Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-06T05:08:51.642Z Has data issue: false hasContentIssue false

Moments of k-hop counts in the random-connection model

Published online by Cambridge University Press:  11 December 2019

Nicolas Privault*
Affiliation:
Nanyang Technological University
Rights & Permissions [Opens in a new window]

Abstract

We derive moment identities for the stochastic integrals of multiparameter processes in a random-connection model based on a point process admitting a Papangelou intensity. The identities are written using sums over partitions, and they reduce to sums over non-flat partition diagrams if the multiparameter processes vanish on diagonals. As an application, we obtain general identities for the moments of k-hop counts in the random-connection model, which simplify the derivations available in the literature.

MSC classification

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

1. Introduction

The random-connection model, see, e.g., [Reference Meester and Roy12, Chapter 6], is a classical model in continuum percolation. It consists of a random graph built on the vertices of a point process on ${{\mathord{\mathbb R}}}^d$ by adding edges between two distinct vertices x and y with probability $H (\Vert x - y \Vert )$ . In the case of the Rayleigh fading $H_\beta (\Vert x - y \Vert ) = \rm{e}^{- \beta \Vert x - y \Vert^2 }$ with $x, y \in {{\mathord{\mathbb R}}}^2$ , the mean value of the number $N^{x,y}_k$ of k-hop paths connecting $x\in {{\mathord{\mathbb R}}}^d$ to $y\in {{\mathord{\mathbb R}}}^d$ has been computed in [Reference Kartun-Giles, Kim and Commun9], together with the variance of 3-hop counts. However, this argument does not extend to $k\geq 3$ as the proof of the variance identity for 3-hop counts in [Reference Kartun-Giles, Kim and Commun9] relies on the known Poisson distribution of the 2-hop count. As shown in [Reference Kartun-Giles, Kim and Commun9], the knowledge of moments can provide accurate numerical estimates of the probability ${\rm P}( N^{x,y}_k >0)$ of at least one k-hop path by expressing it as a series of factorial moments, and the need for a general theory of such moments was pointed out therein.

On the other hand, moment identities for Poisson stochastic integrals with random integrands have been obtained in [Reference Privault18] based on moment identities for Skorohod’s integral on the Poisson space; see [Reference Privault16,Reference Privault17], and also [Reference Privault19] for a review. These moment identities have been extended to point processes with Papangelou intensities in [Reference Decreusefond and Flint5], and to multiparameter processes in [Reference Bogdan, Rosiński, Serafin and Wojciechowski2]. Factorial moments have also been computed in [Reference Breton and Privault4] for point processes with Papangelou intensities.

In this paper we derive closed-form expressions for the moments of the number of k-hop paths in the random-connection model. In Proposition 4 the moment of order n of the k-hop count is given as a sum over non-flat partitions of $\{1,\ldots , nk\}$ in a general random-connection model based on a point process admitting a Papangelou intensity. Those results are then specialized to the case of Poisson point processes, with an expression for the variance of the k-hop count given in Corollary 2 using a sum over integer sequences. Finally, in the case of Rayleigh fadings we show that some results of [Reference Kartun-Giles, Kim and Commun9], such as the computation of variance for 3-hop counts, can be recovered via a shorter argument; see Corollary 4.

We proceed as follows. After presenting some background notation on point processes and Campbell measures, see [Reference Kallenberg8], in Section 2 we review the derivation of moment identities for stochastic integrals using sums over partitions. In the multiparameter case we rewrite those identities for processes vanishing on diagonals, based on non-flat partition diagrams. In Section 3 we apply those results to the computation of the moments of k-hop counts in the random-connection model, and we specialize such computations to the case of Poisson point processes in Section 4. Section 5 is devoted to explicit computations in the case of Rayleigh fadings, which result in simpler derivations than the current literature on moments in the random-connection model.

1.1. Notation on point processes

Let X be a Polish space with Borel $\sigma$ -algebra ${\cal B}(X)$ , equipped with a $\sigma$ -finite non-atomic measure $\lambda ({\rm d}x)$ . We let

\begin{equation*} \Omega^X = \{ \omega = \{ x_i \}_{i\in I} \subset X \,:\, \#( A \cap \omega ) \lt \infty \mbox{ for all compact } A\in {\cal B} (X) \} \end{equation*}

denote the space of locally finite configurations on X whose elements $\omega \in \Omega^X$ are identified with the Radon point measures $ \omega = \sum_{x\in \omega} \epsilon_x$ , where $\epsilon_x$ denotes the Dirac measure at $x\in X$ . A point process is a probability measure P on $\Omega^X$ equipped with the $\sigma$ -algebra ${\cal F}$ generated by the topology of vague convergence.

Point processes can be characterized by their Campbell measure C defined on ${\cal B}(X) \otimes {\cal F}$ by

\begin{equation*} C(A\times B) \,:\!=\mathrm{E}\bigg[\int_A {\bf 1}_B(\omega\setminus\{x\})\ \omega({\rm d}x)\bigg], \qquad A\in{\cal B}(X), \ B\in{\cal F}, \end{equation*}

which satisfies the Georgii–Nguyen–Zessin [Reference Nguyen and Zessin14] identity

(1) \begin{equation} \mathrm{E} \bigg[ \int_X u ( x ;\, \omega ) \omega ( {\rm d}x ) \bigg] = \mathrm{E} \bigg[ \int_{\Omega^X} \int_X u ( x;\, \omega \cup x ) C({\rm d}x,{\rm d}\omega ) \bigg] \label{eqn1} \end{equation}

for all measurable processes $u\,:\, X\times\Omega^X\to {{\mathord{\mathbb R}}}$ such that both sides of (1) make sense.

In the following we deal with point processes whose Campbell measure $C({\rm d}x,{\rm d} \omega )$ is absolutely continuous with respect to $\lambda \otimes P$ , i.e.

\begin{equation*} C({\rm d}x,{\rm d}\omega ) = c(x;\,\omega ) \lambda ({\rm d}x ) P({\rm d}\omega ), \end{equation*}

where the density $c(x;\,\omega)$ is called the Papangelou density. We will also use the random measure $\hat{\lambda}^n ( {\rm d}\mathfrak{x}_n )$ defined on $X^n$ by

\begin{equation*} \hat{\lambda}^n ( {\rm d}\mathfrak{x}_n ) = \hat{c} ( \mathfrak{x}_n ;\,\omega ) \lambda ({\rm d}x_1) \cdots \lambda ({\rm d}x_n), \end{equation*}

where $\hat{c} ( \mathfrak{x}_n ;\,\omega )$ is the compound Campbell density $ \hat{c}\,:\, \Omega_0^X\times\Omega^X \longrightarrow {{\mathord{\mathbb R}}}_+ $ defined inductively on the set $\Omega_0^X$ of finite configurations in $\Omega^X$ by

(2) \begin{equation} \hat{c} ( \{x_1,\ldots ,x_n , y \} ;\, \omega ) \,:\!= c( y ;\, \omega ) \hat{c} ( \{x_1,\ldots ,x_n \} ;\, \omega \cup \{ y\} ), \qquad n \geq 0;\, \label{eqn2} \end{equation}

see Relation (1) in [Reference Decreusefond and Flint5]. In particular, the Poisson point process with intensity $\lambda ({\rm d}x)$ is a point process with Campbell measure $C=\lambda \otimes P$ and $c(x;\, \omega)=1$ , and in this case the identity (1) becomes the Slivnyak–Mecke formula [Reference Slivnyak20, Reference Mecke11]. Determinantal point processes are examples of point processes with Papangelou intensities, see, e.g., [Reference Decreusefond, Flint, Privault and Torrisi6, Theorem 2.6], and they can be used for modeling wireless networks with repulsion; see, e.g., [Reference Deng, Zhou, Haenggi and Commun7, Reference Kong, Flint, Wang, Niyato and Privault10, Reference Miyoshi and Shirai13].

2. Moment identities

The moment of order $n\geq 1$ of a Poisson random variable $Z_\alpha$ with parameter $\alpha \gt 0$ is given by

(3) \begin{equation} {{\mathord{\mathrm E}}} [ Z^n_\alpha ] = \sum_{k=0}^n \alpha^k S(n,k), \qquad n \in {{\mathord{\mathbb N}}}, \label{eqn3} \end{equation}

where the Stirling number of the second kind S(n,k) is the number of ways to partition a set of n objects into k non-empty subsets; see, e.g., [Reference Boyadzhiev3, Proposition 3.1]. Regarding Poisson stochastic integrals of deterministic integrands, in [Reference Bassan and Bona1] the moment formula

(4) \begin{equation} {{\mathord{\mathrm E}}} \Big[ \Big( \int_X f (x) \omega ({\rm d}x) \Big)^n \Big] = n! \! \! \! \! \! \sum_{ r_1+2r_2+\cdots + n r_n =n \atop r_1,\ldots , r_n \geq 0 } \prod_{k=1}^n \Big( \frac{1}{(k!)^{r_k}r_k!} \Big( \int_X f^k (x) \lambda ({\rm d}x) \Big)^{r_k} \Big) \label{eqn4} \end{equation}

has been proved for deterministic functions $f \in \bigcap_{p\geq 1} L^p(X,\lambda )$ .

The identity (Reference Breton and Privault4) has been rewritten in the language of sums over partitions, and extended to Poisson stochastic integrals of random integrands in [Reference Privault18, Proposition 3.1], and further extended to point processes admitting a Panpangelou intensity in [Reference Decreusefond and Flint5, Theorem 3.1]; see also [Reference Breton and Privault4]. In the following, given $\mathfrak{z}_n =(z_1, \ldots, z_n)\in X^n$ , we will use the shorthand notation $\varepsilon^+_{\mathfrak{z}_n }$ for the operator

\begin{equation*} ( \varepsilon^+_{\mathfrak{z}_n } F)(\omega)=F(\omega\cup\{z_1, \ldots, z_n\}), \qquad \omega \in \Omega, \end{equation*}

where F is any random variable on $\Omega^X$ . Given $\rho = \{ \rho_1,\ldots, \rho_k \} \in \Pi [n]$ a partition of $\{1,\ldots , n\}$ of size $|\rho|=k$ , we let $|\rho_i |$ denote the cardinality of each block $\rho_i$ , $i=1,\ldots , k$ .

Proposition 1. Let $u \,:\, X \times \Omega^X \longrightarrow {{\mathord{\mathbb R}}}$ be a (measurable) process. For all $n\geq 1$ we have

\begin{equation} \nonumber \mathrm{E} \Big[ \Big( \int_X u(x ;\, \omega ) \omega ({\rm d}x) \Big)^n \Big] = \sum_{ \rho \in \Pi [n] } \mathrm{E} \bigg[ \int_{X^{|\rho |}} \epsilon^+_{\mathfrak{z}_{|\rho|} } \prod_{l=1}^{|\rho |} u^{|\rho_l|} (z_l ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg], \end{equation}

where the sum runs over all partitions $\rho$ of $\{ 1 , \ldots , n \}$ with cardinality $| \rho |$ .

Proposition 1 has also been extended, together with joint moment identities, to multiparameter processes $(u_{z_1,\ldots z_r})_{(z_1,\ldots z_r)\in X^r}$ ; see [Reference Bogdan, Rosiński, Serafin and Wojciechowski2, Theorem 3.1]. For this, let $\Pi [n\times r]$ denote the set of all partitions of the set

\begin{equation*} \Delta_{n\times r} \,:\!= \{1,\ldots , n\} \times \{1,\ldots , r\} = \{ (k,l) \,:\, k=1,\ldots , n, \ l = 1,\ldots , r \}, \end{equation*}

identified to $\{1,\ldots , nr\}$ , and let $\pi \,:\!= (\pi_1,\ldots , \pi_n) \in \Pi [n\times r]$ denote the partition made of the n blocks $\pi_k \,:\!= \{ (k,1), \ldots , (k,r) \}$ of size r, for $k=1,\ldots , n$ . Given $\rho = \{ \rho_1,\ldots , \rho_m \}$ a partition of $\Delta_{n\times r}$ , we let $\zeta^\rho \,:\, \Delta_{n\times r} \longrightarrow \{1,\ldots , m \}$ denote the mapping defined as

(5) \begin{equation} \zeta^\rho (k,l)=p \mbox{ if and only if } (k,l)\in \rho_p, \qquad k=1,\ldots , n,\ l=1,\ldots , r,\ p=1,\ldots , m. \label{eqn5} \end{equation}

In other words, $\zeta^\rho (k,l)$ denotes the index p of the block $\rho_p\subset \Delta_{n\times r}$ to which (k,l) belongs.

Next, we restate Theorem 3.1 of [Reference Bogdan, Rosiński, Serafin and Wojciechowski2] by noting that, in the same way as in Proposition 1, it extends to point processes admitting a Papangelou intensity using the arguments of [Reference Breton and Privault4, Reference Decreusefond and Flint5]. When ${(u(z_1,\ldots ,z_k ;\, \omega ) )_{z_1,\ldots , z_k \in X}}$ is a multiparameter process, we will write

\begin{equation*} \epsilon^+_{\mathfrak{z}_k} u(z_1,\ldots ,z_k ;\, \omega ) \,:\!= u( z_1,\ldots ,z_k ;\, \omega \cup \{ z_1,\ldots , z_k \} ), \quad \mathfrak{z}_n =(z_1, \ldots, z_n)\in X^n, \end{equation*}

and in this case we may drop the variable $\omega \in \Omega^X$ by writing $\epsilon^+_{\mathfrak{z}_k} u(z_1,\ldots ,z_k ;\, \omega )$ instead of $\epsilon^+_{\mathfrak{z}_k} u(z_1,\ldots ,z_k ;\, \omega )$ .

Proposition 2. Let $u \,:\, X^r \times \Omega^X \longrightarrow {{\mathord{\mathbb R}}}$ be a (measurable) r-process. We have

(6) \begin{equation} \mathrm{E} \bigg[ \bigg( \int_{X^r} \hskip-0.2cm u(z_1,\ldots , z_r ;\, \omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \bigg)^n \bigg] = \hskip-0.3cm \sum_{ \rho \in \Pi [n\times r] } \hskip-0.2cm \mathrm{E} \bigg[ \int_{X^{|\rho |}} \varepsilon^+_{\mathfrak{z}_{|\rho|}} \prod_{k=1}^n u( z^\rho_{\pi_k} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg] \label{eqn6} \end{equation}

with $z^\rho_{\pi_k} \,:\!= (z_{\zeta^\rho (k,1)}, \ldots , z_{\zeta^\rho (k,r)})$ , $k=1,\ldots , n$ .

Proof. The main change in the proof argument of [Reference Bogdan, Rosiński, Serafin and Wojciechowski2] is to rewrite the proof of Lemma 2.1 therein by applying (Reference Bogdan, Rosiński, Serafin and Wojciechowski2) recursively, as in the proof of [Reference Decreusefond and Flint5, Theorem 3.1], while the main combinatorial argument remains identical.

When $n=1$ , Proposition 2 yields a multivariate version of the Georgii–Nguyen–Zessin identity (1), i.e.

\begin{multline*} \mathrm{E} \bigg[ \int_{X^r} u(z_1,\ldots , z_r ;\, \omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \bigg] \\ = \sum_{\rho \in \Pi [1\times r] } \mathrm{E} \bigg[ \int_{X^{|\rho|}} \varepsilon^+_{\mathfrak{z}_{|\rho|}} u(z_{\zeta^\rho (1,1)},\ldots ,z_{\zeta^\rho (1,r)} ;\, \omega ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg]. \end{multline*}

2.1. Non-flat partitions

In the following we write $\nu \preceq \sigma$ when a partition $\nu \in \Pi [n \times r]$ is finer than another partition $\sigma \in \Pi [n \times r]$ , i.e. when every block of $\nu$ is contained in a block of $\sigma$ , and we let $\hat{0} \,:\!= \{ \{1,1\},\ldots , \{n,r\}\}$ denote the partition of $\Delta_{n\times r}$ made of singletons. We write $\rho \wedge \nu = \hat{0}$ when $\mu = \hat{0}$ is the only partition $\mu \in \Pi [n \times r]$ such that $\mu \preceq \nu$ and $\mu \preceq \rho$ , i.e. $|\nu_k \cap \rho_l| \leq 1$ , $k=1,\ldots , n$ , $l=1, \ldots , |\rho|$ . In this case we say that the partition diagram $\Gamma (\nu , \rho )$ of $\nu$ and $\rho$ is non-flat; see [Reference Peccati and Taqqu15, Chapter 4].

Here, a partition $\rho \in \Pi [n \times r]$ is said to be non-flat if the partition diagram $\Gamma (\pi , \rho )$ of $\rho$ and the partition $\pi$ is non-flat, where $\pi \,:\!= (\pi_1,\ldots , \pi_n) \in \Pi [n\times r]$ with $\pi_k \,:\!= \{ (k,1), \ldots , (k,r) \}$ , $k=1,\ldots , n$ . Figure 1 shows an example of a non-flat partition with $n=5$ , $r=4$ , and

\begin{align} & \triangle = \{ (1,2), (2,1) ,(2,2),(3,3),(4,2)\}, \\ & \ocircle= \{ (1,1), (3,1) ,(4,4),(5,3)\}, \\ & \Box = \{ (1,3), (2,4) ,(3,3),(4,1),(5,4)\}, \\ & \pentagon = \{ (1,4), (2,2)\}, \\ & \times = \{ (2,3), (3,4) ,(4,2),(5,1)\} \\ & \pi_k = \{ (k,1), (k,2) ,(k,3),(k,4),(k,5)\}, \qquad k=1,2,3,4,5. \end{align}

Figure 1. Example of a non-flat partition.

2.2. Processes vanishing on diagonals

The next consequence of Proposition 2 shows that when $u(z_1,\ldots , z_r;\,\omega )$ vanishes on the diagonals in $X^r$ , the moments of

\begin{equation*} \int_{X^r} u(z_1,\ldots , z_r;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \end{equation*}

reduce to sums over non-flat partition diagrams.

Proposition 3. Assume that $u(z_1,\ldots , z_r;\,\omega )=0$ whenever $z_i=z_j$ , $1\leq i\not= j \leq r$ , $\omega \in \Omega^X$ . Then we have

\begin{equation} \nonumber \mathrm{E} \Big[ \Big( \int_{X^r} \hskip-0.2cm u(z_1,\ldots , z_r;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \Big)^n \Big] = \hskip-0.3cm \sum_{ \substack{ \rho \in \Pi [n\times r] \\ \rho \wedge \pi = \hat{0} }} \hskip-0.2cm \mathrm{E} \bigg[ \int_{X^{|\rho |}} \hskip-0.2cm \epsilon^+_{\mathfrak{z}_{|\rho |}} \prod_{k=1}^n u ( z^\rho_{\pi_k} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho |} ) \bigg]. \end{equation}

Proof. Assume that $u(z_1,\ldots , z_r;\,\omega )$ vanishes on diagonals, and let $\rho \in \Pi [n]$ . Then, for any $z_1,\ldots , z_r\in X$ we have

\begin{equation*} \prod_{k=1}^n u( z^\rho_{\pi_k} ) = \prod_{k=1}^n u(z_{\zeta^\rho (k,1)}, \ldots , z_{\zeta^\rho (k,r)} ) = 0 \end{equation*}

whenever $p\,:\!=\zeta^\rho (k,a) = \zeta^\rho (k,b)$ for some $k\in \{1,\ldots , n \}$ and $a\not=b \in \{1,\ldots , r\}$ . According to (5) this implies that ${(k,a)\in \rho_p}$ and ${(k,b)\in \rho_p}$ ; therefore $\rho$ is not a non-flat partition, and it should be excluded from the sum over $\Pi [n]$ .

When $n=1$ , the first moment in Proposition 3 yields the Georgii–Nguyen–Zessin identity

(7) \begin{align} \nonumber \mathrm{E} \Big[ \int_{X^r} u(z_1,\ldots , z_r;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \Big] & = \sum_{ \substack{ \rho \in \Pi [1\times r] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \Big[ \int_{X^{|\rho |}} \epsilon^+_{\mathfrak{z}_{|\rho |}} u ( z^\rho_{\pi_1} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho |} ) \Big] \\ & = \mathrm{E} \Big[ \int_{X^r} \epsilon^+_{\mathfrak{z}_r} u(z_1,\ldots ,z_r ;\,\omega ) \hat{\lambda}^r ( {\rm d} \mathfrak{z}_r ) \Big] ; \label{eqn7}\end{align}

see [Reference Kartun-Giles, Kim and Commun9, Lemma IV.1] and [Reference Bogdan, Rosiński, Serafin and Wojciechowski2, Lemma 2.1] for different versions based on the Poisson point process. In the case of second moments, we find that

\begin{multline*} \mathrm{E} \Big[ \Big( \int_{X^r} u(z_1,\ldots , z_r;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \Big)^2 \Big] \\ = \sum_{ \substack{ \rho \in \Pi [2\times r] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \Big[ \int_{X^{|\rho |}} \epsilon^+_{\mathfrak{z}_{|\rho |}} u ( z^\rho_{\pi_1} ) u ( z^\rho_{\pi_2} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho |} ) \Big] , \end{multline*}

and since the non-flat partitions in $\Pi [ 2\times r]$ are made of pairs and singletons, this identity can be rewritten as the following consequence of Proposition 3, in which for simplicity of notation we write $\pi_1 = \{1,\ldots ,r\}$ and $\pi_2 = \{r+1,\ldots ,2r\}$ .

Corollary 1. Assume that $u(z_1,\ldots , z_r;\,\omega )=0$ whenever $z_i=z_j$ , $1\leq i\not= j \leq r$ , $\omega \in \Omega^X$ . Then the second moment of the integral of k-processes is given by

\begin{multline*} \mathrm{E} \Big[ \Big( \int_{X^r} u(z_1,\ldots , z_r;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \Big)^2 \Big] = \sum_{ A \subset \pi_1 } \frac{1}{(r-|A|)!} \\ \times \hskip-0.3cm \sum_{ \gamma : \pi_2 \to A \cup \{ r+1,\ldots , 2r-|A|\} } \hskip-0.3cm \mathrm{E} \Big[ \int_{X^{2r-|A|}} \hskip-0.1cm \epsilon^+_{\mathfrak{z}_{2r-|A|}} u ( z_{\pi_1} ) u ( z_{\gamma (r+1)} , \ldots , z_{\gamma (2r)} ) \hat{\lambda}^{2r-|A|} ( {\rm d} \mathfrak{z}_{2r-|A|} ) \Big], \end{multline*}

where the above sum is over all bijections $\gamma \,:\, \pi_2 \to A \cup \{ r+1,\ldots , 2r-|A|\}$ .

Proof. We express the partitions $\rho \in \Pi [n\times r]$ with non-flat diagrams $\Gamma ( \pi , \rho )$ in Proposition 4 as the collections of pairs and singletons,

\begin{equation*} \rho = \{ i,\gamma (i) \}\}_{i\in A} \cup \{\{i\}\}_{i \in \pi_1, i\notin A} \cup \{\{i\}\}_{i \in \pi_2, i\notin \gamma (A)}, \end{equation*}

for all subsets $A\subset \pi_1 = \{1,\ldots , r \}$ and bijections $\gamma \,:\, \pi_2 \to A \cup \{ r+1,\ldots , 2r-|A|\}$ .

In the case of 2-processes, Corollary 1 shows that

\begin{eqnarray} \nonumber{ \mathrm{E} \Big[ \Big( \int_{X^2} u(z_1 , z_2;\,\omega ) \omega ({\rm d}z_1) \omega ({\rm d}z_2) \Big)^2 \Big] } \\ \nonumber & = & \sum_{ \substack{ \rho \in \Pi [n\times 2] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \Big[ \int_{X^{|\rho |}} \epsilon^+_{\mathfrak{z}_{|\rho |}} \prod_{k=1}^n u( z_{\zeta^\rho (k,1)},z_{\zeta^\rho (k,2)} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho |} ) \Big] \\ \nonumber & = & \hskip-0.6cm \sum_{ \substack{ A \subset \pi_1 \\ \gamma : \{ 3,4 \} \to A \cup \{ 3,\ldots , 4-|A|\}} } \hskip-0.6cm \frac{1}{(r-|A|)!} \mathrm{E} \Big[ \int_{X^{4-|A|}} \epsilon^+_{\mathfrak{z}_{4-|A|}} u ( z_1, z_2 ) u ( z_{\gamma (3)} , z_{\gamma (4)} ) \hat{\lambda}^{4-|A|} ( {\rm d} \mathfrak{z}_{4-|A|} ) \Big] \\ \nonumber & = & \mathrm{E} \Big[ \int_{X^4} \epsilon^+_{\mathfrak{z}_4} ( u(z_1,z_2 ) u(z_3,z_4 ) ) \hat{\lambda}^4 ( {\rm d} \mathfrak{z}_4 ) \Big] \\ \nonumber & & +\ \mathrm{E} \Big[ \int_{X^3} \epsilon^+_{\mathfrak{z}_3} ( u(z_1,z_2 ) u(z_1,z_3 ) ) \hat{\lambda}^3 ( {\rm d} \mathfrak{z}_3 ) \Big] + \mathrm{E} \Big[ \int_{X^3} \epsilon^+_{\mathfrak{z}_3} ( u(z_2,z_1 ) u(z_3,z_1 ) ) \hat{\lambda}^3 ( {\rm d} \mathfrak{z}_3 ) \Big] \\ \nonumber & & +\ \mathrm{E} \Big[ \int_{X^3} \epsilon^+_{\mathfrak{z}_3} ( u(z_1,z_2 ) u(z_2,z_3 ) ) \hat{\lambda}^3 ( {\rm d} \mathfrak{z}_3 ) \Big] + \mathrm{E} \Big[ \int_{X^3} \epsilon^+_{\mathfrak{z}_3} ( u(z_2,z_1 ) u(z_3,z_2 ) ) \hat{\lambda}^3 ( {\rm d} \mathfrak{z}_3 ) \Big] \\ \nonumber & & +\ \mathrm{E} \Big[ \int_{X^2} \epsilon^+_{\mathfrak{z}_2} ( u(z_1,z_2 ) u(z_1,z_2 ) ) \hat{\lambda}^2 ( {\rm d} \mathfrak{z}_2 ) \Big] + \mathrm{E} \Big[ \int_{X^2} \epsilon^+_{\mathfrak{z}_2} ( u(z_1,z_2 ) u(z_2,z_1 ) ) \hat{\lambda}^2 ( {\rm d} \mathfrak{z}_2 ) \Big] . \end{eqnarray}

Similarly, in the case of 3-processes we find

\begin{align} \nonumber & \mathrm{E} \Big[ \Big( \int_{X^3} u(z_1,z_2, z_3;\,\omega ) \omega ({\rm d}z_1) \omega ({\rm d}z_2) \omega ({\rm d}z_3) \Big)^2 \Big] \\ \nonumber & = \sum_{ \substack{ A \subset \{1,2,3\} \\ \gamma : \{4,5,6\} \to A \cup \{ 4,\ldots , 6-|A|\}} } \frac{1}{(3-|A|)!} \mathrm{E} \Big[ \int_{X^5} \epsilon^+_{\epsilon^+_{\mathfrak{z}_5} } u ( z_1,z_2,z_3 ) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^5 ( {\rm d} \mathfrak{z}_5 ) \Big] \nonumber\\\ & = \mathrm{E} \Big[ \int_{X^6} \epsilon^+_{\mathfrak{z}_6} u(z_1,z_2,z_3 ) u(z_4,z_5,z_6 ) \hat{\lambda}^{6} ( {\rm d} \mathfrak{z}_6 ) \Big] \nonumber\\ & \quad +\ \frac{1}{2} \sum_{ \gamma : \{4,5,6\} \to \{ 1,5 , 6\} } \mathrm{E} \Big[ \int_{X^5} \epsilon^+_{\mathfrak{z}_5} u ( z_1,z_2,z_3) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^5 ( {\rm d} \mathfrak{z}_5 ) \Big] \nonumber\\ & \quad +\ \frac{1}{2} \sum_{ \gamma : \{4,5,6\} \to \{ 2,5 , 6\} } \mathrm{E} \Big[ \int_{X^5} \epsilon^+_{\mathfrak{z}_5} u ( z_1,z_2,z_3) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^5 ( {\rm d} \mathfrak{z}_5 ) \Big] \nonumber\\ & \quad +\ \frac{1}{2} \sum_{ \gamma : \{4,5,6\} \to \{ 3,5 , 6\} } \mathrm{E} \Big[ \int_{X^5} \epsilon^+_{\mathfrak{z}_5} u ( z_1,z_2,z_3) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^5 ( {\rm d} \mathfrak{z}_5 ) \Big] \nonumber\\ & \quad +\ \phantom{\frac{1}{2}} \sum_{ \gamma : \{4,5,6\} \to \{1,2, 6\} } \mathrm{E} \Big[ \int_{X^4} \epsilon^+_{\mathfrak{z}_4} u ( z_1,z_2,z_3 ) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^4 ( {\rm d} \mathfrak{z}_4 ) \Big] \nonumber\\ & \quad +\ \phantom{\frac{1}{2}} \sum_{ \gamma : \{4,5,6\} \to \{1,3, 6\} } \mathrm{E} \Big[ \int_{X^4} \epsilon^+_{\mathfrak{z}_4} u ( z_1,z_2,z_3 ) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^4 ( {\rm d} \mathfrak{z}_4 ) \Big] \nonumber\\ & \quad +\ \phantom{\frac{1}{2}} \sum_{ \gamma : \{4,5,6\} \to \{2,3, 6\} } \mathrm{E} \Big[ \int_{X^4} \epsilon^+_{\mathfrak{z}_4} u ( z_1,z_2,z_3 ) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^4 ( {\rm d} \mathfrak{z}_4 ) \Big] \nonumber\\ & \quad +\ \phantom{\frac{1}{2}} \sum_{ \gamma : \{4,5,6\} \to \{1,2,3 \} } \mathrm{E} \Big[ \int_{X^3} \epsilon^+_{\mathfrak{z}_3}z u ( z_1,z_2,z_3 ) u ( z_{\gamma (4)} , z_{\gamma (5)} ,z_{\gamma (6)} ) \hat{\lambda}^3 ( {\rm d} \mathfrak{z}_3 ) \Big] . \end{align}

3. Random-connection model

Two point process vertices $x\not= y$ are independently connected in the random-connection graph with the probability H(x,y) given $\omega \in \Omega^X$ , where $H\,:\,X\times X \longrightarrow [0,1]$ . In particular, the 1-hop count ${\bf 1}_{\{ x \leftrightarrow y \} }$ is a Bernoulli random variable with parameter H(x,y), and we have the relation

\begin{equation*} \mathrm{E} \bigg[ \epsilon^+_{\mathfrak{z}_r} \prod_{i=0}^r {\bf 1}_{\{ z_i \leftrightarrow z_{i+1} \} } ( \omega ) \, \Big| \, \omega \bigg] = \prod_{i=0}^r H( z_i , z_{i+1} ) \end{equation*}

for any subset $\{z_0,\ldots , z_{r+1}\}$ of distinct elements of X, where $\mathfrak{z}_r = \{z_1,\ldots , z_r\}$ and $x \leftrightarrow y$ means that $x\in X$ is connected to $y\in X$ .

Given $x,y \in X$ , the number of $(r+1)$ -hop sequences $z_1,\ldots , z_r\in \omega$ of vertices connecting x to y in the random graph is given by the multiparameter stochastic integral

\begin{equation*} N^{x,y}_{r+1} = \int_{X^r} u(z_1,\ldots , z_r ;\,\omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \end{equation*}

of the $\{0,1\}$ -valued r-process

(8) \begin{equation} u(z_1,\ldots , z_r;\,\omega ) \,:\!= {\bf 1}_{\{ z_i \not= z_j, \, 1\leq i<j \leq r \} } {\bf 1}_{\{ z_1,\ldots , z_r \in \omega \} } \prod_{i=0}^r {\bf 1}_{\{ z_i \leftrightarrow z_{i+1} \} } ( \omega ), \qquad z_1,\ldots , z_r \in X, \label{eqn8} \end{equation}

which vanishes on the diagonals in $X^r$ , with $z_0\,:\!=x$ and $z_{r+1} \,:\!= y$ . In addition, for any distinct $z_1,\ldots , z_r \in X$ and $u(z_1,\ldots , z_r;\,\omega )$ given by (8) we have

(9) \begin{equation} \mathrm{E} [ \epsilon^+_{\mathfrak{z}_r} u(z_1,\ldots , z_r;\,\omega ) \!\mid\! \omega ] = \mathrm{E} \bigg[ \epsilon^+_{\mathfrak{z}_r} \prod_{i=0}^r {\bf 1}_{\{ z_i \leftrightarrow z_{i+1} \} } ( \omega ) \, \Big| \, \omega \bigg] = \prod_{i=0}^r H( z_i , z_{i+1} ), \label{eqn9} \end{equation}

and therefore the first-order moment of the $(r+1)$ -hop count between $x\in X$ and $y\in X$ is given as

(10) \begin{equation} \mathrm{E} \Big[ \int_{X^r} u(z_1,\ldots , z_r;\, \omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \Big] = \mathrm{E} \bigg[ \int_{X^r} \prod_{i=0}^r H ( z_i , z_{i+1} ) \hat{\lambda}^r ( {\rm d} \mathfrak{z}_r ) \bigg] \label{eqn10} \end{equation}

(see also [Reference Kartun-Giles, Kim and Commun9, Theorem II.1]) as a consequence of the Georgii–Nguyen–Zessin identity (Reference Deng, Zhou, Haenggi and Commun7).

In the next proposition we compute the moments of all orders of r-hop counts as sums over non-flat partition diagrams. The role of the powers $1/n^\rho_{l,i}$ in (Reference Kong, Flint, Wang, Niyato and Privault10) is to ensure that all powers of H(x,y) in (Reference Kong, Flint, Wang, Niyato and Privault10) are equal to one, since all powers of ${\bf 1}_{\{ z \leftrightarrow z' \} }$ in (Reference Mecke11) below are equal to ${\bf 1}_{\{ z \leftrightarrow z' \} }$ .

Proposition 4. The moment of order n of the $(r+1)$ -hop count between $x\in X$ and $y\in X$ is given by

(11) \begin{equation} \mathrm{E} [ ( N^{x,y}_{r+1} )^n ] = \sum_{ \substack{ \rho \in \Pi [n\times r] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \bigg[ \int_{X^{|\rho |}} \prod_{l=1}^n \prod_{i=0}^r H^{1/n^\rho_{l,i}}( z_{\zeta^\rho (l,i)} , z_{\zeta^\rho (l,i+1)} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg] , \label{eqn11} \end{equation}

where $z_0=x$ , $z_{r+1}=y$ , $\zeta^\rho (l,0)=0$ , $\zeta^\rho (l,r+1)=r+1$ , and

\begin{equation*} n^\rho_{l,i} = \# \{ (p,j)\in \{1,\ldots ,n\}\times \{0,\ldots , r\} \,:\, \{ \zeta^\rho (l,i) , \zeta^\rho (l,i+1) \} = \{ \zeta^\rho (p,j) , \zeta^\rho (p,j+1) \} \}, \end{equation*}

$1\leq l \leq n$ , $0 \leq i \leq r$ .

Proof. Since $u(z_1,\ldots , z_r;\, \omega )$ vanishes whenever $z_i=z_j$ for some $1\leq i \lt j \leq r$ , by Proposition 3 we have

(12) \begin{eqnarray} \nonumber{ % \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \mathrm{E} \bigg[ \bigg( \int_{X^r} u(z_1,\ldots , z_r;\, \omega ) \omega ({\rm d}z_1) \cdots \omega ({\rm d}z_r) \bigg)^n \bigg] } \\ & = & \sum_{ \substack{ \rho \in \Pi [n\times r] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \bigg[ \int_{X^{|\rho |}} \prod_{l=1}^n \prod_{i=0}^r {\bf 1}_{\{ z_{\zeta^\rho (l,i)} \leftrightarrow z_{\zeta^\rho (l,i+1)} \} } \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg]\label{eqn12}\ & = & \sum_{ \substack{ \rho \in \Pi [n\times r] \\ \rho \wedge \pi = \hat{0} }} \mathrm{E} \bigg[ \int_{X^{|\rho |}} \prod_{l=1}^n \prod_{i=0}^r H^{1/n^\rho_{l,i}}( z_{\zeta^\rho (l,i)}, z_{\zeta^\rho (l,i+1)} ) \hat{\lambda}^{|\rho |} ( {\rm d} \mathfrak{z}_{|\rho|} ) \bigg], \end{eqnarray}

where we applied (9).

As in Corollary 1, we have the following consequence of Proposition 4, which is obtained by expressing the partitions $\rho \in \Pi [n\times r]$ with non-flat diagrams $\Gamma ( \pi , \sigma )$ as a collection of pairs and singletons.

Corollary 2. The second moment of the $(r+1)$ -hop count between $x\in X$ and $y\in X$ is given by

\begin{multline*} \mathrm{E} [ ( N^{x,y}_{r+1} )^2 ] = \sum_{ \substack{ A \subset \pi_1 \\ \gamma : \{1,\ldots , r\} \to A \cup \{ r+1,\ldots , 2r-|A|\}} } \frac{1}{(r-|A|)!} \\ \times \mathrm{E} \bigg[ \int_{X^{2r-|A|}} \prod_{i=0}^r H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \prod_{j=0}^r H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^{2r-|A|} ( {\rm d} \mathfrak{z}_{2r-|A|} ) \bigg], \end{multline*}

where the above sum is over all bijections $\gamma \,:\, \{1,\ldots , r\} \to A \cup \{ r+1,\ldots , 2r-|A|\}$ with $\gamma (0)\,:\!=0$ , $\gamma (r+1)=\!:\,r+1$ , $z_0=\!:\,x$ , and $z_{r+1}\,:\!=y$ , and

\begin{align} n^\gamma_{1,i} = \# \{ j\in \{0,\ldots , r\} \,:\, \{ i , i+1 \} = \{ \gamma ( j) , \gamma (j+1) \} \},\\[3pt] n^\gamma_{2,j} = \# \{ i\in \{0,\ldots , r\} \,:\, ( i , i+1 ) = ( \gamma ( j) , \gamma (j+1) ) \}, \end{align}

for $0 \leq i \leq r$ .

3.1. Variance of 3-hop counts

When $n=2$ and $r=2$ , Corollary 2 allows us to express the variance of the 3-hop count between $x\in X$ and $y\in X$ as follows:

\begin{align} \nonumber & {{\mathrm{{\rm Var}}}} [ N^{x,y}_3 ] \\ \nonumber & = \sum_{ \substack{ \emptyset \not= A \subset \{1,2\} \\ \gamma : \{1,2\} \to A \cup \{ 3 , 4-|A|\}} } \frac{1}{(2-|A|)!} \\ \nonumber & \quad \times \mathrm{E} \bigg[ \int_{X^{4-|A|}} \prod_{i=0}^2 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \prod_{j=0}^2 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^{4-|A|} ( {\rm d} \mathfrak{z}_{4-|A|} ) \bigg] \\ \nonumber & = \sum_{ \gamma : \{1,2\} \to \{ 1, 4\} } \mathrm{E} \bigg[ \int_{X^3} \prod_{i=0}^2 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \prod_{j=0}^2 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^3 ( {\rm d} z_1,{\rm d}z_2,{\rm d}z_4 ) \bigg] \\ \nonumber & \quad + \sum_{ \gamma : \{1,2\} \to \{ 2, 4\} }\!\!\!\!\! \mathrm{E} \bigg[ \int_{X^3} \prod_{i=0}^2 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \prod_{j=0}^2 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^3 ( {\rm d}z_1, {\rm d}z_2, {\rm d}z_4 ) \bigg] \\ \nonumber & \quad + \sum_{ \gamma : \{1,2\} \to \{ 1,2\} }\!\!\!\! \mathrm{E} \bigg[ \int_{X^2} \prod_{i=0}^2 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \prod_{j=0}^2 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^2 ( {\rm d}z_1,{\rm d}z_2 ) \bigg] . \end{align}

3.2. Variance of 4-hop counts

When $r=3$ and $n=2$ , Corollary 2 yields

\begin{align} {{\mathrm{{\rm Var}}}} [ N^{x,y}_4 ] & = \sum_{ \substack{ \emptyset \not= A \subset \pi_1 \\ \gamma : \{1,\ldots , 3\} \to A \cup \{ 4,\ldots , 6-|A|\}} } \frac{1}{(3-|A|)!} \mathrm{E} \bigg[ \int_{X^{6-|A|}} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \qquad \qquad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^{6-|A|} ( d \mathfrak{z}_{6-|A|} ) \bigg] \\ \nonumber & = \frac{1}{2} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 1, 5, 6\} } \mathrm{E} \bigg[ \int_{X^5} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^5 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_5,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \frac{1}{2} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 2, 5, 6\} } \mathrm{E} \bigg[ \int_{X^5} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^5 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_5,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \frac{1}{2} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 3, 5, 6\} } \mathrm{E} \bigg[ \int_{X^5} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^5 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_5,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \phantom{\frac{1}{2}} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 1,2, 6\} } \mathrm{E} \bigg[ \int_{X^4} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^4 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \phantom{\frac{1}{2}} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 1,3, 6\} } \mathrm{E} \bigg[ \int_{X^4} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^4 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \phantom{\frac{1}{2}} \sum_{ \gamma : \{1,\ldots , 3\} \to \{ 2,3, 6\} } \mathrm{E} \bigg[ \int_{X^4} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^4 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3,{\rm d}z_6 ) \bigg] \\ \nonumber & \quad + \phantom{\frac{1}{2}} \sum_{ \gamma : \{1,\ldots , 3\} \to \{1,\ldots , 3\} } \mathrm{E} \bigg[ \int_{X^3} \prod_{i=0}^3 H^{1/n^\gamma_{1,i}}( z_i , z_{i+1} ) \\ \nonumber & \hskip3cm \quad \quad \times \prod_{j=0}^3 H^{1/n^\gamma_{2,j}}( z_{\gamma (j)} , z_{\gamma (j+1) } ) \hat{\lambda}^3 ( {\rm d}z_1,{\rm d}z_2,{\rm d}z_3 ) \bigg]. \end{align}

4. Poisson case

In this section and the next one we will work in the Poisson random-connection model, using a Poisson point process on $X={{\mathord{\mathbb R}}}^d$ with intensity $\lambda ({\rm d}x)$ on ${{\mathord{\mathbb R}}}^d$ . We let

(13) \begin{equation} H^{(n)} (x_0,x_n ) \,:\!= \int_{{{\mathord{\mathbb R}}}^d} \cdots \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=0}^{n-1} H (x_i,x_{i+1}) \lambda ({\rm d}x_1) \cdots \lambda ({\rm d}x_{n-1}), \qquad x_0, x_n \in {{\mathord{\mathbb R}}}^d, \ n \geq 1.\quad \label{eqn13} \end{equation}

The 2-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ is given by the first-order stochastic integral

\begin{equation*} \int_{{{\mathord{\mathbb R}}}^d} u(z;\,\omega ) \omega ({\rm d}z) = \int_{{{\mathord{\mathbb R}}}^d} {\bf 1}_{\{ x \leftrightarrow z_1 \} } {\bf 1}_{\{ z_1 \leftrightarrow y \} } ( \omega ) \omega ({\rm d}z_1) = \int_{{{\mathord{\mathbb R}}}^d} {\bf 1}_{\{ x \leftrightarrow z_1 \} } {\bf 1}_{\{ z_1 \leftrightarrow y \} } \omega ({\rm d}z_1), \end{equation*}

and its moment of order n is

\begin{align} \mathrm{E} \bigg[ \bigg( \int_{{{\mathord{\mathbb R}}}^d} u(z_1;\,\omega ) \omega ({\rm d}z_1) \bigg)^n \bigg] & = \mathrm{E} \bigg[ \bigg( \int_{{{\mathord{\mathbb R}}}^d} {\bf 1}_{\{ x \leftrightarrow z_1 \} } {\bf 1}_{\{ z_1 \leftrightarrow y \} } \omega ({\rm d}z_1) \bigg)^n \bigg] \\ & = \sum_{ \substack{ \rho \in \Pi [n\times 1] }} \int_{X^{|\rho |}} \prod_{l=1}^{|\rho |} \big( H(x,z_l)H(z_l,y) \big) \lambda^{|\rho |} ( {\rm d}z_1,\ldots , {\rm d}z_{|\rho|} ) \\ & = \sum_{k=1}^n S(n,k) \bigg( \int_{{{\mathord{\mathbb R}}}^d} H(x,z)H(z,y) \lambda ( {\rm d} z ) \bigg)^k \\ & = \sum_{k=1}^n S(n,k) \big( H^{(2)} (x,y) \big)^k ; \end{align}

therefore, from (3), the 2-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ is a Poisson random variable with mean

\begin{equation*} H^{(2)}(x,y) = \int_{{{\mathord{\mathbb R}}}^d} H(x,z)H(z,y) \lambda ( {\rm d} z ). \end{equation*}

By (10), the first-order moment of the r-hop count is given by

\begin{equation*} H^{(r)}(x,y) = \int_{X^{r-1}} \prod_{i=0}^{r-1} H ( z_i , z_{i+1} ) \lambda^{r-1} ( {\rm d}z_1, \ldots {\rm d}z_{r-1} ). \end{equation*}

Corollary 3. The variance of the r-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ is given by

\begin{align} \nonumber {{\mathrm{{\rm Var}}}} [ N^{x,y}_r ] & = \sum_{p=1}^{r-1} \sum_{ \substack{ 1\leq k_1 \lt\cdots \lt k_p \lt r \\ 1 \leq l_1 \lt\cdots \lt l_p \lt r } }\, \sum_{\sigma \in \Sigma [p]} \int_{X^p} \prod_{ 0 \leq i \leq p } H^{(k_{i+1}-k_i)}( z_i , z_{i+1} ) \hskip-0.8cm \\ \nonumber & \quad \times \prod_{ \substack{ 0 \leq j \leq p \\ l_{\sigma (j+1)}-l_{\sigma (j)} + k_{j+1}-k_j > 2 \\ \mbox{\scriptsize or } \{j,j+1\} \not= \{ \sigma (j), \sigma (j+1) \}} } \hskip-0.8cm H^{(l_{\sigma (j+1)}-l_{\sigma (j)})}( z_{\sigma (j)} , z_{\sigma ( j+1 ) } ) \lambda^p ( {\rm d} \mathfrak{z}_p ), \end{align}

with $k_0=l_0=0$ , $k_{p+1}=l_{p+1}=r$ , $\sigma (0)=0$ , and $\sigma (r)=r$ , where the above sum is over all permutations $\sigma \in \Sigma [p]$ of $\{1,\ldots , p\}$ .

Proof. We rewrite the result of Corollary 2 by denoting the set $A\subset \pi_1$ as $A = \{k_1, \ldots , k_p \}$ , for $1\leq k_1 \lt\cdots \lt k_p \leq r-1$ , and we identify $\gamma (A) \subset A \cup \{ r+1,\ldots , 2r-|A|\}$ with $\{l_1, \ldots , l_p \}$ , which requires a sum over the permutations of $\{1,\ldots , p\}$ since $1\leq l_1 \lt\cdots \lt l_p \leq r-1$ , where $1 \leq p \leq r-1$ . In addition, the multiple integrals over contiguous index sets in $A^c$ are evaluated using (Reference Miyoshi and Shirai13).

4.1. Variance of 3-hop counts

When $n=2$ and $r=2$ Corollary 3 allows us to compute the variance of the 3-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ , as follows:

(14) \begin{multline} {{\mathrm{{\rm Var}}}} [ N^{x,y}_3 ] = 2 \int_{{{\mathord{\mathbb R}}}^d} H(x,z_1)H^{(2)}(z_1,y) H^{(2)}(z_1,y)\\ + 2 \int_{{{\mathord{\mathbb R}}}^d}\\ H(x,z_1)H^{(2)}(x,z_1)H^{(2)}(z_1,y)H(z_1,y) \lambda ( {\rm d} z_1 ) + \int_{X^2} H(x,z_1)H(z_1,z_2)H(z_2,y) H(x,z_2) H(z_1,y) \lambda^2 ( {\rm d} z_1,{\rm d}z_2 ) + H^{(3)}(x,y) . \label{eqn16}\end{multline}

By Corollary 3 the variance of 4-hop counts can be similarly computed explicitly as a sum of 33 terms.

5. Rayleigh fading

In this section we consider a Poisson point process on $X={{\mathord{\mathbb R}}}^d$ with flat intensity $\lambda ({\rm d}x) = \lambda {\rm d}x$ on ${{\mathord{\mathbb R}}}^d$ , $\lambda \gt0$ , and a Rayleigh fading function of the form

\begin{equation*} H_\beta ( x , y ) \,:\!= \rm{e}^{- \beta \Vert x - y \Vert^2 }, \qquad x, y \in {{\mathord{\mathbb R}}}^d, \ \beta \gt0. \end{equation*}

Lemmas 1 and 2 can be used to evaluate the integrals appearing in Corollary 3 and in the variance (Reference Nguyen and Zessin14) of the 3-hop counts.

Lemma 1. For all $n\geq 1$ , $y_1,\ldots, y_n \in {{\mathord{\mathbb R}}}^d$ , and $\beta_1, \ldots , \beta_n \gt0$ we have

\begin{align} & \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=1}^n H_{\beta_i} (x,y_i) {\rm d}x \\ & \qquad = \bigg( \frac{\pi }{\beta_1+\cdots + \beta_n}\bigg)^{d/2} \, \prod_{i=1}^{n-1} H_{\frac{\beta_{i+1} (\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1}}} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg) . \end{align}

Proof. We start by showing that for all $n\geq 1$ we have

(15) \begin{multline} \prod_{i=1}^n H_{\beta_i} (x,y_i)\\ & = H_{\beta_1+\cdots + \beta_n} \bigg(x,\frac{\beta_1 y_1+ \cdots + \beta_n y_n}{\beta_1+\cdots +\beta_n }\bigg) \,\prod_{i=1}^{n-1} H_{\frac{\beta_{i+1}(\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1} }} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg). \label{eqn18}\end{multline}

Clearly, this relation holds for $n=1$ . In addition, at the rank $n=2$ we have

\begin{eqnarray} { H_{\beta_1} (x,y_1)H_{\beta_2} (x,y_2) = \rm{e}^{-\beta_1 \Vert y_1-x\Vert^2 } \rm{e}^{-\beta_2 \Vert x -y_2\Vert^2 } } \\ & = & %\rm{e}^ \exp\{-\beta_1 \Vert y_1\Vert^2 -\beta_2 \Vert y_2\Vert^2 + 2 \langle \beta_1y_1 + \beta_2 y_2, x\rangle - ( \beta_1 + \beta_2 ) \Vert x\Vert^2 \} \\ & = & %\rm{e}^ \exp\{-\beta_1 \Vert y_1\Vert^2 -\beta_2 \Vert y_2\Vert^2 - ( \beta_1 + \beta_2 ) \Vert x - ( \beta_1y_1 + \beta_2 y_2)/(\beta_1+\beta_2 ) \Vert^2 \\ &&\qquad + \Vert \beta_1y_1 + \beta_2 y_2 \Vert^2/(\beta_1+\beta_2 ) \} \\ & = & %\rm{e}^ \exp\{- ( \beta_1 + \beta_2 ) \Vert x - ( \beta_1y_1 + \beta_2 y_2)/(\beta_1+\beta_2 ) \Vert^2 - \beta_1 \beta_2 \Vert y_1-y_2\Vert^2 /(\beta_1+\beta_2 ) \} \\ & = & H_{\beta_1+\beta_2} \bigg(x , \frac{\beta_1y_1 + \beta_2 y_2}{\beta_1+\beta_2} \bigg) H_{\frac{ \beta_1 \beta_2 }{\beta_1+\beta_2 }}(y_1,y_2). % , \end{eqnarray}

Next, assuming that (15) holds at the rank $n\geq 1$ , we have

\begin{eqnarray} { \prod_{i=1}^{n+1} H_{\beta_i} (x,y_i) = H_{\beta_{n+1}} (x,y_{n+1}) H_{\beta_1+\cdots + \beta_n} \bigg(x,\frac{\beta_1 y_1+ \cdots + \beta_n y_n}{\beta_1+\cdots +\beta_n }\bigg) } \\ & & \times \prod_{i=1}^{n-1} H_{\frac{\beta_{i+1}(\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1}}} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg) \\ & = & H_{\beta_1+\cdots + \beta_{n+1}} \bigg(x,\frac{\beta_1 y_1+ \cdots + \beta_{n+1} y_{n+1}}{\beta_1+\cdots +\beta_n }\bigg) \\ & & \times \prod_{i=1}^n H_{\frac{\beta_{i+1}(\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1}}} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg). \end{eqnarray}

As a consequence, we find that

\begin{multline*} \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=1}^n H_{\beta_i} (x,y_i) {\rm d}x = \prod_{i=1}^{n-1} H_{\frac{\beta_{i+1}(\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1}}} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg) \\ \hskip2.5cm \times \int_{{{\mathord{\mathbb R}}}^d} H_{\beta_1+\cdots + \beta_n} \bigg(x,\frac{\beta_1 y_1+ \cdots + \beta_n y_n}{\beta_1+\cdots +\beta_n }\bigg) {\rm d}x \\ = \bigg( \frac{\pi }{\beta_1+\cdots + \beta_n}\bigg)^{d/2} \prod_{i=1}^{n-1} H_{\frac{\beta_{i+1}(\beta_1+\cdots + \beta_i)}{\beta_1+\cdots + \beta_{i+1}}} \bigg( y_{i+1}, \frac{\beta_1 y_1+ \cdots + \beta_i y_i}{\beta_1+\cdots +\beta_i } \bigg). \end{multline*}

In particular, applying Lemma 1 for $n=2$ yields

(16) \begin{align} \nonumber \int_{{{\mathord{\mathbb R}}}^d} H_{\beta_1} ( y_1,x ) H_{\beta_2} ( x ,y_2 ) {\rm d}x & = \Big( \frac{\pi }{\beta_1 + \beta_2 }\Big)^{d/2} H_{\frac{\beta_1\beta_2}{\beta_1+\beta_2 }} ( y_1,y_2) \\ & = \Big( \frac{\pi }{\beta_1 + \beta_2 }\Big)^{d/2} \rm{e}^{- \beta_1\beta_2 \Vert y_1- y_2\Vert^2/ ( \beta_1+\beta_2 ) }, \quad y_1,y_2 \in {{\mathord{\mathbb R}}}^d, \label{eqn19}\end{align}

and the 2-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ is a Poisson random variable with mean

\begin{eqnarray} \nonumber H^{(2)}_\beta (x,y) & = & \lambda \int_{{{\mathord{\mathbb R}}}^d} H_\beta ( x,z ) H_\beta ( z ,y ) {\rm d}z \\ \nonumber & = & \lambda \Big( \frac{\pi }{2 \beta }\Big)^{d/2} H_{\beta /2} ( x,y) \\ \nonumber & = & \lambda \Big( \frac{\pi }{2 \beta }\Big)^{d/2} \rm{e}^{- \Vert x- y\Vert^2/ 2}. \end{eqnarray}

By an induction argument similar to that of Lemma 1, we obtain the following lemma.

Lemma 2. For all $n \geq 1$ , $x_0,\ldots, x_n \in {{\mathord{\mathbb R}}}^d$ , and $\beta_1, \ldots , \beta_n \gt0$ we have

\begin{multline*} \int_{{{\mathord{\mathbb R}}}^d} \cdots \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=1}^n H_{\beta_i} (x_{i-1},x_i) \,{\rm d} x_1 \cdots {\rm d}x_{n-1} \\ = \bigg( \frac{\pi^{n-1} }{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n }\bigg)^{d/2} H_{\frac{\beta_1 \cdots \beta_n}{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n }} (x_0,y_n). \end{multline*}

Proof. Clearly the relation holds at the rank $n=1$ . Assuming that it holds at the rank $n\geq 1$ and using (16), we have

\begin{align} & \int_{{{\mathord{\mathbb R}}}^d} \cdots \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=1}^{n+1} H_{\beta_i} (x_{i-1},x_i) \,{\rm d} x_1 \cdots {\rm d}x_n \\ & = \int_{{{\mathord{\mathbb R}}}^d} H_{\beta_{n+1}} (x_n,x_{n+1}) \int_{{{\mathord{\mathbb R}}}^d} \cdots \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=1}^n H_{\beta_i} (x_{i-1},x_i) \,{\rm d} x_1 \cdots {\rm d}x_n \\ & = \bigg( \frac{\pi^{n-1} }{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n }\bigg)^{d/2} \\ & \quad \times \int_{{{\mathord{\mathbb R}}}^d} H_{\frac{\beta_1 \cdots \beta_n}{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n }} (x_0,x_n) H_{\beta_{n+1}} (x_n,x_{n+1}) \,{\rm d} x_n \\ & = \bigg( \frac{\pi^{n-1} }{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n }\bigg)^{d/2} \\ & \quad \times \bigg( \frac{\pi }{\frac{\beta_1 \cdots \beta_n}{\sum_{i=1}^n \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_n } + \beta_{n+1}}\bigg)^{d/2} H_{\frac{\beta_1 \cdots \beta_{n+1}}{\sum_{i=1}^{n+1} \beta_1 \cdots \beta_{i-1}\beta_{i+1}\cdots \beta_{n+1}}} ( x_0,x_{n+1}). \end{align}

In particular, the first-order moment of the r-hop count between $x_0\in {{\mathord{\mathbb R}}}^d$ and $x_r\in {{\mathord{\mathbb R}}}^d$ is given by

(17) \begin{eqnarray} \nonumber H^{(r)}_\beta (x_0,x_r) & = & \int_{{{\mathord{\mathbb R}}}^d} \cdots \int_{{{\mathord{\mathbb R}}}^d} \prod_{i=0}^{r-1} H_\beta (x_i,x_{i+1}) \lambda ( {\rm d}x_1 ) \cdots \lambda ( {\rm d}x_{r-1} ) \\ \nonumber & = & \lambda^{r-1} \bigg( \frac{\pi^{r-1} }{r \beta^{r-1} }\bigg)^{d/2} H_{\beta / r } (x,y) \\ & = & \lambda^{r-1} \bigg( \frac{\pi^{r-1} }{r \beta^{r-1} }\bigg)^{d/2} \rm{e}^{- \beta \Vert x- y\Vert^2/r}, \qquad x, y \in {{\mathord{\mathbb R}}}^d. \label{eqn20}\end{eqnarray}

5.1. Variance of 3-hop counts

Corollary 3 and Lemma 2 allow us to recover Theorem II.3 of [Reference Kartun-Giles, Kim and Commun9] for the variance of 3-hop counts by a shorter argument, while extending it from the plane $X = {{\mathord{\mathbb R}}}^2$ to $X = {{\mathord{\mathbb R}}}^d$ .

Corollary 4. The variance of the 3-hop count between $x\in {{\mathord{\mathbb R}}}^d$ and $y\in {{\mathord{\mathbb R}}}^d$ is given by

\begin{eqnarray} {{\mathrm{{\rm Var}}}} [ N^{x,y}_3 ] & = & 2 \lambda^3 \Big( \frac{\pi^3}{8 \beta^3} \Big)^{d/2} \rm{e}^{- \beta \Vert x- y\Vert^2/2} + \lambda^2 \Big( \frac{\pi^2 }{3 \beta^2 }\Big)^{d/2} \rm{e}^{- \beta \Vert x- y\Vert^2/3} \\ & & +\ 2 \lambda^3 \Big( \frac{\pi^3}{12 \beta^3} \Big)^{d/2} \rm{e}^{- 3 \beta \Vert x- y\Vert^2/4} + \lambda^2 \Big( \frac{\pi^2}{8 \beta^2 } \Big)^{d/2} \rm{e}^{- \beta \Vert x- y\Vert^2 } . \end{eqnarray}

Proof. By (Reference Privault17) and Lemma 2 we have

\begin{align} & \int_{{{\mathord{\mathbb R}}}^d} H_\beta (x,z_1)H^{(2)}_\beta (z_1,y) H^{(2)}_\beta (z_1,y) \lambda ( {\rm d} z_1 ) \\ & = \lambda^2 \Big( \frac{\pi^2}{4\beta^2} \Big)^{d/2} \int_{{{\mathord{\mathbb R}}}^d} H_\beta (x,z_1)H^2_{\beta /2} (z_1,y) \lambda ( {\rm d} z_1 ) \end{align}
\begin{align} & \quad = \lambda^3 \Big( \frac{\pi^2}{4\beta^2} \Big)^{d/2} \int_{{{\mathord{\mathbb R}}}^d} H_\beta (x,z_1)H_\beta (z_1,y) \lambda ( {\rm d} z_1 ) = \lambda^3 \Big( \frac{\pi^3}{8\beta^3} \Big)^{d/2} H_{\beta /2} (x,y);\\ & \int_{{{\mathord{\mathbb R}}}^d} H_\beta (x,z_1)H^{(2)}_\beta (x,z_1)H^{(2)}_\beta (z_1,y)H_\beta (z_1,y) \lambda ( {\rm d} z_1 ) \\ \nonumber & \quad = \lambda^2 \Big( \frac{\pi^2}{4\beta^2} \Big)^{d/2} \int_{{{\mathord{\mathbb R}}}^d} H_{3\beta/2} (z_1,y) H_{3\beta /2} (x,z_1) \lambda ( {\rm d} z_1 ) = \lambda^3 \Big( \frac{\pi^3}{12\beta^3} \Big)^{d/2} H_{3\beta /4} (x,y) ;\\ & \int_{X^2} H_\beta (x,z_1)H_\beta (z_1,z_2)H_\beta (z_2,y) H_\beta (x,z_2) H_\beta (z_1,y) \lambda^2 ( {\rm d} z_1,{\rm d}z_2 ) \\ & \quad = \lambda \Big( \frac{\pi}{3\beta} \Big)^{d/2} H_\beta (x,y) \int_{{{\mathord{\mathbb R}}}^d} H_{2\beta/3 }(z_2,(x+y)/2) H_{2\beta }(z_2,(x+y)/2) \lambda ( {\rm d} z_2 ) \\ & \quad = \lambda^2 \Big( \frac{\pi^2}{8 \beta^2 } \Big)^{d/2} H_\beta ( x , y ) ; \end{align}

and we conclude by (14).

Acknowledgement

This research was supported by NTU MOE Tier 2 grant MOE2016-T2-1-036.

References

Bassan, B. and Bona, E. (1990). Moments of stochastic processes governed by Poisson random measures. Comment. Math. Univ. Carolin. 31, 337343.Google Scholar
Bogdan, K., Rosiński, J., Serafin, G. and Wojciechowski, L. (2017). Lévy systems and moment formulas for mixed Poisson integrals. In Stochastic Analysis and Related Topics (Progr. Probab. Vol. 72), Birkhäuser/Springer, Cham, pp. 139164.CrossRefGoogle Scholar
Boyadzhiev, K. (2009). Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals. Abstr. Appl. Anal. 2009, Art. ID 168672.CrossRefGoogle Scholar
Breton, J.-C. and Privault, N. (2014). Factorial moments of point processes. Stoch. Process. Appl. 124, 34123428.CrossRefGoogle Scholar
Decreusefond, L. and Flint, I. (2014). Moment formulae for general point processes. J. Funct. Anal. 267, 452476.CrossRefGoogle Scholar
Decreusefond, L., Flint, I., Privault, N. and Torrisi, G. (2016). Determinantal point processes. In Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry, eds G. Peccati and M. Reitzner. Springer, Berlin, pp. 311342.CrossRefGoogle Scholar
Deng, N., Zhou, W. and Haenggi, M. (2015). The Ginibre point process as a model for wireless networks with repulsion. IEEE Trans. Commun, Wireless . 14, 107121.CrossRefGoogle Scholar
Kallenberg, O. (1986). Random Measures, 4th edn. Akademie, Berlin.Google Scholar
Kartun-Giles, A. and Kim, S. (2018). Counting k-hop paths in the random connection model. IEEE Trans. Commun, Wireless . 17, 32013210.CrossRefGoogle Scholar
Kong, H. B., Flint, I., Wang, P., Niyato, D. and Privault, N. (2016). Exact performance analysis of ambient RF energy harvesting wireless sensor networks with Ginibre point process. IEEE J. Sel. Areas Commun. 34, 37693784.CrossRefGoogle Scholar
Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.CrossRefGoogle Scholar
Meester, R. and Roy, R. (1996). Continuum Percolation (Camb. Tracts Math. Vol. 119). Cambridge University Press.Google Scholar
Miyoshi, N. and Shirai, T. (2012) A cellular network model with Ginibre configurated base stations. Research Report on Mathematical and Computational Sciences (Tokyo Inst. Tech.).Google Scholar
Nguyen, X. and Zessin, H. (1979). Integral and differential characterization of the Gibbs process. Math. Nachr. 88, 105115.Google Scholar
Peccati, G. and Taqqu, M. (2011). Wiener Chaos: Moments, Cumulants and Diagrams: A survey with Computer Implementation. Springer, New York.CrossRefGoogle Scholar
Privault, N. (2009). Moment identities for Poisson–Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris 347, 10711074.CrossRefGoogle Scholar
Privault, N. (2012). Invariance of Poisson measures under random transformations. Ann. Inst. H. Poincaré Probab. Statist. 48, 947972.CrossRefGoogle Scholar
Privault, N. (2012). Moments of Poisson stochastic integrals with random integrands. Prob. Math. Statist. 32, 227239.Google Scholar
Privault, N. (2016). Combinatorics of Poisson stochastic integrals with random integrands. In Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry, eds G. Peccati and M. Reitzner. Springer, Berlin, pp. 3780.CrossRefGoogle Scholar
Slivnyak, I. (1962). Some properties of stationary flows of homogeneous random events. Theory Prob. Appl. 7, 336341.CrossRefGoogle Scholar
Figure 0

Figure 1. Example of a non-flat partition.