Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T12:52:32.587Z Has data issue: false hasContentIssue false

On generalized max-linear models in max-stable random fields

Published online by Cambridge University Press:  15 September 2017

Michael Falk*
Affiliation:
University of Würzburg
Maximilian Zott*
Affiliation:
University of Würzburg
*
* Postal address: Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Germany.
* Postal address: Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In practice, it is not possible to observe a whole max-stable random field. Therefore, we propose a method to reconstruct a max-stable random field in C([0, 1]k) by interpolating its realizations at finitely many points. The resulting interpolating process is again a max-stable random field. This approach uses a generalized max-linear model. Promising results have been established in the k = 1 case of Falk et al. (2015). However, the extension to higher dimensions is not straightforward since we lose the natural order of the index space.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2017 

References

[1] Aulbach, S., Falk, M. and Hofmann, M. (2013). On max-stable processes and the functional D-norm. Extremes 16, 255283. CrossRefGoogle Scholar
[2] Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004). Statistics of Extremes: Theory and Applications. John Wiley, Chichester. CrossRefGoogle Scholar
[3] Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York. Google Scholar
[4] Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Prob. 14, 732739. Google Scholar
[5] Cooley, D. and Sain, S. R. (2012). Discussion of 'Statistical modeling of spatial extremes' by A. C. Davison, S. A. Padoan and M. Ribatet. Statist. Sci. 27, 187188. CrossRefGoogle Scholar
[6] Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27, 161186. Google Scholar
[7] Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Rejoinder: 'Statistical modeling of spatial extremes'. Statist. Sci. 27, 199201. Google Scholar
[8] De Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer, New York. See http://people.few.eur.nl/ldehaan/EVTbook.correction.pdf and http://home.isa.utl.pt/~anafh/corrections.pdf for corrections and extensions. Google Scholar
[9] De Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitsth. 40, 317337. CrossRefGoogle Scholar
[10] Dombry, C., Éyi-Minko, F. and Ribatet, M. (2013). Conditional simulation of max-stable processes. Biometrika 100, 111124. Google Scholar
[11] Falk, M., Hofmann, M. and Zott, M. (2015). On generalized max-linear models and their statistical interpolation. J. Appl. Prob. 52, 736751. CrossRefGoogle Scholar
[12] Falk, M., Hüsler, J. and Reiss, R.-D. (2011). Laws of Small Numbers: Extremes and Rare Events, 3rd edn. Birkhäuser, Basel. CrossRefGoogle Scholar
[13] Gabda, D., Towe, R., Wadsworth, J. and Tawn, J. (2012). Discussion of 'Statistical modeling of spatial extremes' by A. C. Davison, S. A. Padoan and M. Ribatet. Statist. Sci. 27, 189192. Google Scholar
[14] Giné, E., Hahn, M. G. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous processes. Prob. Theory Relat. Fields 87, 139165. Google Scholar
[15] Huser, R. and Davison, A. C. (2013). Composite likelihood estimation for the Brown–Resnick process. Biometrika 100, 511518. Google Scholar
[16] Kabluchko, Z. (2009). Spectral representations of sum- and max-stable processes. Extremes 12, 401424. CrossRefGoogle Scholar
[17] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to negative definite functions. Ann. Prob. 37, 20422065. Google Scholar
[18] Pickands, J., III (1981). Multivariate extreme value distributions. Bull. Inst. Internat. Statist. 49, 859878, 894902. Google Scholar
[19] Resnick, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer, New York. Google Scholar
[20] Segers, J. (2012). Nonparametric inference for max-stable dependence. Statist. Sci. 27, 193196. Google Scholar
[21] Shaby, B. and Reich, B. J. (2012). Discussion of 'Statistical modeling of spatial extremes' by A. C. Davison, S. A. Padoan and M. Ribatet. Statist. Sci. 27, 197198. Google Scholar
[22] Wang, Y. and Stoev, S. A. (2011). Conditional sampling for spectrally discrete max-stable random fields. Adv. Appl. Prob. 43, 461483. Google Scholar