
J. Appl. Prob. 55, 543–558 (2018)
doi:10.1017/jpr.2018.34

© Applied Probability Trust 2018

WEIGHTED LEAST-SQUARES ESTIMATION
FOR THE SUBCRITICAL HESTON PROCESS
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Abstract

We simultaneously estimate the four parameters of a subcritical Heston process. We do
not restrict ourselves to the case where the stochastic volatility process never reaches zero.
In order to avoid the use of unmanageable stopping times and a natural but intractable
estimator, we use a weighted least-squares estimator. We establish strong consistency
and asymptotic normality for this estimator. Numerical simulations are also provided,
illustrating the favorable performance of our estimation procedure.
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1. Introduction

Introduced in 1973 as a hedging tool, the Black–Scholes model uses a geometric Brownian
motion to represent asset prices. The implied volatility is supposed to be constant over time,
which turned out to be inaccurate when applied to fit real market data, especially during the
stock market crash of 1987; see [26]. Several alternative models have been constructed to
take into account the so-called smile effect associated to deep in-the-money or out-of-money
options. Particular attention has been devoted to the study of stochastic volatility processes
in which the volatility is also given as a solution of some stochastic differential equation; see
[15], [22], and [25] for financial accuracy. Among them, the Heston process [17] is one of
the most popular due to its computational tractability. For example, Lee [21] easily computed
call option prices using Fourier inversion techniques. For numerous results on the asymptotic
volatility smile, we refer the reader to, for example, [11], [12], and [18].

We denote by Yt the logarithm of the price of a given asset and by Xt its instantaneous
variance, and we consider the following Heston process:

dXt = (a + bXt) dt + 2
√
Xt dBt ,

dYt = (α + βXt) dt + 2
√
Xt(ρ dBt +

√
1 − ρ2 dWt)

(1.1)

with a > 0, (b, α, β) ∈ R
3, and ρ ∈ (−1, 1), where (Bt ,Wt ) is a two-dimensional standard

Wiener process and the initial state is (x0, y0) ∈ R
+ × R. In this process, the volatility Xt is

driven by a generalized squared radial Ornstein–Uhlenbeck process, also known as the Cox–
Ingersoll–Ross (CIR) process, first studied by Feller [10] and introduced in a financial context
by Cox et al. [8] to compute short-term interest rates. The asymptotic behavior of this process
has been widely investigated and depends on the values of both coefficients a and b.
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Once a model has been chosen for its realistic features, it needs to be calibrated before
being used for pricing. Our goal in this paper is to estimate parameters (a, b, α, β) while at
the same time using a trajectory of (Xt ) and (Yt ) over the time interval [0, T ]. Azencott and
Gadhyan [4] developed an algorithm to estimate some parameters of the Heston process based
on discrete-time observations by making use of Euler and Milstein discretization schemes for
the maximum likelihood. However, in the special case of a Heston process, the exact likelihood
can be computed. It allows us to construct the maximum likelihood estimator (MLE) without
using sophisticated approximation methods, which is necessary for many stochastic volatility
models; see [1]. The MLE of (a, b, α, β) was recently investigated by Barczy and Pap [5],
together with its asymptotic behavior in the special case where a ≥ 2. Denote by τ0 the stopping
time given by

τ0 = inf

{
T > 0

∣∣∣∣ ∫ T

0
X−1
t dt = ∞

}
. (1.2)

For any a > 0, the MLE θ̃T = (̃aT , b̃T , α̃T , β̃T ) is given by, for T < τ0,

θ̃T =
(
G−1
T 0
0 G−1

T

)(
ŨT
ṼT

)
,

where ŨT = (
∫ T

0 X
−1
t dXt,

∫ T
0 dXt)�, ṼT = (

∫ T
0 X

−1
t dYt ,

∫ T
0 dYt )�, and

GT =
(∫ T

0 X−1
t dt T

T
∫ T

0 Xt dt

)
.

Observe that (̃aT , b̃T ) coincides with the MLE of the parameters (a, b) of the CIR process
based on the observation of (XT ) over the time interval [0, T ]. The asymptotic behavior of this
latter estimator is well known; see, for example, [7], [13], and [24]. In the supercritical case of
b > 0, Overbeck [24] showed that b̃T converges almost surely (a.s.) to b whereas there exists
no consistent estimator for a. Hence, we will focus our attention on the geometrically ergodic
case of b < 0. Furthermore, the value of a governs the behavior at 0 of (XT ): for a ≥ 2, the
process a.s. never reaches 0, whereas for 0 < a < 2, 0 is quite frequently visited and

P(τ0 < ∞) = 1; (1.3)

see, for example, [20] or [24]. For a > 2, the MLE converges a.s. to θ = (a, b, α, β) and
satisfies the following central limit theorem (CLT):

√
T
(
θ̃T − θ

) d−→ N (0, 4R ⊗�−1),

where the matrices R and � are given by

R =
(

1 ρ

ρ 1

)
and � =

⎛⎜⎝ −b
a − 2

1

1 −a
b

⎞⎟⎠ ,
and ‘⊗’ denotes the Kronecker product.

A large deviation principle for the couple (̃aT , b̃T ) was established by Cox et al. [9]. In the
particular case where one parameter is known and the other one is estimated, large deviations
can be found in [28], while moderate deviations can be found in [14].

By contrast, in the 0 < a < 2 case, (1.3) implies the nonintegrability ofX−1
T for large values

of T so that the MLE does not converge as T goes to ∞. Consequently, this case has received
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less attention even though it is often of interest in finance in order to compute long-dated interest
rates, for example, as explained in [3], or in foreign exchange markets; see [19]. In the case
of the CIR process, Overbeck [24] used accurate stopping times to build a strongly consistent
estimator based on the MLE:

1{T<τ0}
(
ãT
b̃T

)
+ 1{τ0≤T }

⎛⎜⎜⎝
lim
t↑τ0

St�
−1
t(∫ T

0
Xs ds

)−1(
XT − T lim

t↑τ0
St�

−1
t

)
⎞⎟⎟⎠ ,

where St = ∫ t
0X

−1
s dXs , �t = ∫ t

0X
−1
s ds, τ0 is given by (1.2), and 1A is the indicator function

on the eventA. The aim of this paper is to investigate a new strongly consistent weighted least-
squares estimator (WLSE) for the quadruplet of parameters θ (and for (a, b) as a consequence).
The weighting allows us to circumvent the explosion forXT reaching 0 and consequently avoids
us having to make use of stopping times, which are not easy to handle in practice. It generalizes
to continuous time the original work of Wei and Winnicki [27] for branching processes with
immigration, inspired by an analogy with first-order autoregressive processes. Our results
answer, by the way, the question of Ben Alaya and Kebaier in the conclusion of [7] regarding
the CIR process.

Following the seminal work of Wei and Winnicki [27], denote CT = XT + c, where c is
some positive constant. Our new couple of WLSE is given by

θ̂T =
(
�−1
T 0
0 �−1

T

)(
UT
VT

)
, (1.4)

where

UT =
(∫ T

0

1

Ct
dXt,

∫ T

0

Xt

Ct
dXt

)�
, VT =

(∫ T

0

1

Ct
dYt ,

∫ T

0

Xt

Ct
dYt

)�
,

and

�T =

⎛⎜⎜⎝
∫ T

0

1

Ct
dt

∫ T

0

Xt

Ct
dt∫ T

0

Xt

Ct
dt

∫ T

0

X2
t

Ct
dt

⎞⎟⎟⎠ .
Further details on the choice of this estimator can be found in Appendix A. We do not restrict
ourselves to the case where c = 1 as it may sometimes lower the variance of the estimators.
In the particular case where c = 0, we observe that the new estimator coincides with the MLE.

The paper is organized as follows. Section 2 contains our main results: the strong consistency
of this new couple of estimators as well as its asymptotic normality. In Section 3 we deal with
a comparison with the MLE, while the remainder of the paper is devoted to the proofs of our
main results, as well as their illustration by some numerical simulations.

2. Main results

Our main results are as follows.

Theorem 2.1. Assume that a > 0 and b < 0. Then the four-dimensional WLSE θ̂T is strongly
consistent: as T goes to ∞,

θ̂T → θ a.s. (2.1)
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AsT goes to∞,XT converges in distribution to a random variableXwith gamma distribution
�( 1

2a,− 1
2b); see, for example, [24, Lemma 3]. Additionally, we denote by C the limiting

distribution of XT + c as T goes to ∞.

Theorem 2.2. Assume that a > 0 and b < 0. Then, as T goes to ∞, the estimator θ̂T satisfies
the following CLT: √

T (θ̂T − θ)
d−→ N (0, 4	), (2.2)

where the asymptotic variance 	 is defined as a block matrix by

	 =
(
ALA ρALA

ρALA ALA

)
,

with the matrices A and L given by

A =
(

E[C]E
[

1

C

]
− 1

)−1

⎛⎜⎜⎝E

[
X2

C

]
−E

[
X

C

]
−E

[
X

C

]
E

[
1

C

]
⎞⎟⎟⎠ , L =

⎛⎜⎜⎝E

[
X

C2

]
E

[
X2

C2

]
E

[
X2

C2

]
E

[
X3

C2

]
⎞⎟⎟⎠ .

We deduce from the previous theorems the following result for the MLE of the two parameters
of the CIR process (XT ).

Corollary 2.1. Assuming that a > 0 and b < 0, the WLSE (̂aT , b̂T ) of parameters (a, b) is
strongly consistent as T goes to ∞; thus,(

âT
b̂T

)
→
(
a

b

)
a.s.

and satisfies the following CLT:

√
T

(
âT − a

b̂T − b

)
d−→ N (0, 4ALA).

Remark 2.1. In the remainder of this paper, we denote

ψc = (− 1
2bc

)a/2e−bc/2�
(
1 − 1

2a,− 1
2bc

)
, (2.3)

where � is the upper incomplete gamma function defined for all y ∈ R and α ∈ R
+∗ by

�(α, y) =
∫ +∞

y

e−t tα−1 dt,

and extended for y �= 0 to any real α by holomorphy. To simplify the following expressions,
we also define

ϕc = ψc

(
1 − a

bc

)
− 1.

In the proof of Theorem 2.2, we evaluate the two matrices A and L involving c to obtain

A = ϕ−1
c

⎛⎝c(ψc − 1)− a

b
ψc − 1

ψc − 1
ψc

c

⎞⎠
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and

L = 1

2

⎛⎝ a

c
ψc + b(1 − ψc) (a + 2 − bc)(1 − ψc)− a

(a + 2 − bc)(1 − ψc)− a c(ψc − 1)(a + 4 − bc)+ ac − 2a

b

⎞⎠ .
By a straightforward computation, we deduce that

ALA = (ϕc)
−2
(
σ11 σ12
σ12 σ22

)
,

where the variances σ11 and σ22 are given by

σ11 = a

b
(ψc − 1)2 − a2

2b
ϕc, σ22 = ϕc

(
ψc

c
− b

2

)
+ ψc

c
(ψc − 1),

and the covariance σ12 is given by σ12 = (ψc − 1)2 − ( 1
2a)ϕc.

Remark 2.2. As c goes to 0 (for which we need a to be greater than 2), we obtain the same
covariance matrix as for the MLE. Indeed, using well-known asymptotic results about the
incomplete gamma function �, which can be found in [23], it follows that as soon as a > 2,

�

(
1 − a

2
,−bc

2

)(
−bc

2

)a/2−1

→ −1

1 − a/2
= 2

a − 2
, c → 0.

Thus, ψc goes to 0 for c tending to 0, ψc/c converges to −b/(a−2), and ϕc tends to 2/(a−2).
Hence, we easily obtain, as c goes to 0,

σ11 → − 2a

b(a − 2)
, σ22 → − 2b

(a − 2)2
, σ12 → − 2

a − 2
, c → 0,

where σ11, σ22, and σ12 are defined in Remark 2.1. This leads to

ALA → �−1, c → 0, where � =
⎛⎜⎝ −b
a − 2

1

1 −a
b

⎞⎟⎠ .
3. Asymptotic variance

Even though we considered the WLSEs in order to investigate the 0 < a < 2 case for which
the MLE is not consistent, it is interesting to compare the asymptotic variances in the CLT of
this new estimator, and of the MLE in the case where a > 2. This comparison is technically
involved as the asymptotic variances depend on the values of a, b, and c. However, it is quite
easy to compare variances for the MLE of the parameters of the CIR process in the case where
we suppose that one of the parameters is known and we estimate the other one as it simplifies
substantially the expression of the estimators. On the one hand, if a is known, the MLE for b
is given by

b̌T = XT − x0 − aT∫ T
0 Xt dt

and satisfies the following CLT:

√
T (b̌T − b)

d−→ N

(
0,

4

E[X]
)
,
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where E[X] = −a/b; see, for example, [6]. On the other hand, if b is known, the MLE of a is
given by

ǎT =
∫ T

0 1/Xt dXt − bT∫ T
0 1/Xt dt

and satisfies the following CLT:

√
T (ǎT − a)

d−→ N

(
0,

4

E[X−1]
)

with E[X−1] = −b/(a − 2). Whereas the WLSEs are given by

b̂T =
∫ T

0 (Xt/Ct ) dXt − a
∫ T

0 (Xt/Ct ) dt∫ T
0 (X2

t /Ct ) dt
, âT =

∫ T
0 (1/Ct ) dXt − b

∫ T
0 (Xt/Ct ) dt∫ T

0 (1/Ct ) dt
.

Proposition 3.1. Assume that a > 0 and b < 0. As T goes to ∞, b̂T satisfies the following
CLT:

√
T (̂bT − b)

d−→ N

(
0, 4E

[
X3

C2

](
E

[
X2

C

])−2)
. (3.1)

Proof. Replacing dXt by its expression (1.1), we easily obtain

√
T (̂bT − b) = 2

(
1

T

∫ T

0

X2
t

Ct
dt

)−1
nT√
T
,

where nT is a martingale given by

nT =
∫ T

0

Xt
√
Xt

Ct
dBt , 〈n〉T =

∫ T

0

X3
t

C2
t

dt.

Using the ergodicity of the process, we obtain, as T goes to ∞,

〈n〉T
T

→ E

[
X3

C2

]
a.s. (3.2)

Thus, by the CLT for martingales, we obtain the following convergence in distribution:

nT√
T

d−→ N

(
0,E

[
X3

C2

])
. (3.3)

Consequently, (3.1) follows from (3.3), Slutsky’s lemma, and the fact that, by the ergodicity of
the process, (1/T )

∫ T
0 X

2
t /Ct dt converges a.s. to E[X2/C] as T goes to ∞. �

Proposition 3.2. Assume that a > 0 and b < 0. As T goes to ∞, âT satisfies the following
CLT:

√
T (̂aT − a)

d−→ N

(
0, 4E

[
X

C2

](
E

[
1

C

])−2)
. (3.4)
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Proof. This follows the same lines as the previous proof. Observe that

√
T (̂aT − a) = 2

(
1

T

∫ T

0

1

Ct
dt

)−1
mT√
T
,

where mT is a martingale term given by

mT =
∫ T

0

√
Xt

Ct
dBt , 〈m〉T =

∫ T

0

Xt

C2
t

dt.

Thus, as T goes to ∞,
〈m〉T
T

→ E

[
X

C2

]
a.s., (3.5)

which implies the following convergence in distribution:

mT√
T

d−→ N

(
0,E

[
X

C2

])
. (3.6)

Finally, (3.6) leads to (3.4) thanks to the ergodicity of the process and Slutsky’s lemma. �

Proposition 3.3. Assume that a > 2 is known and b < 0. Then the MLE of b satisfies a CLT
with a smaller asymptotic variance than the weighted least-squares estimator.

Proof. Using the Cauchy–Schwarz inequality, we note that(
E

[
X2

C

])2

=
(

E

[√
X
X3/2

C

])2

≤ E[X]E
[
X3

C2

]
,

which immediately leads to the result. �

Proposition 3.4. Assume that a > 2 and b < 0 is known. Then the MLE of a satisfies a CLT
with a smaller asymptotic variance than the WLSE.

Proof. Using the Cauchy–Schwarz inequality, we note that(
E

[
1

C

])2

=
(

E

[
X−1/2X

1/2

C

])2

≤ E

[
1

X

]
E

[
X

C2

]
,

which immediately leads to the result. �

Remark 3.1. Thus, the WLSE is less efficient than the MLE in the case where the latter is
easily manageable. This may appear to be contradictory to [27, Remark 4.4], in which the
authors dealt with the discrete-time counterpart of the process. In fact, they compared the
weighted least-squares with the conditional least-squares estimator which does not coincide
with the MLE.

Remark 3.2. We could speculate on our choice of estimator, since the parameter a is unknown.
However, we suppose that we observe the whole trajectory of the process over the time interval
[0, T ]. Thus, if we are able to detect some local time at level 0 then we know that a < 2 and
we should use the WLSE instead of the MLE.
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4. Technical lemmas

First, using (1.1), (1.4 can be written as

θ̂T = θ +
(
�−1
T 0
0 �−1

T

)(
MT

NT

)
, (4.1)

where MT and NT are martingales given by

MT =

⎛⎜⎜⎝
∫ T

0

2
√
Xt

Ct
dBt∫ T

0

2
√
XtXt

Ct
dBt

⎞⎟⎟⎠ , NT =

⎛⎜⎜⎝
∫ T

0

2
√
Xt

Ct
dB̃t∫ T

0

2
√
XtXt

Ct
dB̃t

⎞⎟⎟⎠
with dB̃t = ρ dBt +√

1 − ρ2 dWt .
We denote by MT the martingale MT = (MT ,NT ). As 〈dBt , dB̃t 〉 = ρ dt , we can easily

see that the increasing process of MT is given by

〈M〉T =
( 〈M〉T ρ〈M〉T
ρ〈M〉T 〈M〉T

)
, (4.2)

where the increasing process 〈M〉T of MT is given by

〈M〉T = 4

⎛⎜⎜⎝ 〈m〉T
∫ T

0

X2
t

C2
t

dt∫ T

0

X2
t

C2
t

dt 〈n〉T

⎞⎟⎟⎠
with 〈m〉T and 〈n〉T given by (3.5) and (3.2), respectively.

In order to prove Theorems 2.1 and 2.2, we need to investigate the almost sure convergence of
all the integrals involved in the definition of the estimators. Applying the result of Overbeck [24,
Lemma 3(i)], we see that as T goes to ∞, XT converges in distribution to X with gamma
distribution �( 1

2a,− 1
2b), whose probability density function is given by

f (x) = (
�
( 1

2a
))−1(− 1

2b
)a/2

xa/2−1exb/21{x>0}. (4.3)

Thus, by [24, Lemma 3(ii)], as T goes to ∞,

1

T

∫ T

0
g(Xt ) dt → E[g(X)] =

∫ +∞

0
g(x)f (x) dx a.s.

for any function g such that the right-hand side exists.
We recall two properties of the incomplete gamma function that will be very useful in the

proof of the next lemma:

�(α + 1, x) = xαe−x + α�(α, x) (4.4)

and
�(α + 2, x) = xαe−x(x + α + 1)+ α(α + 1)�(α, x).

We are now able to prove the following lemma. The first three points yield the almost sure
limit of the matrix T �−1

T as T goes to ∞, while the remaining deals with the increasing process
of the four-dimensional martingale MT given by (4.2).
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Lemma 4.1. With ψc given by (2.3), we have

(i) E[1/C] = ψc/c;

(ii) E[X/C] = 1 − ψc;

(iii) E[X2/C] = c(ψc − 1)− a/b;

(iv) E[X/C2] = (a/2c)ψc + 1
2b(1 − ψc);

(v) E[X2/C2] = 1
2 ((a + 2 − bc)(1 − ψc)− a);

(vi) E[X3/C2] = 1
2c(a + 4 − bc)(ψc − 1)+ ( 1

2ac)− a/b.

Proof. (i) We have

E

[
1

C

]
=
∫ +∞

0

1

x + c
f (x) dx,

where f is given by (4.3). Using [16, Equation 3.383(10)], we have∫ +∞

0

1

x + c
xa/2−1exb/2 dx = ca/2−1e−bc/2�

(
a

2

)
�

(
1 − a

2
,−bc

2

)
,

which leads to

E

[
1

C

]
= 1

c

(
−bc

2

)a/2
e−bc/2�

(
1 − a

2
,−bc

2

)
and ensures the announced result.

(ii) As before, we have

E

[
X

C

]
=
∫ +∞

0

x

x + c
f (x) dx. (4.5)

Using [16, Equation 3.383(10)], we have∫ +∞

0

1

x + c
xa/2exb/2 dx = ca/2e−bc/2�

(
a

2
+ 1

)
�

(
−a

2
,−bc

2

)
. (4.6)

Together with (4.4), we easily obtain

�

(
−a

2
,−bc

2

)
=
(

−2

a

)(
�

(
1 − a

2
,−bc

2

)
−
(

−bc
2

)−a/2
ebc/2

)
. (4.7)

Combining (4.5)–(4.7) and the fact that �( 1
2a + 1) = 1

2a × �( 1
2a), we deduce the announced

result.

(iii) We have

E

[
X2

C

]
= E

[
(X + c − c)2

X + c

]
= E[X] − c + c2

E

[
1

C

]
,

and we conclude using (i) and the fact that E[X] = −a/b.
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(iv) By the definition of f in (4.3), we have

E

[
X

C2

]
=
∫ +∞

0

x

(x + c)2
f (x) dx = (−b/2)a/2

�(a/2)

∫ +∞

0

xa/2

(x + c)2
exb/2 dx. (4.8)

Using integration by parts on the right-hand side of (4.8), we obtain

E

[
X

C2

]
= (−b/2)a/2

�(a/2)

[
a

2

∫ +∞

0

xa/2−1

x + c
exb/2 dx + b

2

∫ +∞

0

xa/2

x + c
exb/2 dx

]
.

Since both integrals were computed in the proofs of (i) and (ii), we obtain

E

[
X

C2

]
= a

2
E

[
1

C

]
+ b

2
E

[
X

C

]
= a

2c
ψc + b

2
(1 − ψc).

(v) Integrating by parts and using (iii) and (iv),

E

[
X2

C2

]
= (−b/2)a/2

�(a/2)

∫ +∞

0

xa/2+1

(x + c)2
exb/2 dx

= (−b/2)a/2
�(a/2)

[
a + 2

2

∫ +∞

0

xa/2

x + c
exb/2 dx + b

2

∫ +∞

0

xa/2+1

x + c
exb/2 dx

]
= 1

2

(
(a + 2)E

[
X

C

]
+ bE

[
X2

C

])
= 1

2

(
(a + 2)(1 − ψc)+ b

(
c(ψc − 1)− a

b

))
.

(vi) Noting that X3 = X(X + c)2 − 2cX2 − c2X, we obtain

E

[
X3

C2

]
= E[X] − 2cE

[
X2

C2

]
− c2

E

[
X

C2

]
and we conclude using (iv) and (v). �

5. Proof of the strong consistency

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. First, we have

1

T 2 det �T = 1

T

∫ T

0

1

Ct
dt

1

T

∫ T

0

X2
t

Ct
dt −

(
1

T

∫ T

0

Xt

Ct
dt

)2

.

Thus, as the process is ergodic, we obtain, as T goes to ∞,

1

T 2 det �T → E

[
1

C

]
E

[
X2

C

]
−
(

E

[
X

C

])2

a.s. (5.1)

Using the fact that X = C − c, we obtain

E

[
X2

C

]
= E[C] − 2c + c2

E

[
1

C

]
and E

[
X

C

]
= 1 − cE

[
1

C

]
.
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We can easily derive

E

[
1

C

]
E

[
X2

C

]
−
(

E

[
X

C

])2

= E

[
1

C

]
E[C] − 1,

which leads to the limit as T goes to ∞,

1

T 2 det �T → E

[
1

C

]
E[C] − 1 a.s.

Thus, as T goes to ∞, we obtain

T �−1
T → A a.s., (5.2)

where A is given by

A =
(

E[C]E
[

1

C

]
− 1

)−1

⎛⎜⎜⎝E

[
X2

C

]
−E

[
X

C

]
−E

[
X

C

]
E

[
1

C

]
⎞⎟⎟⎠ . (5.3)

A straightforward application of Lemmas 4.1(i)–(iii) yields

A = 1

ψc(1 − a/bc)− 1

⎛⎝c(ψc − 1)− a

b
ψc − 1

ψc − 1
ψc

c

⎞⎠ .
Besides, using the strong law of large numbers for the martingale, we see that the martingaleMT

satisfies, as T goes to ∞,
MT

T
→ 0 a.s. (5.4)

As a matter of fact, by convergences (3.2) and (3.5), we know that a.s. 〈n〉T = O(T ) and
〈m〉T = O(T ). This ensures that, as T goes to ∞, nT /T → 0 a.s. andmT /T → 0 a.s. As NT
and MT share the same increasing process, this result holds by replacing MT by NT . Finally,
the almost sure convergence (2.1) follows from (4.1), (5.2), and (5.4). �

6. Proof of the asymptotic normality

Proof of Theorem 2.2. First, from (4.1), we deduce that

√
T (θ̂T − θ) =

(
T �−1

T 0
0 T �−1

T

)⎛⎜⎜⎝
MT√
T
NT√
T

⎞⎟⎟⎠ . (6.1)

We already know that T �−1
T converges a.s. as T goes to ∞ and its limit A is given by (5.3).

We now have to establish the asymptotic normality ofMT /
√
T . By the ergodicity of the process,

we obtain

〈M〉T
T

→ 4L a.s., where L =

⎛⎜⎜⎝E

[
X

C2

]
E

[
X2

C2

]
E

[
X2

C2

]
E

[
X3

C2

]
⎞⎟⎟⎠ .
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As a straightforward consequence of Lemmas 4.1(iv)–(vi), we obtain

L = 1

2

⎛⎝ a

c
ψc + b(1 − ψc) (a + 2 − bc)(1 − ψc)− a

(a + 2 − bc)(1 − ψc)− a c(a + 4 − bc)(ψc − 1)+ ac − 2a

b

⎞⎠ .
We easily obtain the following almost sure convergence:

〈M〉T
T

→ 4L a.s.,

where L is a block matrix given by

L =
(
L ρL

ρL L

)
.

From the CLT for martingales, we deduce that

MT√
T

d−→ N (0, 4L). (6.2)

Finally, the asymptotic normality (2.2) follows from (6.1) and (6.2) together with Slutsky’s
lemma. �

7. Numerical simulations

The efficient discretization of the CIR process is a challenging problem; see, for example, [2]
and [3]. We choose to implement the quadratic-exponential algorithm based on quadratic-
exponential approximations proposed by Andersen [3]. Andersen introduced this algorithm to
deal with the a < 2 case, for which common discretization schemes are not accurate.

7.1. Asymptotic behavior for c = 1

In Figures 1 and 2 we illustrate our main results: strong consistency and asymptotic
normality, respectively, in the case where a = 1 and b = −2 with the weighting parameter
c = 1. The curves in Figure 2 correspond to the standard normal distribution. We denote by va
(respectively, vb) the variance of âT (respectively, b̂T ).

5

–5

0

–10

0 1000 2000 3000 4000 5000

Figure 1: Strong consistency of (̂aT ) (upper plot) and (̂bT ) (lower plot).
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Figure 2: Histograms of 3000 outcomes of
√
T/va(̂aT − a) (upper) and

√
T/vb(̂bT − b) (lower) at

time T = 70.

7.2. Choice of the constant c

We choose to introduce a constant c in our weighting, instead of considering only the c = 1
case (as carried out for the discrete-time case in [27]) with the aim of lowering the variance
of the estimators. However, this raises the question as to the optimal choice of the constant c,
which depends on the values of parameters a and b. We set a = 1 and b = −4 and simulate 500
trajectories of the process over the time interval [0, 50]. We compute the empirical variance
of the estimators given by each trajectory for c varying between 10−10 and 1; see Figure 3.
It appears that we should choose a small value of c. The value should not be too small to avoid
the growth seen in the right-hand panels of Figure 3, which might, however, be a consequence
of the discretized version of the CIR process we used. For âT , there is a significant difference
(a five-fold factor) between the empirical variances obtained with c = 0.01 and c = 1. However,
for b̂T both empirical variances do not significantly differ.

Appendix A. Motivation of the chosen estimator

We rewrite (1.1) by making use of the weighting C−1/2
t :

C
−1/2
t dXt = (a + bXt)C

−1/2
t dt + 2C−1/2

t

√
Xt dBt ,

C
−1/2
t dYt = (α + βXt)C

−1/2
t dt + 2C−1/2

t

√
Xt dB̃t .

Using the fact that Xt = Ct − c, we obtain

C
−1/2
t dXt = (C

−1/2
t + bC

1/2
t ) dt + 2C−1/2

t

√
Xt dBt ,

C
−1/2
t dYt = (λC

−1/2
t + βC

1/2
t ) dt + 2C−1/2

t

√
Xt dB̃t ,

where  = a − cb and λ = α − cβ.
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Figure 3: Variance of â50 (upper) and b̂50 (lower) as functions of c. Note that the left- and right-hand
plots are from two different simulations.

In what follows, we consider only the first equation as the results for the second one can be
derived the same way. Suppose that we want to compute the usual least-squares estimator μ̃n of
the couple (, b) based on discrete-time observations (X0, X1, . . . , Xn), which would, in fact,
be a WLSE due to the presence of Ct in the above equations. It is the solution of the following
minimization problem:

μ̃n = (̃n, b̃n) = arg min>0,b<0

n∑
i=1

(
Xi −Xi−1√
Xi−1 + c

− √
Xi−1 + c

− b
√
Xi−1 + c

)2

.

We investigate the critical points and easily obtain

̃n = n
∑n
i=1(Xi −Xi−1)−∑n

i=1(Xi−1 + c)
∑n
i=1(Xi −Xi−1)/(Xi−1+c)

n2 −∑n
i=1(Xi−1 + c)

∑n
i=1 1/(Xi−1+c)
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and

b̃n = n
∑n
i=1(Xi −Xi−1)/(Xi−1+c)−∑n

i=1(Xi −Xi−1)
∑n
i=1 1/(Xi−1+c)

n2 −∑n
i=1(Xi−1 + c)

∑n
i=1 1/(Xi−1+c)

.

Besides, as  = a − cb, we obtain an estimator ãn for a given by ãn = ̃n + cb̃n.
Motivated by those equations, we introduce a WLSE based on the continuous-time obser-

vations (Xt )t≤T given by

b̂T = T
∫ T

0 dXt/Ct − (XT −X0)
∫ T

0 (1/Ct ) dt

T 2 − ∫ T
0 Ct dt

∫ T
0 (1/Ct ) dt

âT = (T − c
∫ T

0 (1/Ct ) dt)(XT −X0)− ∫ T
0 Xt dt

∫ T
0 dXt/Ct

T 2 − ∫ T
0 Ct dt

∫ T
0 1/Ct dt

.

Using the fact that Xt = Ct − c, these
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