Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-07T02:52:50.089Z Has data issue: false hasContentIssue false

Electrohydrodynamics of particle-covered drops

Published online by Cambridge University Press:  16 June 2014

Malika Ouriemi*
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
Petia M. Vlahovska
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
*
Permanent address: IFPEN, Solaize, BP 3, 69360, France. Email address for correspondence: malika.ouriemi@ifpen.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We experimentally investigate the effect of surface-absorbed colloidal particles on the dynamics of a leaky dielectric drop in a uniform DC electric field. Depending on the particle polarizabilty, coverage and the electrical field intensity, particles assemble into various patterns such as an equatorial belt, pole-to-pole chains or a band of dynamic vortices. The particle structuring changes droplet electrohydrodynamics: under the same conditions where a particle-free drop would be a steady oblate spheroid, the belt can give rise to unsteady behaviours such as sustained drop wobbling or tumbling. Moreover, particle chaining can be accompanied by prolate drop deformation and tip-streaming.

Type
Papers
Copyright
© 2014 Cambridge University Press 

References

Aveyard, R., Binks, B. P. & Clint, J. H. 2003 Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503546.Google Scholar
Binks, P. B. 2002 Particles as surfactants – similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 2141.Google Scholar
Cebers, A., Lemaire, E. & Lobry, L. 2002 Electrohydrodynamic instabilities and orientation of dielectric ellipsoids in low-conducting fluids. Phys. Rev. E 63, 016301.Google Scholar
Cerda, E. & Mahadevan, L. 2003 Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302.CrossRefGoogle ScholarPubMed
Dolinsky, Y. & Elperin, T. 2009 Electrorotation of a leaky dielectric spheroid immersed in a viscous fluid. Phys. Rev. E 80, 066607.CrossRefGoogle Scholar
Dommersnes, P., Rozynek, Z., Mikkelsen, A., Castberg, R., Kjerstad, K., Hersvik, K. & Fossum, J. 2013 Active structuring of colloidal armor on liquid drops. Nat. Commun. 4, 2066.Google Scholar
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter 18, L185–L191.Google Scholar
Ha, J. W. & Yang, S. M. 2000 Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys. Fluids 12, 764772.Google Scholar
He, H., Salipante, P. F. & Vlahovska, P. M. 2013 Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25, 032106.Google Scholar
Jones, T. B. 1984 Quincke rotation of spheres. IEEE Trans. Ind. Applic. 20, 845849.CrossRefGoogle Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.CrossRefGoogle Scholar
Nudurupati, S., Janjua, M., Aubry, N. & Singh, P. 2008 Concentrating particles on drop surfaces using external electric fields. Electrophoresis 29, 11641172.CrossRefGoogle ScholarPubMed
Nudurupati, S., Janjua, M., Singh, P. & Aubry, N. 2009 Electrohydrodynamic removal of particles from drop surfaces. Phys. Rev. E 80, 010402R.CrossRefGoogle ScholarPubMed
Nudurupati, S., Janjua, M., Singh, P. & Aubry, N. 2010 Effect of parameters on redistribution and removal of particles from drop surfaces. Soft Matt. 6, 11571169.CrossRefGoogle Scholar
Planchette, C., Lorenceau, E. & Biance, A.-L. 2012 Surface wave on a particle raft. Soft Matt. 8, 24442451.Google Scholar
Pocivavsek, L., Frey, S. L., Krishan, K., Gavrilov, K., Ruchala, P., Waring, A. J., Walther, F. J., Dennin, M., Witten, T. A. & Lee, K. Y. C. 2008 Lateral stress relaxation and collapse in lipid monolayers. Soft Matt. 4, 20192029.Google Scholar
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110.CrossRefGoogle Scholar
Salipante, P. F. & Vlahovska, P. M. 2013 Electrohydrodynamic rotations of a viscous drop. Phys. Rev. E 88, 043003.Google Scholar
Sato, H., Kaji, N., Mochizuki, T. & Mori, Y. H. 2006 Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field. Phys. Fluids 18, 127101.Google Scholar
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. Circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291, 159166.Google Scholar
Vella, D., Aussillous, P. & Mahadevan, L. 2004 Elasticity of an interfacial particle raft. Europhys. Lett. 68, 212218.CrossRefGoogle Scholar

Ouriemi et al. supplementary material

Belt formation by Polyethylene (Pe) spheres. Coverage=35%. Ca=0.18

Download Ouriemi et al. supplementary material(Video)
Video 1.9 MB
Supplementary material: PDF

Ouriemi et al. supplementary material

Supplementary figures

Download Ouriemi et al. supplementary material(PDF)
PDF 373.9 KB

Ouriemi et al. supplementary material

Belt destabilization and formation of a dynamic sinusoid by Polyethylene (Pe) particles. Coverage=35%. Ca=1.36

Download Ouriemi et al. supplementary material(Video)
Video 1.6 MB

Ouriemi et al. supplementary material

Wobbling of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=3.43

Download Ouriemi et al. supplementary material(Video)
Video 1.1 MB

Ouriemi et al. supplementary material

Tumbling of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=3.74

Download Ouriemi et al. supplementary material(Video)
Video 1.1 MB

Ouriemi et al. supplementary material

Drum-like shape deformation of a drop covered with glass (G) particles. Coverage=91%. Ca=1.83

Download Ouriemi et al. supplementary material(Video)
Video 1.3 MB

Ouriemi et al. supplementary material

Drum-like shape deformation and implosion of a drop covered with glass (G) particles. Coverage=91%. Ca=2.62

Download Ouriemi et al. supplementary material(Video)
Video 1.2 MB

Ouriemi et al. supplementary material

Drum-like shape deformation and implosion of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=5.84

Download Ouriemi et al. supplementary material(Video)
Video 519.4 KB