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ON GENERALIZED MAX-LINEAR MODELS
IN MAX-STABLE RANDOM FIELDS
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Abstract

In practice, it is not possible to observe a whole max-stable random field. Therefore, we
propose a method to reconstruct a max-stable random field in C([0, 1]k) by interpolating
its realizations at finitely many points. The resulting interpolating process is again a max-
stable random field. This approach uses a generalized max-linear model. Promising
results have been established in the k = 1 case of Falk et al. (2015). However, the
extension to higher dimensions is not straightforward since we lose the natural order of
the index space.
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1. Introduction and preliminaries

Dombry et al. [10] derived an algorithm to sample from the regular conditional distribution
of a max-stable random field η, say, given the marginal observations ηs1 = z1, . . . , ηsd = zd

for some z1, . . . , zd from the state space and d locations s1, . . . , sd . Clearly, this concerns the
distribution of η and the derived distributional parameters.

Different to that, we try to reconstruct η from the observations ηs1 , . . . , ηsd . This is carried
out by a generalized max-linear model in such a way that the interpolating process η̂ is again
a (standard) max-stable random field.

As our approach is deterministic, once the observations ηs1 = z1, . . . , ηsd = zd are given,
a proper way to measure the performance of our approach is the mean squared error (MSE).
Convergence of the pointwise MSE as well as the integrated MSE (IMSE) is established if the
set of grid points s1, . . . , sd becomes dense in the index space.

A max-stable random process with index set T is a family of random variables ξ = (ξt )t∈T

with the property that there are functions an : T → R
+
0 and bn : T → R, n ∈ N, such that

(
max

i=1,...,n

(
ξ

(i)
t − bn(t)

an(t)

))
t∈T

d= ξ ,

where ξ (i) = (ξ
(i)
t )t∈T , i = 1, . . . , n, are independent copies of ξ and ‘

d=’ denotes equality in
distribution. We obtain a max-stable random vector (RV) on R

d by setting T = {1, . . . , d}.
Different to that, we obtain a max-stable process with continuous sample paths on some
compact metric space S, if we set T = S and require that the sample paths ξ(ω) : S → R
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realize in C(S) = {g ∈ R
S : g continuous}, and that the norming functions an and bn are

also continuous. Max-stable RVs and processes have been investigated intensely over the last
decades. For detailed reviews of max-stable RVs and processes, see, for example, [2], [6]
(discussed in [5], [13], [20], and [21]; rejoinder at [7]), [8], [12], and [19]. Max-stable RVs and
processes are of enormous interest in extreme value theory since they are the only possible limit
of linearly standardized maxima of independent and identically distributed RVs or processes.

Clearly, the univariate margins of a max-stable random process are max-stable distributions
on the real line. A max-stable random object ξ = (ξt )t∈T is commonly called simple max-
stable in the literature if each univariate margin is unit Fréchet distributed, i.e. P(ξt ≤ x) =
exp(−x−1), x > 0, t ∈ T . Different to that, we call a random process η = (ηt )t∈T standard
max-stable if all univariate marginal distributions are standard negative exponential, i.e. P(ηt ≤
x) = exp(x), x ≤ 0, t ∈ T . The transformation to simple/standard margins does not cause
any problems, neither in the case of RVs (see, for example, [9] or [19]), nor in the case of
random fields with continuous sample paths (see, for example, [14]).

It is well known (see, for example, [9], [12], and [18]) that an RV (η1, . . . , ηd) is a standard
max-stable RV if and only if there exists an RV (Z1, . . . , Zd) and some number c ≥ 1 with Zi ∈
[0, c] almost surely (a.s.) and E(Zi) = 1, i = 1, . . . , d, such that, for all x = (x1, . . . , xd) ≤
0 ∈ R

d ,

P(η1 ≤ x1, . . . , ηd ≤ xd) = exp(−‖x‖D) := exp
(
−E

(
max

i=1,...,d
(|xi |Zi)

))
.

The condition Zi ∈ [0, c] a.s. can be weakened to P(Zi ≥ 0) = 1. Note that ‖ · ‖D defines
a norm on R

d , called the D-norm with generator Z. The D means dependence: we have
independence of the margins if and only if ‖ · ‖D is equal to the norm ‖x‖1 = ∑d

i=1|xi |,
which is generated by (Z1, . . . , Zd) being a random permutation of the vector (d, 0 . . . , 0).
We have complete dependence of the margins if and only if ‖ · ‖D is the maximum-norm
‖x‖∞ = max1≤i≤d |xi |, which is generated by the constant vector (Z1, . . . , Zd) = (1, . . . , 1).
We refer the reader to [12, Section 4.4] for further details of D-norms.

Let S be a compact metric space. A standard max-stable process η = (ηt )t∈S with sample
paths in C̄−(S) := {g ∈ C(S) : g ≤ 0} is, in what follows, called a standard max-stable process
(SMSP). Denote further by E(S) the set of those bounded functions f ∈ R

S that have only a
finite number of discontinuities and define Ē−(S) := {f ∈ E(S) : f ≤ 0}. We know from [14]
that a process η = (ηt )t∈S with sample paths in C(S) is an SMSP if and only if there exists a
stochastic process Z = (Zt )t∈S realizing in C̄+(S) := {g ∈ C(S) : g ≥ 0} and some c ≥ 1,
such that Zt ≤ c a.s., E(Zt ) = 1, t ∈ S, and

P(η ≤ f ) = exp(−‖f ‖D) := exp
(
−E

(
sup
t∈S

(|f (t)|Zt)
))

, f ∈ Ē−(S).

Note that ‖ · ‖D defines a norm on the function space E(S), again called the D-norm with
generator process Z. The functional D-norm is topologically equivalent to the sup-norm
‖f ‖∞ = supt∈S |f (t)|, which is itself a D-norm by setting Zt = 1, t ∈ S; see [1] for details.

At first it might seem unusual to consider the function space E(S). The reason for this is that
a suitable choice of the function f ∈ Ē−(S) allows the incorporation of the finite-dimensional
marginal distributions by the relation P(η ≤ f ) = P(ηti ≤ xi, 1 ≤ i ≤ d).

The condition P(supt∈S Zt ≤ c) = 1 can be weakened to

E

(
sup
t∈S

Zt

)
< ∞; (1)

see [8, Corollary 9.4.5].
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2. Generalized max-linear models

2.1. The model and some examples

In this section we will approximate a given SMSP with sample paths in C̄−([0, 1]k), where k

is some integer, by using a generalized max-linear model for the interpolation of a finite
dimensional marginal distribution. The parameter space [0, 1]k is chosen for convenience
and could be replaced by any compact metric space S.

Let, in what follows, η = (ηt )t∈[0,1]k be an SMSP with generator Z = (Zt )t∈[0,1]k and
D-norm ‖ · ‖D . Choose pairwise different points s1, . . . , sd ∈ [0, 1]k and obtain a standard
max-stable RV (ηs1 , . . . , ηsd ) with generator (Zs1 , . . . , Zsd ) and D-norm ‖ · ‖D1,...,d

, i.e.

P(ηs1 ≤ x1, . . . , ηsd ≤ xd) = exp
(
−E

(
max

i=1,...,d
(|xi |Zsi )

))
=: exp(−‖x‖D1,...,d

),

x = (x1, . . . , xd) ≤ 0. Our aim is to find another SMSP that interpolates the above RV.
Take functions gi ∈ C̄+([0, 1]k), i = 1, . . . , d, with the property

‖(g1(t), . . . , gd(t))‖D1,...,d
= 1 for all t ∈ [0, 1]k. (2)

Then the stochastic process η̂ = (η̂t )t∈[0,1]k that is generated by the generalized max-linear
model

η̂t := max
i=1,...,d

ηsi

gi(t)
, t ∈ [0, 1]k, (3)

defines an SMSP with generator

Ẑt = max
i=1,...,d

(gi(t)Zsi ), t ∈ [0, 1]k, (4)

due to (2); see [11] for details. The ‖ · ‖D1,...,d
= ‖ · ‖1 case leads to the regular max-linear

model; see [22].
If we want η̂ to interpolate (ηs1 , . . . , ηsd ) then we only have to demand

gi(sj ) = δij :=
{

1, i = j,

0, i 	= j,
1 ≤ i, j ≤ d. (5)

Recall that ηsi is negative with probability 1. We call η̂ the discretized version of η with grid
{s1, . . . , sd} and weight functions g1, . . . , gd , when the weight functions satisfy both (2) and (5).

Example 1. In the one-dimensional k = 1 case, the weight functions gi can be chosen as
follows. Take a grid 0 := s1 < s2 < · · · < sd−1 < sd =: 1 of the interval [0, 1] and denote by
‖ · ‖Di−1,i

the D-norm pertaining to (ηsi−1 , ηsi ), i = 2, . . . , d. Set

g1(t) :=
⎧⎨
⎩

s2 − t

‖(s2 − t, t)‖D1,2

, t ∈ [0, s2],
0 otherwise,

gi(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t − si−1

‖(si − t, t − si−1)‖Di−1,i

, t ∈ [si−1, si],
si+1 − t

‖(si+1 − t, t − si)‖Di,i+1

, t ∈ [si, si+1],

0 otherwise,

i = 2, . . . , d − 1,
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and

gd(t) :=
⎧⎨
⎩

t − sd−1

‖(sd − t, t − sd−1)‖Dd−1,d

, t ∈ [sd−1, 1],
0 otherwise.

This model has been studied intensely in [11]. The functions g1, . . . , gd are continuous and
satisfy conditions (2) and (5), so they provide an interpolating generalized max-linear model
on C[0, 1].
Example 2. Choose pairwise different points s1, . . . , sd ∈ [0, 1]k and an arbitrary norm ‖ · ‖
on R

k . Define
g̃i (t) := min

j 	=i
(‖t − sj‖), t ∈ [0, 1]k, i = 1, . . . , d.

In order to normalize, set

gi(t) := g̃i (t)

‖(g̃1(t), . . . , g̃d (t))‖D1,...,d

, t ∈ [0, 1]k, i = 1, . . . , d.

The functions gi are well defined since the denominator never vanishes. Suppose that there is
t ∈ [0, 1]k with g̃1(t) = · · · = g̃d (t) = 0. Then minj 	=i (‖t − sj‖) = 0 for all i = 1, . . . , d.
Now fix i ∈ {1, . . . , d}. There is j 	= i with t = sj . But on the other hand, we also have
mink 	=j (‖t − sk‖) = 0 which implies that there is k 	= j with t = sk = sj , which is a
contradiction.

The functions gi , i = 1, . . . , d, are clearly functions in C̄+([0, 1]k) that also satisfy
conditions (2) and (5) as can be seen as follows. We have, for t ∈ [0, 1]k ,

‖(g1(t), . . . , gd(t))‖D1,...,d

=
∥∥∥∥
(

g̃1(t)

‖(g̃1(t), . . . , g̃d (t))‖D1,...,d

, . . . ,
g̃d (t)

‖(g̃1(t), . . . , g̃d (t))‖D1,...,d

)∥∥∥∥
D1,...,d

= ‖(g̃1(t), . . . , g̃d (t))‖D1,...,d

‖(g̃1(t), . . . , g̃d (t))‖D1,...,d

= 1,

which is condition (2). Note, moreover, that g̃i (sj ) = 0 if i 	= j . But this implies condition (5):

gi(sj ) = g̃i (sj )

‖(g̃1(sj ), . . . , g̃d (sj ))‖D1,...,d

= g̃i (sj )

(0, . . . , 0, g̃j (sj ), 0, . . . , 0)
D1,...,d

= g̃i (sj )

g̃j (sj )‖(0, . . . , 0, 1, 0, . . . , 0)‖D1,...,d

= g̃i (sj )

g̃j (sj )

= δij

by the fact that a D-norm of each unit vector in R
d is 1. Thus, we have found an interpolating

generalized max-linear model on C([0, 1]k).
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2.2. The MSE of the discretized version

We start this section with a result that applies to bivariate standard max-stable RVs in general.

Lemma 1. Let (X1, X2) be standard max-stable with generator (Z1, Z2) and D-norm
‖ · ‖D .

(i) We have

E(X1X2) =
∫ ∞

0

1

‖(1, u)‖2
D

du,

(ii) E(|Z1 − Z2|) = 2(‖(1, 1)‖D − 1).

Proof. (i) See [11, Lemma 5].

(ii) The assertion follows from the general identity max(a, b) = 1
2 (a + b + |a − b|). �

Let η̂ = (η̂t )t∈[0,1]k be the discretized version of η = (ηt )t∈[0,1]k with grid {s1, . . . , sd} and
weight functions g1, . . . , gd . In order to calculate the MSE of η̂t , we need the following lemma.

Lemma 2. Let Ẑ = (Ẑt )t∈[0,1]k be the generator of η̂ defined in (4). For each t ∈ [0, 1]k , the

RV (ηt , η̂t ) is standard max-stable with generator (Zt , Ẑt ) and D-norm

‖(x, y)‖Dt = E(max(|x|Zt , |y|Ẑt )) = ‖(x, g1(t)y, . . . , gd(t)y)‖Dt,s1,...,sd
,

where ‖ · ‖Dt,s1,...,sd
is the D-norm pertaining to (ηt , ηs1 , . . . , ηsd ).

Proof. As Z = (Zt )t∈[0,1]k is a generator of η, we have, for x, y ≤ 0,

P(ηt ≤ x, η̂t ≤ y) = P(ηt ≤ x, ηs1 ≤ g1(t)y, . . . , ηsd ≤ gd(t)y)

= exp(−E(max(|x|Zt , |y| max(g1(t)Zs1 , . . . , gd(t)Zsd ))))

= exp(−E(max(|x|Zt , |y|Ẑt ))).

Then the assertion follows from the fact that Ẑt ≥ 0 and E(Ẑt ) = 1. �

We can now use the preceding lemmas to compute the MSE.

Proposition 1. The MSE of η̂t is given by

MSE(η̂t ) := E((ηt − η̂t )
2) = 2

(
2 −

∫ ∞

0

1

‖(1, u)‖2
Dt

du

)
, t ∈ [0, 1]k.

Proof. Due to Lemma 2, (ηt , η̂t ) is standard max-stable. Therefore, Lemma 1(i) and the
fact that E(ηt ) = E(η̂t ) = −1 and var(ηt ) = var(η̂t ) = 1 yield

MSE(η̂t ) = E(η2
t ) − 2E(ηt η̂t ) + E(η̂2

t ) = 4 − 2
∫ ∞

0

1

‖(1, u)‖2
Dt

du. �

Lemma 3. The MSE of η̂t satisfies MSE(η̂t ) ≤ 6E(|Zt − Ẑt |), t ∈ [0, 1]k .
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Proof. We have

2 −
∫ ∞

0

1

‖(1, u)‖2
Dt

du

=
∫ ∞

0

1

‖(1, u)‖2∞
du −

∫ ∞

0

1

‖(1, u)‖2
Dt

du

=
∫ ∞

0
(‖(1, u)‖Dt − ‖(1, u)‖∞)

‖(1, u)‖Dt + ‖(1, u)‖∞
‖(1, u)‖2

Dt
‖(1, u)‖2∞

du

=
∫ 1

0
(‖(1, u)‖Dt − 1)

‖(1, u)‖Dt + 1

‖(1, u)‖2
Dt

du +
∫ ∞

1
(‖(1, u)‖Dt − u)

‖(1, u)‖Dt + u

u2‖(1, u)‖2
Dt

du

≤ 3
∫ 1

0
(‖(1, u)‖Dt − 1) du + 2

∫ ∞

1

‖(1/u, 1)‖Dt − 1

u2 du

=: 3I1 + 2I2.

Since every D-norm is monotone, we have

‖(1, u)‖Dt ≤ ‖(1, 1)‖Dt , u ∈ [0, 1],
∥∥∥∥
(

1

u
, 1

)∥∥∥∥
Dt

≤ ‖(1, 1)‖Dt , u > 1,

and, thus, by Lemma 1(ii),

I1 + I2 ≤ ‖(1, 1)‖Dt − 1 + (‖(1, 1)‖Dt − 1)

∫ ∞

1
u−2 du = E(|Zt − Ẑt |). �

Remark 1. The upper bound E(|Zt −Ẑt |) in Lemma 3 becomes small if the distance between t

and its nearest neighbor sj , say, in the grid {s1, . . . , sd} becomes small, which can be seen as
follows. The triangle inequality implies that

|Zt − Ẑt | ≤ |Zt − Zsj | +
∣∣∣Zsj − max

i=1,...,d
(gi(t)Zsi )

∣∣∣.
From the condition gi(sj ) = δij , we obtain the representation

Zsj = max
i=1,...,d

(gi(sj )Zsi )

and, thus, ∣∣∣Zsj − max
i=1,...,d

(gi(t)Zsi )

∣∣∣ =
∣∣∣ max
i=1,...,d

(gi(sj )Zsi ) − max
i=1,...,d

(gi(t)Zsi )

∣∣∣
≤ max

i=1,...,d
(|gi(t) − gi(sj )|Zsi )

by elementary arguments. As a consequence, we obtain

E(|Zt − Ẑt |) ≤ E(|Zt − Zsj |) + E

(
max

i=1,...,d
(|gi(t) − gi(sj )|Zsi )

)
= E(|Zt − Zsj |) + ‖(|g1(t) − g1(sj )|, . . . , |gd(t) − gd(sj )|)‖D1,...,d

≤ E(|Zt − Zsj |) + max
i=1,...,d

|gi(t) − gi(sj )|‖(1, . . . , 1)‖D1,...,d

→ 0, |t − sj | → 0,

by the fact that each D-norm ‖ · ‖D is monotone, i.e. ‖x‖D ≤ ‖y‖D if 0 ≤ x ≤ y ∈ R
d , and

by the continuity of the functions g1, . . . , gd and Z.
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Example 3. Choose as a generator process Z = (Zt )t∈[0,1]k of a D-norm

Zt := exp

(
Xt − σ 2(t)

2

)
, t ∈ [0, 1]k,

where (Xt )t∈Rk is a continuous zero mean Gaussian process with stationary increments σ 2(t) :=
E(X2

t ) and X0 = 0. This model was originally created by Brown and Resnick [4], and
developed by Kabluchko et al. [17] for max-stable random fields ϑ = (ϑt )t∈[0,1]k with Gumbel
margins, i.e. P(ϑt ≤ x) = exp(−e−x), x ∈ R. The transformation to an SMSP (ηt )t∈[0,1]k is
straightforward by setting ηt := − exp(−ϑt ), t ∈ [0, 1]k .

Explicit formulae for the corresponding D-norm

‖f ‖D = E

(
sup

t∈[0,1]k
(|f (t)|Zt)

)
, f ∈ E([0, 1]k),

are only available for bivariate ‖ · ‖Dt1,t2
and trivariate ‖ · ‖Dt1,t2,t3

D-norms pertaining to the
RVs (ηt1 , ηt2) and (ηt1 , ηt2 , ηt3), respectively; see [15]. In the bivariate case, we have, for
(x1, x2) ∈ R

2,

‖(x1, x2)‖Dt1,t2
= |x1|�

(
σ(|t1 − t2|)

2
+ 1

σ(|t1 − t2|) log

( |x1|
|x2|

))

+ |x2|�
(

σ(|t1 − t2|)
2

+ 1

σ(|t1 − t2|) log

( |x2|
|x1|

))
,

where � denotes the standard normal distribution function and the absolute value |t1 − t2| is
meant componentwise; see [16, Remark 24].

This Brown–Resnick model could, in particular, be used for the generalized max-linear
model in dimension k = 1 as in Example 1, since in this case the approximation η̂ of η only
uses bivariate D-norms ‖ · ‖t1,t2 .

3. A generalized max-linear model based on kernels

3.1. The model

There is the need for the definition of d functions g1, . . . , gd satisfying certain constraints in
the ordinary generalized max-linear model with d = d(n) tending to ∞ as the grid s1, . . . , sd
becomes dense in the index set. For the kernel approach introduced in this section, this is
reduced to the choice of just one kernel and a bandwidth. And in this case we can establish
convergence to 0 of MSE and IMSE as the grid becomes dense, essentially without further
conditions. This approach was briefly mentioned in [11] and is evaluated here.

There are disadvantages. The interpolation is not an exact one at the grid points, i.e. η̂sj 	=
ηsj . This is due to the fact that the generated functions do not satisfy the condition gi(sj ) = δij

exactly, but only in the limit as h tends to 0; see Lemma 4. The choice of an optimal bandwidth,
which is statistical folklore in kernel density estimation, is still an open problem here.

Again, throughout this section, let η = (ηt )t∈[0,1]k be an SMSP with generator Z =
(Zt )t∈[0,1]k and denote by ‖ · ‖s1,...,sd the D-norm pertaining to (ηs1 , . . . , ηsd ).

Let K : [0, ∞) → [0, 1] be a continuous and strictly monotonically decreasing function
(kernel) with the two properties

K(0) = 1, lim
x→∞

K(ax)

K(bx)
= 0, 0 ≤ b < a. (6)
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The exponential kernel Ke(x) = exp(−x), x ≥ 0, is a typical example. Choose an arbitrary
norm ‖ · ‖ on R

k and a grid of pairwise different points {s1, . . . , sd} in [0, 1]k . Set, for i =
1, . . . , d and the bandwidth h > 0,

gi,h(t) := K(‖t − si‖/h)

‖(K(‖t − s1‖/h), . . . , K(‖t − sd‖/h))‖Ds1,...,sd

, t ∈ [0, 1]k.

Define, for i = 1, . . . , d,

N(si) := {t ∈ [0, 1]k : ‖t − si‖ ≤ ‖t − sj‖, j 	= i}, (7)

which is the set of those points t ∈ [0, 1]k that are closest to the grid point si .

Lemma 4. We have, for arbitrary t ∈ [0, 1]k and 1 ≤ i ≤ d,

gi,h(t) →
{

1 if t = si ,

0 if t 	∈ N(si),
h ↓ 0,

as well as gi,h(t) ≤ 1.

Proof. The convergence gi,h(si) → 1, h ↓ 0, follows from the fact that K(0) = 1 and that
the D-norm of a unit vector is 1. The fact that an arbitrary D-norm is bounded below by the
sup-norm together with the monotonicity of K implies that for t ∈ [0, 1]k ,

gi,h(t) ≤ K(‖t − si‖/h)

max1≤j≤d K(‖t − sj‖/h)
= K(‖t − si‖/h)

K(min1≤j≤d ‖t − sj‖/h)
≤ 1.

Note that K(‖t − si‖/h)/K(min1≤j≤d ‖t − sj‖/h) → 0, h ↓ 0, if t 	∈ N(si) by the required
growth condition on the kernel K in (6). �

From the above lemma we see that, in particular, gi,h(sj ) → δij , h ↓ 0, which is close to
condition (5). Obviously, the functions gi,h are constructed in such a way that condition (2)
holds exactly. Therefore, we obtain the generalized max-linear model

η̂t,h = max
i=1,...,d

ηsi

gi,h(t)
, t ∈ [0, 1]k,

which does not interpolate (ηs1 , . . . , ηsd ) exactly, but η̂si ,h converges to ηsi as h ↓ 0. Note
that the limit functions limh↓0 gi,h are not necessarily continuous: For instance, there may be
t0 ∈ [0, 1]k with ‖t0 − s1‖ = · · · = ‖t0 − sd‖. Then t0 ∈ ∂N(s1) and limh↓0 g1,h(t0) =
1/‖(1, . . . , 1)‖D1,...,d

, but limh↓0 g1,h(t) = 0 for all t /∈ N(s1) due to Lemma 4.

3.2. Convergence of the MSE

In this section we investigate a sequence of kernel-based generalized max-linear models,
where the diameter of the grids decreases. We analyze under which conditions the IMSE of
(η̂t,h)t∈[0,1]k converges to 0. We start with a general result on generator processes.

Lemma 5. Let (Zt )t∈[0,1]k be a generator of an SMSP and εn, n ∈ N, be a null sequence. Then

E

(
sup

‖t−s‖≤εn

|Zt − Zs |
)

→ 0, n → ∞,

where ‖ · ‖ is an arbitrary norm on R
k .
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Proof. The paths of (Zt )t∈[0,1]k are continuous, so they are also uniformly continuous.
Therefore, sup‖t−s‖≤εn

|Zt − Zs | → 0, n → ∞. Furthermore,

sup
‖t−s‖≤εn

|Zt − Zs | ≤ 2 sup
t∈[0,1]k

Zt

with E(supt∈[0,1]k Zt ) < ∞ due to property (1) of a generator. The assertion now follows from
the dominated convergence theorem. �

Let Gn := {s1,n, . . . , sd(n),n}, n ∈ N, be a set of distinct points in [0, 1]k with the property

for all n ∈ N, for all t ∈ [0, 1]k , there exists si,n ∈ Gn : ‖t − si,n‖ ≤ εn,

where εn → 0, n → ∞. Define, for instance, Gn in such a way that

εn := max
i=1,...,d

sup
s,t∈N(si,n)

‖s − t‖ → 0, n → ∞,

with N(si,n) as defined in (7). Clearly, d := d(n) → ∞, n → ∞. Denote by ‖ · ‖
D

(n)
s1,...,sd

the

D-norm pertaining to ηs1,n , . . . , ηsd,n
. Furthermore, let η̂n = (η̂t,n)t∈[0,1]k be the kernel-based

discretized version of η with grid Gn, that is,

η̂t,n = max
i=1,...,d

ηsi,n

gi,n(t)
, t ∈ [0, 1]k,

where, for i = 1, . . . , d,

gi,n(t) = K(‖t − si,n‖/hn)

‖(K(‖t − s1,n‖/hn), . . . , K(‖t − sd,n‖/hn))‖D
(n)
s1,...,sd

, t ∈ [0, 1]k,

with K : [0, ∞) → [0, 1], is the continuous and strictly decreasing kernel function satisfying
condition (6), and hn, n ∈ N, is some positive sequence. We have already seen in Lemma 4
that gi,n(t) ∈ [0, 1], t ∈ [0, 1]k, n ∈ N. Furthermore, we have the following result.

Lemma 6. Choose t ∈ [0, 1]k . There is a sequence i(n), n ∈ N, such that t ∈ ⋂
n∈N

N(si(n),n).
Define gi(n),n and εn as above for n ∈ N. Then

lim
n→∞ gi(n),n(t) = 1 if εn → 0, hn → 0, εn/hn → ∞, n → ∞.

Proof. Let t ∈ [0, 1]k and choose a sequence i(n), n ∈ N, as above. Set, for simplicity,
si(n),n =: si,n and gi(n),n =: gi,n. We have

1 ≥ gi,n(t)

= K(‖t − si,n‖/hn)

E(maxj=1,...,d K(‖t − sj,n‖/hn)Zsj,n)

≥
(

E(maxj : ‖sj,n−t‖≥2εn K(‖t − sj,n‖/hn)Zsj,n)

K(‖t − si,n‖/hn)

+ E(maxj : ‖sj,n−t‖<2εn K(‖t − sj,n‖/hn)Zsj,n)

K(‖t − si,n‖/hn)

)−1

=: (Ai,n(t) + Bi,n(t))
−1.
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From t ∈ N(si,n), we conclude that ‖t − si,n‖ ≤ εn. Hence, we have, due to (1) and the
properties of the kernel function K ,

0 ≤ Ai,n(t) ≤ K(2εn/hn)

K(εn/hn)
E

(
sup

t∈[0,1]k
Zt

)
→ 0, n → ∞,

since εn/hn → ∞, n → ∞, by assumption. Furthermore, t ∈ N(si,n) and the fact that K is
decreasing implies that

max
j : ‖sj,n−t‖<2εn

K

(‖t − sj,n‖
hn

)
= K

(‖t − si,n‖
hn

)
.

Thus,
1 ≤ Bi,n(t)

= 1

K(‖t − si,n‖/hn)

(
E

(
max

j : ‖sj,n−t‖<2εn

K

(‖t − sj,n‖
hn

)
Zsj,n

− max
j : ‖sj,n−t‖<2εn

K

(‖t − sj,n‖
hn

)
Zsi,n

))
+ 1

≤ E(maxj : ‖sj,n−t‖<2εn K(‖t − sj,n‖/hn)|Zsj,n − Zsi,n |)
K(‖t − si,n‖/hn)

+ 1

≤ E

(
max

j : ‖sj,n−t‖<2εn

|Zsj,n − Zsi,n |
)

+ 1

≤ E

(
sup

‖r−s‖<3εn

|Zr − Zs |
)

+ 1

→ 1, n → ∞,

due to Lemma 5. Note that ‖sj,n − t‖ < 2εn and t ∈ N(si,n) imply that ‖sj,n − si,n‖ < 3εn.
This completes the proof. �

We have now gathered the tools to prove convergence of the MSE to 0.

Theorem 1. Define η̂n and εn as above for n ∈ N. Then, for every t ∈ [0, 1]k ,

MSE(η̂t,n) → 0, IMSE(η̂t,n) :=
∫

[0,1]k
MSE(η̂t,n) dt → 0, n → ∞,

if εn → 0, hn → 0, εn/hn → ∞, n → ∞.

Proof. Denote by

Ẑt,n = max
j=1,...,d

(gj,n(t)Zsj,n), t ∈ [0, 1]k,

the generator of η̂n. Choose t ∈ [0, 1]k and a sequence i := i(n), n ∈ N, such that t ∈⋂
n∈N

N(si,n). We have, by Lemma 3, Lemma 6, and the continuity of Z,

MSE(η̂t,n) ≤ 6E(|Zt − Ẑt,n|)
≤ 6E(|Zt − Zsi,n |) + 6E(|Zsi,n − gi,n(t)Zsi,n |) + 6E(|gi,n(t)Zsi,n − Ẑt,n|)
= 6E(|Zt − Zsi,n |) + 12(1 − gi,n(t))

→ 0, n → ∞;
recall that gi,n(t)Zsi,n ≤ Ẑt,n.
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Next we establish convergence of the IMSE. The sets N(si,n), as defined in (7), are typically
not disjoint, but the intersections N(si,n)∩N(sj,n), i 	= j , have Lebesgue measure 0 on [0, 1]k .
Clearly,

⋃d
i=1 N(si,n) = [0, 1]k . Therefore, applying Lemma 3 yields

IMSE(η̂t,n) =
d∑

i=1

∫
N(si,n)

MSE(η̂t,n) dt

≤ 6
d∑

i=1

∫
N(si,n)

E(|Zt − Ẑt,n|) dt

≤ 6

( d∑
i=1

∫
N(si,n)

E(|Zt − Zsi,n|) dt +
d∑

i=1

∫
N(si,n)

|1 − gi,n(t)|E(Zsi ,n) dt

+
d∑

i=1

∫
N(si,n)

E(|gi,n(t)Zsi ,n − Ẑt,n|) dt

)

=: 6(S1,n + S2,n + S3,n)

due to Lemma 3. From Lemma 5, we conclude that

S1,n =
d∑

i=1

∫
N(si,n)

E(|Zt − Zsi,n |) dt

≤
d∑

i=1

∫
N(si,n)

E

(
sup

‖r−s‖≤εn

|Zr − Zs |
)

dt

=
∫

[0,1]k
E

(
sup

‖r−s‖≤εn

|Zr − Zs |
)

dt

= E

(
sup

‖r−s‖≤εn

|Zr − Zs |
)

→ 0, n → ∞.

Define

An := K(2εn/hn)

K(εn/hn)
E

(
sup

t∈[0,1]k
Zt

)
, Bn := E

(
sup

‖r−s‖<3εn

|Zr − Zs |
)

+ 1.

As we have seen in the proof of Lemma 6, we have, for t ∈ N(si,n),

1 ≥ gi,n(t) ≥ (An + Bn)
−1 → 1,

and, therefore,

S2,n =
d∑

i=1

∫
N(si,n)

(1 − gi,n(t)) dt

≤
d∑

i=1

∫
N(si,n)

1 − (An + Bn)
−1 dt
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=
∫

[0,1]k
1 − (An + Bn)

−1 dt

= 1 − (An + Bn)
−1

→ 0, n → ∞.

Finally, we have, by the same argument as above,

S3,n =
d∑

i=1

∫
N(si,n)

E(Ẑt,n − gi,n(t)Zsi ,n) dt = S2,n, → 0, n → ∞,

which completes the proof. �
Remark 2. Given a grid s1, . . . , sd(n) with pertaining εn, the bandwidth hn := ε2

n would, for
example, satisfy the required growth conditions entailing convergence of MSE and IMSE to 0.
But it would clearly be desirable to provide some details on how to choose the bandwidth in
an optimal way, which is, for example, statistical folklore in kernel density estimation. In our
setup, however, this is an open problem that requires future work.

4. Discretized versions of copula processes

Next we transfer the model established in Section 2 to copula processes that are in a sense
close to max-stable processes. A copula process U = (Ut )t∈[0,1]k is a stochastic process with
continuous sample paths, such that each RV Ut is uniformly distributed on the interval [0, 1].
We say that U is in the functional domain of attraction of an SMSP η = (ηt )t∈[0,1]k , if

lim
n→∞ P(n(U − 1) ≤ f )n = P(η ≤ f ) = exp(−‖f ‖D), f ∈ Ē−([0, 1]k). (8)

Define, for any t ∈ [0, 1]k and n ∈ N,

Y
(n)
t := n

(
max

i=1,...,n
U

(i)
t − 1

)
,

with U (1), U (2), . . . being independent copies of U . Now choose again pairwise different
points s1, . . . , sd ∈ [0, 1]k and functions g1, . . . , gd ∈ C̄+([0, 1]k) with the properties (2)
and (5). Condition (8) implies weak convergence of the finite-dimensional distributions of
Y (n) = (Y

(n)
t )t∈[0,1]k , i.e.

(Y (n)
s1

, . . . , Y (n)
sd

)
d−→ (ηs1 , . . . , ηsd ),

where ‘
d−→’denotes convergence in distribution. As before, we can define the discretized version

Ŷ (n) = (Ŷ
(n)
t )t∈[0,1]k of Y (n) with grid {s1, . . . , sd} and weight functions g1, . . . , gd to be

Ŷ
(n)
t := max

i=1,...,d

Y
(n)
si

gi(t)
, t ∈ [0, 1]k.

Elementary calculations show that (8) implies that

lim
n→∞ P(Ŷ (n) ≤ f ) = P(η̂ ≤ f ), f ∈ Ē−([0, 1]k),
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where η̂ is the discretized version of η as defined in (3). Also, it is not difficult to see that, for
each t ∈ [0, 1]k ,

(Y
(n)
t , Ŷ

(n)
t )

d−→ (ηt , η̂t ),

where (ηt , η̂t ) is the standard max-stable RV from Lemma 2. Now applying the continuous
mapping theorem, we obtain

(Y
(n)
t − Ŷ

(n)
t )2 d−→ (ηt − η̂t )

2.

It remains to prove uniform integrability of the sequence on the left-hand side in order to obtain
the next result.

Proposition 2. Let t ∈ [0, 1]k . Then

MSE(Ŷ
(n)
t ) = E((Y

(n)
t − Ŷ

(n)
t )2) → MSE(η̂t ), n → ∞.

Proof. Fix t ∈ [0, 1]k . It remains to show that the sequence X
(n)
t := (Y

(n)
t − Ŷ

(n)
t )2 is

uniformly integrable. A sufficient condition for uniform integrability is

sup
n∈N

E((X
(n)
t )2) < ∞;

see [3, Section 3]. Clearly, for every n ∈ N,

E((X
(n)
t )2) ≤ E((Y

(n)
t )4) + E((Ŷ

(n)
t )4).

It is easy to verify that the RV Y
(n)
t has the density (1 + x/n)n−1 on [−n, 0]. Therefore,

E((Y
(n)
t )4) =

∫ 0

−n

x4
(

1 + x

n

)n−1

dx = 24n5(n − 1)!
(n + 4)! ≤ 24.

Moreover, setting c := mini=1,...,d gi(t) > 0,

|Ŷ (n)
t | = min

i=1,...,d

|Y (n)
si |

gi(t)
≤ |Y (n)

s1 |
c

,

and, hence,

E((Ŷ
(n)
t )4) ≤ 24

c4 ,

which completes the proof. �
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