Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T20:58:02.278Z Has data issue: false hasContentIssue false

Effects of a non-monotonic safety factor on the particle transport and diffusion in the case of a reversed magnetic shear

Published online by Cambridge University Press:  30 April 2009

M. GHABBOURI
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco (s.ghabbouri@gmail.com)
D. SAIFAOUI
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco (s.ghabbouri@gmail.com)
A. BOULEZHAR
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco (s.ghabbouri@gmail.com)
A. DEZAIRI
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, B.P. 7955, Casablanca, Morocco
M. EL MOUDEN
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco (s.ghabbouri@gmail.com) Institut Jean Lamour, CNRS–Nancy-Université–UPV-Metz, UMR 7198, Département P2M, Université Henri-Poincaré, Nancy I, B.P. 239, 54506 Vandoeuvre les Nancy cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work is based on a numerical study of particle transport and diffusion using ITER parameters. In particular, the effects of introducing a non-monotonic safety factor (NMSF) in the case of a reversed magnetic shear are shown. These results are compared with those found by using a monotonic safety factor (MSF). Double internal transport barriers are detected influencing the transport and diffusion of particles. The choices of the mode (m, n) and the m/n values play a dominant role for the particle diffusion, which leads to an improvement of the magnetic confinement.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

References

[1]Itoh, K., Itoh, S.-I. and Fukuyama, A. 1999 Transport and Structural Formation in Plasmas. Bristol: Institute of Physics of Publishing.Google Scholar
[2]Nagashima, Y. et al. 2006 Plasma Phys. Control. Fusion 48, A377.CrossRefGoogle Scholar
[3]El Mouden, M., Saifaoui, D., Dezairi, A., Zine, B. and Eddahbi, M. 2007 J. Plasma Phys. 73 (4), 439453.Google Scholar
[4]El Mouden, M., Saifaoui, D., Dezairi, A. and Imzi, H. 2005 Use of magnetic shear for the improvement of quality of confinement in the plasma of tokamak. FIZIKA A 14 (4), 277288.Google Scholar
[5]El Mouden, M., Saifaoui, D., Dezairi, A. and Imzi, H. 2004 Moroccan J. Condens. Matter 5 (2), 202208.Google Scholar
[6]El Mouden, M., Saifaoui, D., Dezairi, A., Zine, B., Eddahbi, M. and Rouak, A. 2007 The influence of magnetic reversed shear in the improvement of quality of confinement in the plasma of tokamak: comparison between TEXTOR & ITER. Moroccan J. Condens. Matter 9 (1), 2027.Google Scholar
[7]Tabet, R., Saifaoui, D., Dezairi, A. and Rouak, A. 1998 Eur. Phys. J. AP 4, 329.Google Scholar
[8]Marcus, F. A., Kroetz, T., Roberto, M., Caldas, I. L., Da Silva, E. C., Viana, R. L. and Guimaraes-Filho, Z. O. 2008 Chaotic transport in reversed shear tokamaks. Nucl. Fusion 48, 024018024026.Google Scholar
[9]Kamada, Y. 2000 Observations on the formation of transport barriers. Plasma Phys. Control. Fusion 42, A65A80.Google Scholar
[10]Antoni, V. et al. 2000 Electrostatic transportation reduction induced by flow shear modification in a reversed field pinch plasma. Plasma Phys. Control. Fusion 42, A271A276.CrossRefGoogle Scholar
[11]Oualyoudine, A., Saifaoui, D., Dezairi, A. and Rouak, A. 1997 J. Physique 7, 1045.Google Scholar
[12]Takenaga, H. et al. 1998 Determination of particle transport coefficients in reversed shear plasma of JT-60U. Plasma Phys. Control. Fusion 40, 183190.CrossRefGoogle Scholar