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Abstract. It is shown that sheared/zonal flows (ZFs) can be nonlinearly excited
by incoherent drift waves (DWs) in a strongly magnetized non-uniform plasma
composed of electrons, positrons and ions. The dynamics of incoherent DWs in the
presence of ZFs is governed by a wave-kinetic equation. The governing equation for
ZFs in the presence of nonlinear forces (associated with nonlinear ion polarization
and nonlinear ion-diamagnetic drifts) of the DWs is deduced by combining the
Poisson equation, as well as the e-p-i continuity equations, together with appropriate
plasma particle velocities in the DW and the ZF fields. Standard techniques are
used to derive a nonlinear dispersion relation, which depicts two classes of the
modulational instability of the DWs against the ZFs. Non-thermal ZFs can reduce
the turbulent cross-field particle transport in non-uniform, strongly magnetized e-p-i
plasmas.

Plasmas composed of electrons, positrons and ions are found in the early Universe
[1, 2], in active galactic nuclei [3, 4], in the polar region of neutron stars [5–7], in
magnetars [8], in the pulsar magnetosphere [9, 10], in the solar atmosphere [11], in
the laser-produced plasmas [12,13] and in tokamaks [14]. In e-p-i plasmas, electrons
and positrons (also referred to as pairs) have opposite charges, but equal masses.
The positrons can be used to probe particle transport in tokamaks, because they
have sufficient lifetime. In e-p-i plasmas, one encounters numerous types of wave
motions and localized wave excitations [15–19]. Studies of wave–wave and wave–
particle interactions in e-p-i plasmas are of paramount importance with regard
to understanding the salient features of localized electrostatic and electromagnetic
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waves, as well as that of plasma particle acceleration and plasma particle transports
across the external magnetic field.

In this communication we consider nonlinear interactions between incoherent
drift waves (DWs) and sheared/zonal flows (ZFs) [20] in a strongly magnetized
non-uniform e-p-i plasma. The DWs are the low-frequency (in comparison to the
ion gyrofrequency), pseudo three-dimensional electrostatic perturbations involving
the Boltzmann distributed electrons and positrons, as well as the two-dimensional
magnetized ions, while ZFs are radially inhomogeneous (kx �= 0), large-scale (in
comparison to the ion gyroradius) electrostatic potential perturbations having
insignificant density fluctuations. Our coupled DW–ZF turbulence model in a non-
uniform e-p-i magnetoplasma is a characteristics of a ‘predator-prey’ system in
which the population of incoherent DWs (prey), growing via linear instability, would
generate ZFs (predator) through the modulational instability [20]. Subsequently, the
growth of ZFs would reduce the strength of the prey; a scenario similar to the
DW–ZF turbulence system [20–24] in a non-uniform magnetoplasma with electrons
and ions, where the DW eddies become of smaller amplitudes and longer sizes
due to random shearing caused by the large-scale ZFs. Accordingly, the cross-field
turbulent transport is significantly reduced [24].

We consider a non-uniform e-p-i plasma in the presence of the pre-existing
incoherent electrostatic DWs in a homogeneous magnetic field Bẑ, where B is the
strength of the magnetic field and ẑ is the unit vector along the z-axis in a Cartesian
coordinate system. The equilibrium density gradient ∂nj0/∂x is along the x-axis,
where nj0 is the unperturbed number density of the particle species j (j equals e for
electrons, p for positrons, and i for ions), and ne0(x) = ni0(x) + np0(x). The frequency
of the obliquely (with respect to ẑ) propagating DWs in our plasma is

ωk =
ω∗

(1 + k2
⊥ρ

2
s )
, (1)

which is deduced by setting zero the dielectric constant
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1

k2λ2
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+
ω2
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2
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2
+
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Dp , λDj = (kBTj/4πnj0e

2)1/2 is the Debye radius
of the particle species j, kB is the Boltzmann constant, Tj is the temperature, e is
the magnitude of the electron charge, ωci = eB/mic is the ion gyrofrequency, ωpi =
(4πni0e

2/mi)
1/2 is the ion plasma frequency, mi is the ion mass and c is the speed of

light in vacuum. The wave vector k = k⊥+ẑkz , and k2
⊥ = k2

x+k
2
y , where the subscripts

x, y and z stand for the radial, azimuthal and axial components of the wave vector,
respectively. In (2), we have assumed that kzVTi�ω�ωci, kzVTe,Tp, k

2
zωce/ky|κe,p|,

where VTe,Tp and VTi are the electron/positron and ion thermal speeds, respectively,
ωce = eB/mec is the electron gyrofrequency, me is the electron mass and κe,p =
∂lnne0,po/∂x. The motion of ions along ẑ has been ignored so that the modified ion
sound waves [25] are decoupled from our system.

The energy density of the DWs [26, 27] is

Ek =

[
∂

∂ω
(ωε)

]
|Ek|2, (3)
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where Ek = −ikφk is the DW electric field and φk is the DW potential. By using (2)
we have from (3)

Ek = (1 + k2
⊥ρ

2
s )

∣∣∣∣ eφkkBTe

∣∣∣∣
2

Eth, (4)

where Eth = 4πne0kBTe(1 + α) is the kinetic energy density of the e-p-i plasma, and
α = np0Te/ne0Tp.

The DW action is denoted by

Nk =
Ek

ωk
=

(1 + k2
⊥ρ

2
s )

2

ω∗

∣∣∣∣ eφkkBTe
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2

Eth. (5)

The nonlinear interaction between the random phase DWs and ZFs is governed
by a wave-kinetic equation [28]

∂Nk

∂t
+ Vgx

∂Nk

∂x
− ∂ωn

k

∂x

∂Nk

∂kx
= S, (6)

where S = γkNk − ∆ωkN
2
k represents the source term due to the wave growth and

damping due to linear and nonlinear mechanisms, γk is the linear growth rate and
∆ωkN

2
k is the damping caused by nonlinear resonance broadening effects [22, 23].

Assuming that small-scale DW turbulence is close to a stationary state, one can set
S = 0. The radial group velocity of the DWs is

Vgx = − 2kxρ
2
sωk

(1 + k2
⊥ρ

2
s )
. (7)

Furthermore, the spatial variation of the nonlinear frequency ωn
k involving the ZF

electric potential φz is

∂ωn
k

∂x
= ky

∂uz

∂x
≡ kyc

B

∂2φz

∂x2
, (8)

where the ZF speed in the azimuthal direction is uz = (c/B)∂φz/∂x.
The evolution of the ZF potential in the presence of the Reynolds stress of the

DWs is governed by

∂3φz

∂x2∂t
+ (1 + σ)

c

B

∑
k

〈
(ẑ × ∇φk · ∇)∇2

⊥φk
〉

+ complex conjugate = 0, (9)

where σ = (ne0Ti/ni0Te)(1 + α), ∇2
⊥ = (∂2/∂x2) + (∂2/∂y2) and the angular bracket

denotes an ensemble average over the period 2π/ωk . We note that (9) has been
derived by subtracting the ion continuity equation from the sum of the electron
and position continuity equations and by using the Poisson equation and the
perpendicular (to ẑ) components of the e-p-i fluid velocities [9,12] in the DW and ZF
fields. The second term on the left-hand side of (9) is the Reynolds stress of the DWs
and comes from the sum of nonlinear ion polarization and ion diamagnetic drifts.
In the latter, the ion number density perturbation is replaced by ne0(1 + α)eφ/kBTe.
Equation (9) is valid for a dense plasma with ωpi�ωci. For simplicity, we have
neglected the effects of ion-neutral collisions and ion gyroviscosity on the dynamics
of ZFs.

We now study instability of the random phase DWs against the modulation
caused by ZFs. For this purpose [29], we express

Nk = Nk0 +Nk1 exp(iϕ), and φz = ψ exp(iϕ), (10)
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where Nk1(�Nk0) is a small perturbation of the DW action around the equilibrium
value Nk0, and ϕ = qx − Ωt is phasor. The frequency and radial wave number of
ZFs are denoted by Ω and q, respectively.

Inserting (10) into (6) and (9) and Fourier analyzing the resultant equations, we
have

Nk1 = − iq2kyc

B(Ω − qVgx)

∂Nk0

∂kx
ψ, (11)

and

Ωψ = 2i(1 + σ)
c

B

∫
d2kkykx|φk|2. (12)

By using (5) we can express |φk|2 in terms of Nk1, and inserting that expression
in (12) and using (11) we have the dispersion relation

Ω = 2(1 + σ)q2ρ2
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s )

2
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d2k, (13)

where Cs = (kBTe/mi)
1/2 is the ion sound speed.

We analyze (13) in two limiting cases. First, for the resonant-type instability we
replace the resonance function R = (Ω − qVgx)

−1 by −iπδ(Ω − qVgx), where δ is
the Dirac-delta function. Letting Ω = iγq in the resultant equation, we obtain the
growth rate
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which ensures instability if ∂Nk0/∂kx < 0.
Second, we consider a non-resonant hydrodynamic-type instability. We assume

that Nk0 = N0δ(k − k0), with k0 = (kx0, ky0). Carrying out integration by parts in
(13), we have

1 = (1 + σ)
q2C4
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where the DW group dispersion is
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Equation (15) yields
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where I0 = |eφk0/kBTe|2. Equation (17) predicts an oscillatory instability with a real
frequency qVgx(k = k0) and the growth rate
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provided that 1 + k2
y0ρ

2
s > 3k2

x0ρ
2
s .

Finally, it should be noted that (13) can also be investigated for a broad DW
spectrum, withNk0 = N0 exp[−(k−k0)

2/2∆2], where ∆ is the spectral width. However,
for this case, it turns out that the growth rate is smaller than that in (18), because
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energy in a broad spectrum of DWs is spread over the entire wave numbers and,
hence, the DW energy available to drive ZFs is significantly lower than that in a
narrowly peaked spectrum of the DWs.

In summary, we have considered nonlinear interactions between the finite amp-
litude DWs and ZFs in a strongly magnetized plasma composed of electrons,
positrons and ions. It is shown that the DWs are modulationally unstable against
the ZFs. Physically, ZFs modulate the DWs, which act like quasi-particles in our
strongly magnetized e-p-i plasma. Accordingly, the DWs’ action would evolve on
a timescale much longer than the DW period, as if the DW quasi-particles were
propagating through a slowly varying medium supported by ZFs. The latter are
reinforced by nonlinear forces of the modulated DWs. The energy flow from the DWs
(which are like a beam of quasi-particles) to ZFs is responsible for the excitation of
sheared plasma flows via non-resonant and resonant-type instabilities that we have
presented herein. Since sheared plasma flows are along the azimuthal direction, they
will tear apart the DW eddies and would keep their amplitudes low. Accordingly,
the cross-field turbulent transport will be drastically reduced due to longer sizes
and smaller amplitudes DW ‘prey’ in turbulent e-p-i magnetoplasmas, such as those
in astrophysical settings [1–5, 9, 10] and in inertial and magnetic confined fusion
plasmas [12, 14].
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