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Electrohydrodynamics of particle-covered drops

Malika Ouriemi† and Petia M. Vlahovska
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first published online 16 June 2014)

We experimentally investigate the effect of surface-absorbed colloidal particles on the
dynamics of a leaky dielectric drop in a uniform DC electric field. Depending on the
particle polarizabilty, coverage and the electrical field intensity, particles assemble into
various patterns such as an equatorial belt, pole-to-pole chains or a band of dynamic
vortices. The particle structuring changes droplet electrohydrodynamics: under the
same conditions where a particle-free drop would be a steady oblate spheroid, the belt
can give rise to unsteady behaviours such as sustained drop wobbling or tumbling.
Moreover, particle chaining can be accompanied by prolate drop deformation and
tip-streaming.
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1. Introduction
A neutral droplet placed in a uniform electric field deforms into an axisymmetric

ellipsoid under weak field conditions Ca � 1, where the capillary number Ca =
aεE2

0/γ compares the stresses due to electric field with intensity E0 and the interfacial
tension, γ , acting on a drop with radius a. Weakly conducting (leaky dielectric)
fluids exhibit either prolate or oblate drop shapes depending mainly on the ratio of
conductivities, R= σd/σs and permittivities S= εs/εd of the drop, ‘d’, and suspending,
‘s’, fluids (Taylor 1966); see Lac & Homsy (2007) for a recent review on this classic
problem. Drop deformation is accompanied by axisymmetric straining flow, whose
direction depends on RS, e.g. from the pole towards the equator if RS < 1, see
figure 1. In stronger electric fields, in the case RS < 1 the flow also acquires a
rotational component (Ha & Yang 2000; Salipante & Vlahovska 2010; He, Salipante
& Vlahovska 2013), which gives rise to steady drop tilt (figure 1c) or various unsteady
responses such as shape oscillations or drop tumbling (Sato et al. 2006; Salipante &
Vlahovska 2013).

Colloidal particles have a strong tendency to adsorb at interfaces and are often used
to stabilize emulsions (Binks 2002; Aveyard, Binks & Clint 2003). The behaviour
of particle-covered drops in electric field has received surprisingly little attention
despite some intriguing reports about particle redistribution along the drop interface
in uniform AC fields (Nudurupati et al. 2008, 2009, 2010) or structuring in uniform
DC fields (Dommersnes et al. 2013). The latter study showed that in the case
RS < 1, particles initially randomly distributed at the surface (figure 1d), form a
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FIGURE 1. Drop response to a uniform DC electric field for RS< 1. (a,d) In the absence
of electric field, the drop is spherical and particle distribution is random. (b,c) Sketch
of the particle-free drop shape and flow streamlines in weak fields (axisymmetric oblate
spheroid and straining flow) and in strong fields, where the drop is tilted and the flow has
a rotational component. (d–h) Snapshots of particle-covered drops at different electrical
field strengths.

‘belt’ around the equator as the drop deforms into an oblate shape, see figure 1(e).
This is an expected consequence of the straining electrohydrodynamic flow. However,
other peculiar (and seemingly random) patterns were also observed such as a band
of counter-rotating vortices (see figure 1g) or a partial chaining dubbed ‘pupil’
(Dommersnes et al. 2013). In stronger DC fields, we find that convection by the
rotational flow can result in either particles orbiting along closed streamlines or
clustering (see figure 1f ). We also discovered new behaviours such as wobbling
and tumbling drops, see figure 1(h) and the supplementary material available at
http://dx.doi.org/10.1017/jfm.2014.289. In this work we conduct a systematic study of
a particle-covered drop placed in a uniform DC field in the RS< 1 regime and classify
the various behaviours into phase diagrams. While keeping the drop and suspending
fluids the same, we vary the particle size, shape, conductivity and coverage in order
to correlate particle structuring to particle properties and electric field strength.

2. Materials and experimental procedure
The suspending fluid is castor oil with viscosity µs= 0.69 Pa s, dielectric constant

εs = 4.7ε0, conductivity σs = 3.8 × 10−11 S m−1 and density ρs = 962 kg m−3

(Alfa Aesar). The drop fluid is silicon oil with µd = 0.05 Pa s, εd = 2.8ε0,
σd = 3.6 × 10−12 S m−1, ρd = 963.5 kg m−3 (UTC). Accordingly, R = 0.1, S = 1.7
and the viscosity ratio λ = 0.07. The interfacial tension is 4.5 mN m−1 (Salipante
& Vlahovska 2010). The permittivity and the conductivity were measured using a
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t = 0 s t = 8 s t = 30 s t = 74 s t = 230 s

FIGURE 2. Preparing the particle-covered drop. Initially the particles are suspended in the
drop, as seen by the uniform dark colour. Upon the application of an electric field, the
particles migrate to the interface and accumulate at the belt. The fact that the particles
are leaving the bulk is seen by the clearing of the drop fluid (above and below the belt).

Shape Type ρp radius r Conductivity Supplier
(kg m−3) (µm) (S m−1)

Random Aluminum 2600 1.5, 12, 100 3.8× 103 Atlantic equipment
(Al)

Spherical Al coated ceramic 850 6 3.8× 101 Accumet materials
(Ac)

Spherical Glass 2200 5, 8.5, 50 1× 10−10 Corpuscular/Cospheric
(G)

Random Fingerprint (F) 2080 0.5 — Lynn Peavey Co.
Spherical Polyethylene (Pe) 1000 50 3.2× 10−24 Cospheric
Spherical PMMA (P) 1200 8.5 1× 10−17 Cospheric
Random Silver (Si) 8900 1.5 6.3× 107 Atlantic equipment
Spherical Si coated glass 2500 8.5 6.3× 105 Cospheric

(Sg)

TABLE 1. Particle characteristics. Conductivity for G spheres was furnished by the supplier,
other conductivities correspond to the conductivity of the bulk material. No value was
obtained for the fingerprint.

dielectric constant meter and a conductivity meter from Scientifica. The viscosity was
specified by the company–provider. The characteristics of the particles are summarized
in table 1.

A uniform electric field is created in a parallel-plate chamber filled with castor oil.
The chamber has a similar design as that used by Salipante & Vlahovska (2010): the
walls are 7 cm× 10 cm brass electrodes separated by a 4.5 cm gap. DC fields up to
16 kV cm−1 are generated using a voltage amplifier and a DC power supply. A drop
of silicon oil with suspended microparticles is injected into the middle of the electrical
chamber. The particles are driven to the interface by the application of an electric
pulse (the duration and strength of which depend on the type of microparticles, e.g. for
glass spheres of radius 5 µm, E0= 1.6 kV cm−1 and pulse duration is 4 min). During
the initial pulse, the electrohydrodynamic flow inside the drop brings the particles to
the interface, while the flow at the interface drags the particles toward the equator, see
figure 2. Once all particles are trapped at the drop interface (in a belt), the electric
field is turned off. The drop is then manually moved around in order to destroy any
particle structures, erase any memory of the initial pulse and randomize the particle
distribution on the drop surface.
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Electrohydrodynamics of particle-covered drops 109

In the actual experiment, electric field is applied and drop behaviour is recorded
for approximately 3 min. After each recording, the electrical field is turned off and
the drop is moved back to its initial position. This action removes any particle
structures. The experiment is repeated for a different electric field strength. The
surface concentration of particles, ϕ, is defined as the percentage of the drop
surface covered by particles (which includes the space between particles) once
the particles are brought together in the belt. We measure ϕ at very low electrical
fields, E0 < 0.6 kV cm−1, to minimize particle compaction.

Owing to the small density difference between the drop and the continuous phase,
the drop sediments on the time scale of the experiment (3 min). The drops considered
in our study range from 1 to 5 mm in diameter, resulting in terminal velocities from
0.001 to 0.03 mm s−1. The microparticles also experience buoyancy, however their
estimated terminal velocities are tens to hundreds of times smaller than the drop
speed, with the exception of the large Al and Ac particles (r ∼ 100 µm) which can
reach 0.1 mm s−1. These velocities are much smaller than the electrohydrodynamic
flow, ve ∼ aεsE2

0/µs ∼ 1 mm s−1 (at E0 = 1 kV cm−1), and hence the buoyancy
effects should play a negligible role in determining the particle distribution under an
electric field; the buoyancy force acting on the particles is much weaker than the
electrohydrodynamic drag, see the online supplementary material for more details.

3. Results and discussion
3.1. Droplet behaviour and particle structures

Figure 3 summarizes drop behaviour and particle assemblies as a function of the
field strength and particle conductivity for moderate coverage (ϕ ∼ 50 %) and similar
particle size (radius r ∼ 10 µm). In weak fields, Ca 6 1, the drop always deforms
into an oblate spheroid and the particles accumulate at the equator forming a ‘belt’
(figure 3a–c). In stronger fields, three scenarios are observed. First, the belt can
break into a regular sequence of counter-rotating assemblies of particles (resembling
a ‘sinusoid’), while drop shape and orientation are steady (figure 3f ). Second, the
belt stays stationary while the drop wobbles, namely its major axis oscillates around
a direction perpendicular to the applied field (see figure 3e and the movies in the
online supplementary material). Third, the particles form chains and the drop shape
changes to a prolate ellipsoid. In this regime, the pole-to-pole chains of particles
line up parallel to the electrical field (figure 3d). In very strong fields, the prolate
drops covered with particle chains undergo tip streaming with the ejection of particles
(see figure 3g) while the oblately deformed drops rotate (see figure 3i). In this case,
the belt particles redistribute and can either entirely lose structure, or get partially
ejected. In the latter case, the particles remaining on the surface form a cluster
around the rotational axis (see figure 1f ). In the particular case of aluminum particles
with random shapes, the drop rotation mode is more peculiar: the belt structure is
preserved, drop precesses and the particle belt is spinning around the drop major axis
(see figure 3h and the movies in the supplementary material).

Figure 4 provides more details about how the particle shape and size affect the
destabilization of the belt. Particles with high polarizability, i.e. highly conducting
small particles or large particles with conductivity higher than the embedding fluids
(such as silver-coated glass spheres, large glass spheres and large aluminum particles),
never form a sinusoid but instead chain up. Spheres organize into regular chains
parallel to the applied field direction (figure 4e,j), while random shaped particles
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Prolate deformation, chains 

E0

Low E0: oblate deformation

High  E0: regime depends on the particles

Ca = 0.03 Ca = 1.27 Ca = 0.59

Ca = 0.52 Ca = 2.60 Ca = 1.76

Ca = 1.03 Ca = 3.74 Ca = 4.11

Silver-coated glass spheres, Aluminium particles, Glass spheres,

Drop wobbling Belt sinusoid

Tip-streaming Procession with a 
ring of particles

Rotation without
particle structures

, a = 2 mm , a = 1.8 mm , a = 1.7 mm

(a) (b) (c)

(d ) (e) ( f )

(h)(g) (i )

FIGURE 3. Drop shape and particles structures at increasing field strength Ca. Each
column represents the same drop. The particle radius is approximately 10 µm. See the
movies in the supplementary material.

form an irregular network (figure 4a,i). Particles with low polarizability (such as
the low conducting PMMA, PE, fingerprint, small glass and very small aluminum
particles) form a dynamic sinusoid (figure 4b,c,d,g,h,k). Drop wobbling is correlated
with intermediate size (r∼ 10 µm) and conductivity (Al) particles with random shape
(see figure 4f ). Figure 4 behaviours are relatively insensitive to the coverage with the
exception of the Ac spheres.

For this system (Ac), figure 5 illustrates the differences in drop behaviour due to
particle coverage. Under the same field strength, a lower coverage results in a belt,
while a higher coverage drop exhibits wobbling. Upon increase of the field strength,
the lower coverage belt forms a dynamic sinusoid, while the higher coverage drop
forms a static sinusoid characterized by no vortices. Further increase in the field
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Particles conductivity/fluids
Particles radius (r)

Silver-coated glass (spheres)   

Random shape

Less conductiveMore conductive

Silver (random shape)  Aluminium (random shape)  Glass (spheres)  

Aluminium (random shape)  Glass (spheres)  PMMA (spheres)  

Fingerprint (random shape)  

Aluminium (random shape)  Glass  Polyethylene  

Ca = 1.57, a = 1.88 mm,Ca = 0.62, a = 2.2 mm, Ca = 1.47, a = 1.6 mm, Ca = 0.77, a = 1.9 mm,

Ca = 0.69, a = 2 mm, Ca = 3.43, a = 1.8 mm, Ca = 1.76, a = 1.7 mm, Ca = 0.78, a = 2 mm,

Ca = 0.23, a = 1.8 mm, Ca = 1.29, a = 1.7 mm, Ca = 1.36, a = 2.1 mm,

[0.5-5] µm
 

[8-13] µm
 

>
 45 µm

 
(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i ) ( j ) (k)

FIGURE 4. Dependence of the structure on particle properties.

Ca = 0.72

 Dynamic sinusoid belt

Ca = 0.78 Ca = 0.84 Ca = 0.91

Ca = 0.72 Ca = 0.78 Ca = 0.84 Ca = 0.91

, Wobbling Static sinusoid belt  ‘Wings-like’ structure ‘Wings’ejection

(a)

(b)

,

, , ,

FIGURE 5. Effect of surface coverage on belt dynamics. A drop (a = 2.2 mm) covered
with Ac spheres (r= 6 µm) with a surface coverage ϕ = 37 % (a) and ϕ = 61 % (b).

strength gives rise to a ‘wing-like’ structure, in which some of the particles are
detached form the drop interface, and eventually get ejected.

The belt can also display some peculiar, previously unreported features. Increasing
the field strength can lead to further destabilization of the structure resulting in
vortices that periodically change orientation (swing), see figure 6(a). The structuring
also appears to be history-dependent. Figure 6(b) shows the belt evolution upon
turning on and off the field. During the first pulse (4 min) the belt forms a steady
sinusoid with a ‘wing-like’ structure, which would have undergone ejection should the
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t = 125 s t = 128 s t = 132 s

Ca = 1.27,(a)

t = 0 s

Ca = 0.84,

t = 141 s

(b)

t = 0 s t = 79 s

FIGURE 6. (a) ‘Swinging’ vortices: temporal evolution of a sinusoid for a drop (a =
2.2 mm) covered with Ac spheres (r = 6 µm) for Ca = 1.27 and ϕ = 30 %. The dark
lines are added to guide the eye. (b) Effect of initial particle distribution on belt structure
for a drop (a= 2.2 mm) covered with Ac spheres (r= 6 µm) for Ca= 0.84 and ϕ= 61 %.

field was slightly higher. When the field is turned off, the drop relaxes to a sphere
but the belt remains. Upon application of a second pulse with the same strength
the belt never forms wings, i.e. particle ejection is suppressed. So, the fact that the
particles were already packed in a belt (i.e. initially structured) shifts the onset of
particle ejection to stronger fields.

3.2. Mechanisms
The effect of particles on the overall drop deformation is illustrated in figure 7,
where the experimental data are compared with the Taylor’s linear theory with
capillary number defined based on the clean drop interfacial tension

D= a‖ − a⊥
a‖ + a⊥

=Ca
9

16S2(2+ R)2

[
S(R2 + 1)− 2+ 3(RS− 1)

2λ+ 3
5λ+ 5

]
. (3.1)

Intriguingly, the elongation of drops covered with variety of particles and coverages
are well described by the Taylor law at much wider range of Ca compared to clean
drops. For example, particle-covered drops can follow the linear law up to Ca∼2.5. In
contrast, particle-free (‘clean’) drops begin to deviate from the Taylor law at Ca∼ 0.5.

The deviation from the Taylor law occurs at the onset of buckling or wobbling.
Compared with the belt buckling, the onset of drop wobbling is observed at higher
field strengths. The buckling onset is particle and coverage dependent: the lower the
particle coverage, the lower the field strength required to form the sinusoid. This
is expected as buckling should depend on the belt width. In contrast, the wobbling
threshold seems to be coverage independent: drops covered with aluminum particles
with ϕ = 1, 22 and 48 % all begin to wobble at about the same Ca. This finding
suggests that in this case overall drop deformation and particle cohesion are the
controlling factors.
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

–0.25

–0.20

–0.15

–0.10

–0.05

0

D

Ca

CaS (glass 40 %)

CaS (glass 58 %)

CaS (poly 35 %)

CaO (alu 1 % – 22 % – 48 %)

FIGURE 7. (Colour online) Deformation parameter D as a function of the capillary
number. The symbol × corresponds to a ‘clean’ (particle-free) drop with a = 2.2 mm,
the symbol ◦ corresponds to a drop covered with PE (ϕ= 35 %, a= 2 mm), the symbols
?, � and � denote drops covered with Al with ϕ = 1, 22 and 48 % and a = 1.9, 2
and 1.8 mm, the symbols G, F and 4 correspond to drops covered with G with ϕ= 38,
40 and 59 % and a = 1.8, 1.6 and 1.7 mm. The filled symbols indicate that the drops
experience wobbling or sinusoids. The solid line corresponds to the Taylor prediction (3.1).

3.2.1. Belt dynamics
The formation of the belt is driven by the electrohydrodynamic flow, which

convects particles towards the equator. Particle also experience dielectrophoresis due
to the nonuniform electric field along the drop interface but this effect is weaker.
One can see this by comparing the magnitudes of the electrohydrodynamic and
the dielectrophoretic velocities. The first can be estimated from the solution for
the electrohydrodynamic flow around a spherical drop (Taylor 1966) ve ∼ aεsE2

0/µs.
The dielectophoretic velocity is obtained by balancing the dielectrophoretic force
and hydrodynamic drag vd ∼ (εsr3KcmE2

0/a)/(µsr), where Kcm = (σp − σs)/(σp + 2σs)
denotes the particle Clausius–Mossotti factor. Thus, ve/vd ∼ a2/r2� 1.

At this time, we can only speculate about the mechanism of the belt buckling
and the formation of the dynamic vortices, see figure 8. It is possible that the
electrohydrodynamic flow quickly jams particles in the belt, which then buckles
when compressed by the surface tension acting to restore the spherical drop
shape. Indeed the instability is observed at Ca > 1, where the flow time scale
te ∼ µs/εsE2

0 is shorter than the surface tension time scale te ∼ aµs/γ . Alternatively,
it may be the electrohydrodynamic flow compressing the ‘elastic’ particle sheet that
drives the buckling. The fact that the sheet is confined to the surface and it is
essentially a granular material must play a role in its response. Once the belt is
buckled the background electrohydrodynamic flow shears the particles and drives the
vortices. However, if the particle cohesion is strong, e.g. due to compaction, strong
dipole–dipole interactions, or jamming due to irregular shape, the flow may not be
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Compression by EHD flow In planeOut of plane 

H
?

FIGURE 8. Sketch of the potential scenarios for ‘out-of-plane’ and ‘in-plane’ belt
buckling.

able to put the particles in motion. As a result, the sinusoid would remain static which
is indeed the case for high coverages, see figure 5(b) (second snapshot). Variation in
the particle cohesion may also be responsible for the history-dependent belt dynamics
seen in figure 6. Particles that are already packed in a belt resist removal from the
drop surface, i.e. the formation of ‘wings’ and ejection.

Under compression, the density of particles at the interface increases and approaches
jamming (Vella, Aussillous & Mahadevan 2004; Planchette, Lorenceau & Biance
2012). The compressive stress increases with the field strength leading to decrease
in the belt width, see figure 9(a) and the supplementary material, however, the
effect is not very strong. The decreased belt width correlates with higher particle
compaction, which is seen in figure 9(b). The data shows that the particle area
fraction ϕr, determined experimentally by visually counting the particles on the
surface, is approaching random close packing in two dimensions ϕRCP = 0.84.

The compressed particle layer can undergo out-of-plane buckling instability forming
wrinkles and folds (Vella et al. 2004; Pocivavsek et al. 2008). Cerda & Mahadevan
(2003) showed that the balance of the foundation and bending energies leads to the
selection of wrinkles of an intermediate wavelength Λ ∼ (B/K)1/4, where B is the
bending rigidity of the particle layer and K is the stiffness due to an ‘elastic substrate’;
the amplitude of the wrinkles ∼Λ. For of a flat particle layer (‘raft’) residing on a
fluid/fluid interface, the liquid buoyancy acts as the effective stiffness, thus K =1ρg;
the bending rigidity is B ∼ Yh3 where Y ∼ γ /h is the Young’s modulus and h = 2r
is the particle diameter (Vella et al. 2004). Hence, the wrinkle wavelength is Λo ∼
(γ h2/1ρg)1/4 ∼ 1 mm (for h= 10 µm).

In our system, the particle layer resides on a curved interface, with radius of
curvature set by the drop radius a. Buckling on any length scale on the drop
surface costs energy ∼γ /a2 (Finken & Seifert 2006) because the area of a surface
element changes as it moves outwards or inwards. Accordingly, in our system for
‘out-of-plane’ buckling the surface tension dominates over gravity and K ∼ γ /a2.
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0 0.4 0.8 1.2 1.6 2.0
0.70

0.74

0.78

0.82

0.86

H/a

0.90

0 1.0 2.0 3.0
–0.2

0.2

0.6

1.0

1.4

H/a

Ca

(a) (b)

FIGURE 9. (a) Belt width (normalized by a) as a function of the capillary number for
PE. The symbols �, G, ◦, 4 and F correspond to drops covered with respectively ϕ =
35 % (CaS > 0.35), 28 % (CaS > 1.20), 34 % (CaS > 1), 16.5 % (CaS > 1.11), and 8 %
(CaS > 0.08). (b) Surface fraction ϕr in the belt for a coverage ϕ = 35 % of polyethylene
particles as a function of the belt width (normalized by a).

The wrinkle wavelength is Λo ∼
√

ah ∼ 0.1 mm (for h = 10 µm). A more precise
estimate using the expressions by Vella et al. (2004) shows that actually the wrinkle
wavelength is of the order of the particle diameter and, hence, too short to be
observable. However, in very strong fields and belt can fold due to stress focusing
and this may be responsible for the wings, see figure 5(b) (Ca= 0.84).

In the studies of particle rafts, the particles cover the whole interface and buckling
out of plane is the only possible response to compression. In our systems, the
drop surface is only partially covered and the belt can buckle ‘in-plane’, remaining
confined to the drop interface. The measured wavelength is shown in figure 10. It
appears it is not sensitive to the field strength and increases with the belt width H,
see also the supplementary material for additional data. The strong dependence on H
is probably due to the energy cost for bending. The geometric constraint that the belt
is confined to a surface with a radius of curvature a suggests a new variable,

√
aH.

The experimental data for the sinusoid wavelength Λ is well described in terms of
this scaling, as seen in figure 10(b), with the exception of the thin belts. This is
likely due to the fact that a very thin belt, H � a, is not strongly affected by the
drop curvature.

The mechanism of the in-plane buckling instability is not apparent at this time but
it likely involves interplay between a destabilizing force (the electrohydrodynamic
flow) and a restoring force (provided by the belt resistance to bending). Recasting
the experimental data for belt states, stable and buckled, in terms of these two forces
collapses the data on a phase-diagram with well-defined transition, see figure 11(a).
Both forces are scaled by surface tension. The dimensionless bending stress is then
B/a2γ , where the bending rigidity B is determined following Vella et al. (2004)
using the belt thickness, B = YH3/12(1 − ν2), Y = 2.82(γ /(2r)) and ν = 1/

√
3. The

electrohydrodynamics stress is estimated from the Taylor solution at the location of
the belt boundary θc = θ(z = H/2) and Tel = εdE2

0(1 − RS)/(R + 2)2 sin(2θc). The
dimensionless electrohydrodynamic stress is then Tela/γ . Phase diagram with the
same variables also provides good separation between the regimes of steady belted
drops and wobbling/tumbling drops, see figure 11(b).
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FIGURE 10. (Colour online) Wavelength Λ (normalized by the drop radius a) as a
function of (a) the capillary number and (b) belt width

√
H/a. The � empty and filled

symbols correspond to Ac-covered drops with ϕ = 37 and 61 %, respectively. The empty
and filled ◦ symbols correspond to a Al-covered drop (r= 1.5 µm) with ϕ= 54 and 50 %,
the symbols ? to drops covered with F with ϕ = 15 %, the symbol 4 to drops covered
with G (r= 5 µm, ϕ= 51 %). G-covered drops (r= 8.5 µm) with ϕ= 38, 40, 53, 58 and
59 % are represented by empty and filled � symbols, the filled symbol 4, the empty and
filled symbols 5. The empty and filled F symbols and the empty and filled G symbols
denote PE-covered drops with ϕ = 8, 16, 28 and 34 %.
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0

0.10

0.20

0.30

0.40

0.50

0

0.4

0.8

1.2

1.6
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FIGURE 11. (Colour online) (a) Phase diagram for drops covered with low polarizability
particles. The empty symbols correspond to drops with steady belts, while the filled
symbols denote drops with buckled belts. The line is added to guide the eye. The symbol� denotes drops covered with Al (r= 1.5 µm, ϕ = 54 and 50 %), the symbol ? denotes
drops covered with F (ϕ= 15 %), the symbol � denotes drops covered with G (r= 5 µm,
ϕ = 51 %), the symbol ◦ denotes drops covered with PE (ϕ = 8, 16, 28 and 34 %), the
symbol 5 denotes drops covered with G (r = 7.5 µm, ϕ = 38, 40, 53, 58 and 59 %)
and the symbol G denotes drops covered with Ac (ϕ = 37 and 61 %). Drops with higher
coverage of Ac (ϕ=61 %) instead of belt buckling undergo drop wobbling (symbol 4). (b)
Phase diagram for drops covered with intermediate polarizability particles Al (r= 12 µm,
ϕ= 1, 22, 18 and 48 %). The filled symbols indicate that the drops experience oscillations.
The line is added to guide the eye.

3.3. Wobbling and tumbling

‘Wobbling’ is characterized by small oscillations of the drop main axis while the
particle equatorial ring remains nearly intact. The drop inclination relative to the
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applied field direction is quantified by the angle β, see figure 1. Figure 12 complies
the time evolution of β for different Ca and the same drop. Above Ca= 2.6, the drop
long axis starts to swing. On the time scale of the observation, no clear period of
the oscillation emerges. Above Ca= 3.7, the drop starts to ‘tumble’. This behaviour
is characterized by a steady periodic oscillation of β accompanied by rotation of the
belt around the drop long axis, see figure 12(b). Increasing Ca widens the belt due to
the appearance of chains (see Ca= 4.4 sequence). At even higher field strengths, the
belt breaks into two rotating domains, see figure 1(f ), and the drop adopts a steady
tilt relative to the applied field direction.

Drop wobbling may be due to Quincke rotation, i.e. the appearance of electric
torque above a threshold electric field. This phenomenon occurs for a drop with
characteristic charge relaxation time larger than the surrounding fluid (RS< 1) (Jones
1984). In this case, the induced drop dipole is oriented in the opposite direction to the
applied electric field. This configuration is unfavourable; it becomes unstable above
a critical strength of the electric field and a perturbation in the dipole orientation
creates a constant torque. In the case of a rigid sphere, this results in physical rotation
of the particle known as Quincke rotation. The induced surface charges rotate with
the particle, but at the same time the suspending fluid recharges the interface. The
balance between charge convection by rotation and supply by conduction from the
bulk results in continuous sphere spinning. The period of rotation is

TQ = 2πtmw

(
E2

E2
Q
− 1

)−1/2

(3.2)

where EQ is the threshold electric field above which the rotation occurs and tmw is the
Maxwell–Wagner polarization time

E2
Q =

2σsµs (R+ 2)2

3εsεd(1− RS)
, tmw = εd + 2εs

σd + 2σs
. (3.3a,b)

In our experiments, we find that the threshold electric field for wobbling Ew/EQ ∼
1–1.5, close to the Quincke value. Moreover, the observed drop tumbling period of
approximately 20 s is also close to the Quincke period (approximately 10 s), which
is rather surprising considering that the drops in our experiment are ellipsoidal and
a belt with different conductivity is present at their equator. Numerical simulations
show that in DC fields a rigid ellipsoid cannot only align with the field but exhibit
oscillations, precessing and tumbling (Cebers, Lemaire & Lobry 2002; Dolinsky
& Elperin 2009). Particle-free droplets also display rotations however accompanied
with large deformation, unlike the case here (Salipante & Vlahovska 2013). In our
system, the belt retains its structure (probably due to strong particle cohesion) thereby
constraining the drop shape during wobbling.

3.4. Chains regime
The prolate drop deformation probably originates from strong surface conduction
(due to the presence of very conducting particles at the interface) which suppresses
and even reverses the electrohydrodynamic flow. The formation of the chains is
promoted by dipole–dipole interactions, which for spheres lead to attraction parallel
to the electric field direction. Random shape particles, however, have anisotropic
interactions, which result in the irregular structure.
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FIGURE 12. Evolution of the inclination of the drop, β, with time for wobbling (a) and
tumbling drops (b) covered with Al particles (r= 12 µm). (a) The symbol � corresponds
to Ca= 2.6, and + to Ca= 3.4. (b) The solid line corresponds to Ca= 4.1 and the dashed
line corresponds to Ca= 4.4.

The electric field leading to the formation of chains decreases with the particles
conductivity, coverage and particle spacing. The latter depend on compaction, which
in turns depends on field strength. As a result, a precise electric field threshold for
the chains regime is difficult to define. Chains may form but not grow to cover the
whole surface, see the supplementary material (this structure was called a ‘pupil’ by
Dommersnes et al. (2013)). Moreover, figure 13 shows that in some cases particles
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Belt formation Wobbling

t = 0 s t = 3 s t = 9.6 s t = 64 s

FIGURE 13. Temporal belt evolution for a drop covered with aluminum particles
(ϕ = 48 %) for Ca= 2.86.

quickly chains after the application of the electric field, but the chains get broken
and compacted at later times due to the compression by the electrohydrodynamic
flow. This occurs when the dipole–dipole attractive forces are comparable to the
electrohydrodynamic forces, which is the case of intermediate-polarizability or
random-shaped particles.

Particle chaining may lead to increasing the belt width with the electric field
strength (in contrast to the chain-free particle belts shown in figure 9). The belt
widening, first reported as the ‘pupil effect’ by Dommersnes et al. (2013), was
attributed solely to particles with intermediate conductivity by these authors. We find
that any particles which are more conducting than the suspending fluids can display
the pupil behaviour at some particle size and field strength. This effect is illustrated
in the supplementary material with glass and silver-coated spheres, as examples of
low- and high-conductivity particles, respectively.

4. Conclusions and outlook
We have experimentally studied the dynamics of colloidal particles adsorbed on a

drop placed in a uniform DC electrical field. The fluid system consists of a silicon
oil drop suspended in castor oil, both very weakly conducting liquids. A broad
range of particle sizes, conductivities and shapes is explored. In weak electric fields,
the electrohydrodynamic flow convects all particles towards the equator forming a
‘belt’. In stronger electrical fields, the evolution of the belt depends on the particles
characteristics and coverage. Belts formed by low polarizability particles break into
a sequence of counter-rotating vortices of particles. The vortices themselves can
undertow periodic changes in orientation. When dipole–dipole attraction becomes
strong the particle chain and the drop experiences a prolate deformation and
tip-streaming occur with ejection of particles. For non-spherical conductive particles,
we observe a new regime with sustained oscillation of the drop inclination with
respect to the applied field while the belt is stable. In this paper we focus on
relatively low particle coverage. Higher coverage leads to other intriguing behaviours
such as ‘drum-like’ drop shapes and implosion, see the supplementary material.

The diversity of particle patterns provides promising new ideas for directed
assembly of particles at interfaces. Our findings open questions ranging from
understanding the mechanism for particle organization to stability of Pickering
emulsions. We hope our work will stimulate further research on the
electrohydrodynamics of particles at interfaces.
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Supplementary movies and material
Supplementary movies and material are available at http://dx.doi.org/10.1017/jfm.

2014.289.
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