Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-21T06:15:41.294Z Has data issue: false hasContentIssue false

Generation of sheared flows by drift waves in a strongly magnetized electron–positron–ion plasma

Published online by Cambridge University Press:  22 June 2010

NITIN SHUKLA
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.ruhr-uni-bochum.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that sheared/zonal flows (ZFs) can be nonlinearly excited by incoherent drift waves (DWs) in a strongly magnetized non-uniform plasma composed of electrons, positrons and ions. The dynamics of incoherent DWs in the presence of ZFs is governed by a wave-kinetic equation. The governing equation for ZFs in the presence of nonlinear forces (associated with nonlinear ion polarization and nonlinear ion-diamagnetic drifts) of the DWs is deduced by combining the Poisson equation, as well as the e-p-i continuity equations, together with appropriate plasma particle velocities in the DW and the ZF fields. Standard techniques are used to derive a nonlinear dispersion relation, which depicts two classes of the modulational instability of the DWs against the ZFs. Non-thermal ZFs can reduce the turbulent cross-field particle transport in non-uniform, strongly magnetized e-p-i plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

References

[1]Misner, W., Throne, K. and Wheeler, J. A. 1973 Gravitation. San Francisco, CA: Freeman, p. 763.Google Scholar
[2]Rees, M. J. 1983 In: The Very Early Universe (eds. Gibbons, G. W., Hawking, S. W. and Siklos, S.). Cambridge, UK: Cambridge University Press.Google Scholar
[3]Miller, H. R. and Witta, P. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
[4]Bergman, M. C., Blandford, R. D. and Rees, M. J. 1984 Rev. Mod. Phys. 56, 255.Google Scholar
[5]Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
[6]Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
[7]Michael, F. C. 1991 Theory of Neutron Star Magnetosphere. Chicago, IL: Chicago University Press.Google Scholar
[8]Rees, M. J. 1971 Nature (London) 229, 312.Google Scholar
[9]Burnes, M. L. 1983 In: Positron-Electron Pairs in Astrophysics (eds. Burnes, M. L., Harding, A. K. and Ramaty, R.). New York: AIP.Google Scholar
[10]Gurevich, A. V., Beskin, V. S. and Istomin, Y. N. 1983 Physics of the Pulsar Magnetosphere. Cambridge, UK: Cambridge University Press.Google Scholar
[11]Tandberg-Hansen, E. and Emshie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge University Press, p. 124.Google Scholar
[12]Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.CrossRefGoogle Scholar
[13]Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887; Gahn, C., Tsakiris, G. D., Pretzler, G. et al. 2000 Appl. Phys. Lett. 77, 3662; Wilks, S. C., Chen, H. and Liang, E. 2005 Astrophys. Space Sci. 298, 347.Google Scholar
[14]Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.Google Scholar
[15]Shukla, P. K. et al. 1986 Phys. Rep. 138, 1; Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.CrossRefGoogle Scholar
[16]Berezhiani, V. I. and Mahajan, S. M. 1994 Phys. Rev. Lett. 73, 1110; 1995 Phys. Rev. E 52, 1968.CrossRefGoogle Scholar
[17]Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.CrossRefGoogle Scholar
[18]Mahmood, S., Mushtaq, A. and Saleem, H. 2003 New J. Phys. 5, 28.Google Scholar
[19]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1985 Astrophys. Space Sci. 117, 303.CrossRefGoogle Scholar
[20]Shukla, P. K. et al. 1981 Phys. Rev. A 23, 321; 1984 Phys. Rep. 105, 227.CrossRefGoogle Scholar
[21]Shukla, P. K. and Stenflo, L. 2002 Eur. Phys. J. D 20, 103; Shukla, P. K. and Shaikh, D. 2009 Phys. Lett. A 374, 286.Google Scholar
[22]Smolyakov, A. I., Diamond, P. H. and Malkov, M. 2000 Phys. Rev. Lett. 84, 3491.CrossRefGoogle Scholar
[23]Smolyakov, A. I., Diamond, P. H. and Shevchenko, V. I. 2000 Phys. Plasmas 7, 1349.CrossRefGoogle Scholar
[24]Diamond, P. H., Itoh, S. I., Itoh, K. and Hahm, T. S. 2005 Plasma Phys. Contr. Fusion 47, R35; Fujisawa, A. 2009 Nucl. Fusion 49, 013001.CrossRefGoogle Scholar
[25]Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
[26]Hasegawa, A. A. 1975 Plasma Instabilities and Nonlinear Effects. Berlin: Springer.Google Scholar
[27]Weiland, J. 2000 Collective Modes in Inhomogeneous Plasma. Bristol, UK: Institute of Physics.Google Scholar
[28]Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic.Google Scholar
[29]Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Phys. Fluids 18, 265; Yu, M. Y., Spatschek, K. H. and Shukla, P. K. 1974 Z. Naturforsch A 29, 1736; Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 084502.CrossRefGoogle Scholar