (19) and (20) we obtain the desired nonlinear equations for the
modified Langmuir and ion–sound waves in the presence of incoherent photons. We
have

Ω2 − Ω2
L = −πe2K2

m2
e

∫
dk

K · (∂Nk0/∂k)

(Ω − K · Vg)
, (21)

for the modified Langmuir waves, and

Ω2 − Ω2
I = −πe2K2

memi

∫
dk

K · (∂Nk0/∂k)

(Ω − K · Vg)
, (22)

for the modified ion–sound waves.
The resonant type instability occurs because the resonant function R = (Ω − K ·

Vg)
−1 → −iπδ(Ω−K ·Vg), where δ is the Dirac delta function. Letting Ω = Ωr + iγl,i,

where γl,i�Ωr = ΩL,ΩI , we obtain from (21) and (22) the growth rates, respectively,

γl =
π2e2K2

2ΩLm2
e

∫
dkK · (∂Nk0/∂k)δ(ΩL − K · Vg) (23)

and

γi =
π2e2K2

2ΩImemi

∫
dkK · (∂Nk0/∂k)δ(ΩI − K · Vg). (24)

The condition K · (∂Nk0/∂k) > 0 is required for instability. Equations (23) and (24)
are the main results of our paper. They exhibit that both the modified dispersive
Langmuir and ion–sound waves are amplified at the expense of the photon wave
energy due to the resonant wave–quasi-particle interactions.

3. Summary and conclusions
In this paper, we have considered nonlinear couplings between incoherent photons
and electrostatic dispersive Langmuir and ion oscillations in dense quantum plasmas.
Partially coherent photons are treated like quasi-particles and their dynamics is
governed by a wave kinetic equations in which a force arising from the spatially
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inhomogeneous slowly varying electron density fluctuations appear. The photon
pressure, in turn, reinforces the electron density fluctuations that support modified
dispersive Langmuir and ion–sound waves in dense quantum plasmas. The governing
coupled equations admit the nonlinear dispersion relations, which predict nonlinear
instabilities of modified dispersive Langmuir and ion–sound waves due to wave–
quasi-particle (photon) resonant interactions. Our results are useful for diagnostic
purposes, e.g. deducing the electron number density and the Fermi electron temper-
ature from the frequencies of the photon driven modified dispersive Langmuir and
ion–sound waves in dense plasmas, such as those in the interior of white dwarfs,
magnetars (Harding and Lai 2006) and in the next generation of intense laser–solid
density plasma experiments (e.g. Glenzer and Redmer 2009).
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