Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-06T20:44:59.906Z Has data issue: false hasContentIssue false

Weighted least-squares estimation for the subcritical Heston process

Published online by Cambridge University Press:  26 July 2018

M. du Roy de Chaumaray*
Affiliation:
Institut de Mathématiques de Bordeaux
*
* Current address: ENSAI, Campus de Ker Lann, Rue Blaise Pascal, BP 37203, 35172 Bruz Cedex, France. Email address: marie.du-roy-de-chaumaray@ensai.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We simultaneously estimate the four parameters of a subcritical Heston process. We do not restrict ourselves to the case where the stochastic volatility process never reaches zero. In order to avoid the use of unmanageable stopping times and a natural but intractable estimator, we use a weighted least-squares estimator. We establish strong consistency and asymptotic normality for this estimator. Numerical simulations are also provided, illustrating the favorable performance of our estimation procedure.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

References

[1]Aït-Sahalia, Y. and Kimmel, R. (2007). Maximum likelihood estimation of stochastic volatility models. J. Financial Econom. 83, 413452. Google Scholar
[2]Alfonsi, A. (2010). High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comput. 79, 209237. Google Scholar
[3]Andersen, L. (2008). Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11, 142. Google Scholar
[4]Azencott, R. and Gadhyan, Y. (2009). Accurate parameter estimation for coupled stochastic dynamics. Discrete Contin. Dyn. Syst. 2009, 4453. Google Scholar
[5]Barczy, M. and Pap, G. (2016). Asymptotic properties of maximum-likelihood estimators for Heston models based on continuous time observations. Statistics 50, 389417. Google Scholar
[6]Ben Alaya, M. and Kebaier, A. (2012). Parameter estimation for the square-root diffusions: ergodic and nonergodic cases. Stoch. Models 28, 609634. Google Scholar
[7]Ben Alaya, M. and Kebaier, A. (2013). Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions. Stoch. Anal. Appl. 31, 552573. Google Scholar
[8]Cox, J. C., IngersollJ. E., Jr. J. E., Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53, 385407. Google Scholar
[9]Du Roy de Chaumaray, M. (2017). Large deviations for the squared radial Ornstein–Uhlenbeck process. Theory Prob. Appl. 61, 408441. Google Scholar
[10]Feller, W. (1951). Two singular diffusion problems. Ann. Math. (2) 54, 173182. Google Scholar
[11]Forde, M. and Jacquier, A. (2011). The large-maturity smile for the Heston model. Finance Stoch. 15, 755780. Google Scholar
[12]Forde, M., Jacquier, A. and Lee, R. (2012). The small-time smile and term structure of implied volatility under the Heston model. SIAM J. Financial Math. 3, 690708. Google Scholar
[13]Fournié, E. and Talay, D. (1991). Application de la statistique des diffusions à un modèle de taux d'intérêt. Finance 12, 79111. Google Scholar
[14]Gao, F. and Jiang, H. (2009). Moderate deviations for squared Ornstein–Uhlenbeck process. Statist. Prob. Lett. 79, 13781386. Google Scholar
[15]Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. John Wiley, Hoboken, NJ. Google Scholar
[16]Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series, and Products. Academic Press, New York. Google Scholar
[17]Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343. Google Scholar
[18]Jacquier, A. and Roome, P. (2016). Large-maturity regimes of the Heston forward smile. Stoch. Process. Appl. 126, 10871123. Google Scholar
[19]Janek, A., Kluge, T., Weron, R. and Wystup, U. (2011). FX smile in the Heston model. In Statistical Tools for Finance and Insurance, Springer, Heidelberg, pp. 133162. Google Scholar
[20]Lamberton, D. and Lapeyre, B. (1997). Introduction au Calcul Stochastique Appliqué à la Finance, 2nd edn. Ellipses Édition Marketing, Paris. Google Scholar
[21]Lee, R. W. (2004). Option pricing by transform methods: extensions, unification and error control. J. Comput. Finance 7, 5186. Google Scholar
[22]Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, CA. Google Scholar
[23]Luke, Y. L. (1969). The Special Functions and Their Approximations, Vol. II. Academic Press, New York. Google Scholar
[24]Overbeck, L. (1998). Estimation for continuous branching processes. Scand. J. Statist. 25, 111126. Google Scholar
[25]Stein, E. M. and Stein, J. C. (1991). Stock price distributions with stochastic volatility: an analytic approach. Rev. Financial Studies 4, 727752. Google Scholar
[26]Stein, J. (1989). Overreactions in the options market. J. Finance 44, 10111023. Google Scholar
[27]Wei, C. Z. and Winnicki, J. (1990). Estimation of the means in the branching process with immigration. Ann. Statist. 18, 17571773. Google Scholar
[28]Zani, M. (2002). Large deviations for squared radial Ornstein–Uhlenbeck processes. Stoch. Process. Appl. 102, 2542. Google Scholar